---
title: "Crop Yields - Tidy Tuesday Week 36"
output:
flexdashboard::flex_dashboard:
orientation: columns
source_code: embed
social: menu
---
```{r, include=FALSE}
library(flexdashboard)
library(highcharter)
library(tidyverse)
library(mosaicData)
data(Countries)
key_crop_yields <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-09-01/key_crop_yields.csv')
crops <- key_crop_yields %>%
select(-c(Code,Year)) %>%
group_by(Entity) %>%
summarise_at(vars(-group_cols()), sum,na.rm=TRUE) %>%
mutate(total = rowSums(.[,2:12]))
crops <- rename(crops, Country = Entity)
crops$Country[crops$Country == "Tanzania"] <- "United Republic of Tanzania"
crops$Country[crops$Country == "Iran"] <- "Iran (Islamic Republic of)"
crops <- crops %>%
inner_join(Countries, by = c("Country"="maptools"))
```
Column
-------------------------------------
### Total Key Crop Yield (Wheat, Rice, Maize, Soybeans, Potatoes, Beans, Peas, Cassava, Barley, Cocoa, and Bananas) Across the World Since 1961
```{r}
crops$Country[crops$Country == "United States"] <- "United States of America"
crops$Country[crops$Country == "Congo"] <- "Democratic Republic of the Congo"
crops$Country[crops$Country == "Iran (Islamic Republic of)"] <- "Iran"
hcmap(
"custom/world-robinson-lowres",
data = crops,
name = "Total Key Crop Yield (tonnes per hectare)",
value = "total",
borderWidth = 0,
nullColor = "#d3d3d3",
joinBy = c("name", "Country")
)%>%
hc_add_theme(hc_theme_elementary())
```
Column {.tabset .tabset-fade}
-------------------------------------
### Key Crop Yield Growth Over Time
```{r}
top5 <- crops %>%
arrange(desc(total)) %>%
head(5)
top5countries <- key_crop_yields %>%
filter(Entity %in% top5$Country) %>%
select(-Code)%>%
mutate(total = rowSums(.[,2:12],na.rm=TRUE))
hchart(top5countries, "line", hcaes(x = Year, y = total, group = Entity)) %>%
hc_add_theme(hc_theme_elementary())
```
### Top Wheat Producers from 1961 to 2018
```{r}
wheat <- key_crop_yields %>%
filter(Entity %in% crops$Country)%>%
pivot_wider(names_from = Year, values_from=`Wheat (tonnes per hectare)`) %>%
group_by(Entity) %>%
select(-Code)%>%
summarise_at(vars(-group_cols()), sum,na.rm=TRUE) %>%
mutate(total = rowSums(.[,12:69])) %>%
rename(Country = Entity)
hchart(wheat %>% arrange(desc(total)) %>% head(10), "dumbbell", hcaes(x = Country , low = `1961`, high = `2018` )) %>%
hc_add_theme(hc_theme_elementary()) %>%
hc_annotations(
list(
labelOptions = list(y = 10, x = 200),
labels = list(
list(
point = list(
x = 50,
y = 10 ,yAxis = 0
),
text = "Black: wheat production in 1961;
Blue: wheat production in 2018"
)
)
)
)
```
### Top Rice Producers
```{r}
hchart(crops %>% arrange(desc(`Rice (tonnes per hectare)` )) %>% head(10), "bar", hcaes(x = Country, y = `Rice (tonnes per hectare)` ))
```