Safety threshold for faecal coliform count in water for contact recreational sports:
The lake is the only compartment.
Applying the balance law there is an input of polluted water from the river(s) flowing into the lake, or due to a pollution dump into the lake, and an output as water flows from the lake carrying some pollution with it.
\[ \begin{align*} \frac{dC}{dt} & = \frac{F}{V}c_{in} - \frac{F}{V}C(t) , \,\, C(0)= c_0 \\ \\ C(t) & = c_{in} - (c_{in} - c_0) e^{-Ft/V } \end{align*} \]
\[ \begin{align*} C(t) & = c_{in} - (c_{in} - c_0) e^{-Ft/V } \\ & = c_0 e^{-Ft/V } \end{align*} \]
Solve for \( t \), using \( C = C_L \):
\[ t = - \frac{V}{F} \ln \left( \frac{C_L}{c_0} \right) \]
Formula \[ t = - \frac{V}{F} \ln \left( \frac{C_L}{c_0} \right) \]
V <- 28*10^6
F <- 4*10^6
CL <- 4*10^6
c0 <- 10^7
t <- - V/F*log(CL/c0)
t
[1] 6.414035
\[ C(t) = c_{in} - (c_{in} - c_0) e^{-Ft/V } \]
\[ \frac{dC}{dt} = \frac{F}{V} \left[ c_{in} - C(t) \right] , \,\, C(0)= c_0 \]
\[ \lim_{t \rightarrow \infty} C(t) = \lim_{t \rightarrow \infty} \left( c_{in} - (c_{in} - c_0) e^{-Ft/V }\right) = c_{in} \]
\[ \begin{align*} c_{in} & = 3 \times 10^6 \mathrm{bacteria}/ \mathrm{m}^3 \\ F & = (4*12) \times 10^6 \mathrm{m}^3/ \mathrm{year} \end{align*} \]