## Warning: package 'kableExtra' was built under R version 4.0.2
## Warning: package 'dplyr' was built under R version 4.0.2

Installation

Mac users

To Install R

  1. Open an internet browser and go to www.r-project.org.
  2. Click the “download R” link in the middle of the page under “Getting Started.”
  3. Select a CRAN location (a mirror site) and click the corresponding link.
  4. Click on the “Download R for (Mac) OS X” link at the top of the page.
  5. Click on the file containing the latest version of R under “Files.”
  6. Save the .pkg file, double-click it to open, and follow the installation instructions.
  7. Now that R is installed, you need to download and install RStudio.

To Install RStudio

  1. Go to www.rstudio.com and click on the “Download RStudio” button.
  2. Click on “Download RStudio Desktop.”
  3. Click on the version recommended for your system, or the latest Mac version, save the .dmg file on your computer, double-click it to open, and then drag and drop it to your applications folder.

Windows Users

To Install R:

  1. Open an internet browser and go to www.r-project.org.

  2. Click the “download R” link in the middle of the page under “Getting Started.”

  3. Select a CRAN location (a mirror site) and click the corresponding link.

  4. Click on the “Download R for Windows” link at the top of the page.

  5. Click on the “install R for the first time” link at the top of the page.

  6. Click “Download R for Windows” and save the executable file somewhere on your computer. Run the .exe file and follow the installation instructions.

  7. Now that R is installed, you need to download and install RStudio.

To Install RStudio

  1. Go to www.rstudio.com and click on the “Download RStudio” button.

  2. Click on “Download RStudio Desktop.”

  3. Click on the version recommended for your system, or the latest Windows version, and save the executable file. Run the .exe file and follow the installation instructions.

Rstudio Introduction

R file types

.R files R uses a basic script file with the .R extension. This type of file is useful if you’re going to write a function or do some analysis and don’t want to have formatted output or text.

.Rmd files Rstudio uses a form of the markdown formatting language, called Rmarkdown, for creating formatted documents that include code chunks, tables, figures and statistical output. This entire example is written in Rmarkdown!

Rmarkdown is nice for lots of reasons, such as the ability to insert latex equations into documents

\[y_i \sim Normal (x` \beta, \sigma_2)\] or to include output tables directly into a document:

## Warning: package 'broom' was built under R version 4.0.2
## Warning: package 'pander' was built under R version 4.0.2

Quitting from lines 81-88 (REX1_Rintro.Rmd) Error: No tidy method for objects of class summary.lm

without having to make tables in Word or some other program. You can basically do your entire analysis and slideshow or paper write up, including bibliography in Rstudio.

R basics

Libraries and packages

R uses libraries to do different types of analysis, so we will need to install lots of different libraries to do different things. These need to be downloaded from the internet, using the install.packages() command. You only need to install a package once. E.g.

install.packages("car") will install the lme4 library. To use the functions within it, type

library(car)

Now you have access to those functions.

I strongly recommend you install several packages prior to us beginning. Dr. Corey Sparks has written a short script on Github you can use it by running:

source("https://raw.githubusercontent.com/coreysparks/Rcode/master/install_first_short.R")

This will install a few dozen R packages that are commonly used for social science analysis.

Below we will go through a simple R session where we introduce some concepts that are important for R.

Basic R functions

1) Set the working directory

#setwd("~")
getwd() # Shows the working directory (wd)
## [1] "/Users/samo/Downloads"
### Select the working directory interactively (SESSION)

2) R is a calculator

#addition and subtraction
3+7
3-7

#multiplication and division
3*7

3/7

#powers
3^2
3^3 

#functions
log(3/7)
exp(3/7)
sin(3/7)

3) Variables and objects

In R we assign values to objects (object-oriented programming). These can generally have any name, but some names are reserved for R. For instance you probably wouldn’t want to call something ‘mean’ because there’s a ‘mean()’ function already in R. For instance:

x<-(-3)
y<-7
x+y
## [1] 4
x*y
## [1] -21
log(x*y)
## Warning in log(x * y): NaNs produced
## [1] NaN

4) Vectors

R thinks everything is a matrix, or a vector, meaning a row or column of numbers, or characters. One of R’s big selling points is that much of it is completely vectorized. Meaning, I can apply an operation along all elements of a vector without having to write a loop. For example, if I want to multiply a vector of numbers by a constant. I can just do:

x<-c(3, 4, 5, 6, 7)
#c() makes a vector
y<-7

x*y
## [1] 21 28 35 42 49

R is also very good about using vectors, let’s say I wanted to find the third element of x:

x[3]
## [1] 5
#or if I want to test if this element is 10
x[3]==10
## [1] FALSE
x[3]!=10
## [1] TRUE
#of is it larger than another number:
x[3]>3
## [1] TRUE
#or is any element of the whole vector greater than 3
x>3
## [1] FALSE  TRUE  TRUE  TRUE  TRUE

If you want to see what’s in an object, use str(), for structure

str(x)
##  num [1:5] 3 4 5 6 7

and we see that x is numeric, and has those values.

We can also see different characteristics of x

#how long is x?
length(x)
## [1] 5
#is x numeric?
is.numeric(x)
## [1] TRUE
is.character(x)
## [1] FALSE
#is any element of x missing?
is.na(x)
## [1] FALSE FALSE FALSE FALSE FALSE
#now i'll modify x
x<-c(x, NA) #combine x and a missing value ==NA
x
## [1]  3  4  5  6  7 NA
print(x)
## [1]  3  4  5  6  7 NA
is.na(x)
## [1] FALSE FALSE FALSE FALSE FALSE  TRUE

Note: NA stands for Not Available, which R uses to represent missing values.

5) Replacing elements of vectors

Above, we had a missing value in X, let’s say we want to replace it with another value:

x<-ifelse(test = is.na(x)==T, yes =  sqrt(7.2), no =  x)
x
## [1] 3.000000 4.000000 5.000000 6.000000 7.000000 2.683282

Exercise

Let’s create a character variable. Using R jargon, we would say we are going to create a character vector, or a vector whose mode is character. These are the genders of our hypothetical students:

gender<-c("f","f","f", NA, "m","m","m","m")
gender
## [1] "f" "f" "f" NA  "m" "m" "m" "m"
print(gender)
## [1] "f" "f" "f" NA  "m" "m" "m" "m"

Data frames

Traditionally, R organizes variables into data frames, these are like a spreadsheet. In R terminology, the columns are called vectors, variables, or just columns. R calls the rows observations, cases, or just rows. The columns can have names, and the dataframe itself can have data of different types. Here we make a short data frame with three columns, two numeric and one character:

mydat<- data.frame(
  x=c(1,2,3,4,5),
  y=c(10, 20, 35, 57, 37),
  group=c("A", "A" ,"A", "B", "B")
)

#See the size of the dataframe
dim(mydat)
## [1] 5 3
length(mydat$x)
## [1] 5
#Open the dataframe in a viewer and just print it
#View(mydat)
print(mydat)
##   x  y group
## 1 1 10     A
## 2 2 20     A
## 3 3 35     A
## 4 4 57     B
## 5 5 37     B

Real data

note, please make a folder on your computer so you can store things for this class in a single location!!!! Organization is Key to Success in Graduate School

install.packages(“foreign”) # need to install package –foreign– first. (You do this only once) *The haven orreadr library can read files from other statistical packages easily, so if you have data in Stata, SAS or SPSS (barf!), you can read it into R using those functions, for example, the read_dta() function reads stata files.

Loading a Stata data file

#library(haven)
#bexar_covid <- read_dta("users/pnl830/Dropbox/covid/bexar-covid.dta")
#View(bexar_covid)

Don’t know what a function’s called use ??

??stata ??csv

and Rstudio will show you a list of functions that have these strings in them.

Extracting data directly from packages

#install.packages("covid19.analytics")
library(covid19.analytics)
## Warning: package 'covid19.analytics' was built under R version 4.0.2
#covid19.genomic.data() 
data<-covid19.data("ts-confirmed")
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv
## Data retrieved on 2020-09-02 21:05:47 || Range of dates on data: 2020-01-22--2020-09-01 | Nbr of records: 266
## --------------------------------------------------------------------------------
 # specify a location
report.summary(geo.loc="NorthAmerica")
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv
## Data retrieved on 2020-09-02 21:05:48 || Range of dates on data: 2020-01-22--2020-09-01 | Nbr of records: 266
## --------------------------------------------------------------------------------
##  >>> checking data integrity...
## No critical issues have been found.
##  >>> checking data consistency...
## Warning in consistency.check(data, n0, nf, datasetName, details): Inconsistency
## of type.II in ts-confirmed data detected -- 47 records (out of 266) show
## inconsistencies in the data...
## [1] "NORTHAMERICA"
## [1] "CANADA" "US"     "MEXICO"
## Warning in if (!(toupper(geo.ind) %in% provinces.states) & !(toupper(geo.ind)
## %in% : the condition has length > 1 and only the first element will be used
## ################################################################################ 
##   ##### TS-CONFIRMED Cases  -- Data dated:  2020-09-01  ::  2020-09-02 21:05:48 
## ################################################################################ 
##   Number of Countries/Regions reported:  3 
##   Number of Cities/Provinces reported:  15 
##   Unique number of distinct geographical locations combined: 16 
## -------------------------------------------------------------------------------- 
##   For selected locations ts-confirmed  Totals: 6811298 
## -------------------------------------------------------------------------------- 
##    Country.Region            Province.State  Totals RelPerc GlobalPerc LastDayChange   t-2   t-3   t-7  t-14  t-30
## 1              US                           6073840   89.17      23.59         43253 34156 35337 44109 46436 45368
## 2          Mexico                            606036    8.90       2.35          6476  3719  4129  5267  5792  4767
## 3          Canada                    Quebec   62614    0.92       0.24           122   140   120   142    64   123
## 4          Canada                   Ontario   44418    0.65       0.17           139   136    98   117    90    58
## 5          Canada                   Alberta   14066    0.21       0.05           164   426     0   127    82     0
## 6          Canada          British Columbia    5848    0.09       0.02            58   294     0    62    68     0
## 7          Canada              Saskatchewan    1622    0.02       0.01             3     4     0     3     4    17
## 8          Canada                  Manitoba    1232    0.02       0.00            18    28    31    25    15     7
## 9          Canada               Nova Scotia    1085    0.02       0.00             0     2     0     1     1     0
## 10         Canada Newfoundland and Labrador     269    0.00       0.00             0     0     0     0     0     0
## -------------------------------------------------------------------------------- 
##   Global Perc. Average:  1.65 (sd: 5.88) 
##   Global Perc. Average in top  10 :  2.64 (sd: 7.4) 
## -------------------------------------------------------------------------------- 
## ================================================================================
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv
## Data retrieved on 2020-09-02 21:05:49 || Range of dates on data: 2020-01-22--2020-09-01 | Nbr of records: 266
## --------------------------------------------------------------------------------
##  >>> checking data integrity...
## No critical issues have been found.
##  >>> checking data consistency...
## Warning in consistency.check(data, n0, nf, datasetName, details): Inconsistency
## of type.II in ts-deaths data detected -- 36 records (out of 266) show
## inconsistencies in the data...

## [1] "CANADA"
## [1] "US"
## [1] "MEXICO"
## ################################################################################ 
##   ##### TS-DEATHS Cases  -- Data dated:  2020-09-01  ::  2020-09-02 21:05:50 
## ################################################################################ 
##   Number of Countries/Regions reported:  3 
##   Number of Cities/Provinces reported:  15 
##   Unique number of distinct geographical locations combined: 16 
## -------------------------------------------------------------------------------- 
##   For selected locations ts-deaths  Totals: 259084 
## -------------------------------------------------------------------------------- 
##    Country.Region            Province.State Totals  Perc LastDayChange t-2 t-3  t-7 t-14 t-30
## 1              US                           184664  3.04          1067 573 310 1225 1353  530
## 2          Mexico                            65241 10.77           827 256 339  626  707  266
## 3          Canada                    Quebec   5762  9.20             2   2   3    1    2    2
## 4          Canada                   Ontario   2858  6.43             1   1   0    3    0    3
## 5          Canada                   Alberta    241  1.71             2   2   0    0    2    0
## 6          Canada          British Columbia    209  3.57             1   4   0    0    0    0
## 7          Canada               Nova Scotia     65  5.99             0   0   0    0    0    0
## 8          Canada              Saskatchewan     24  1.48             0   0   0    1    0    0
## 9          Canada                  Manitoba     14  1.14             0   0   0    0    1    0
## 10         Canada Newfoundland and Labrador      3  1.12             0   0   0    0    0    0
## -------------------------------------------------------------------------------- 
## -------------------------------------------------------------------------------- 
## ================================================================================
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_recovered_global.csv
## Data retrieved on 2020-09-02 21:05:50 || Range of dates on data: 2020-01-22--2020-09-01 | Nbr of records: 253
## --------------------------------------------------------------------------------
##  >>> checking data integrity...
## No critical issues have been found.
##  >>> checking data consistency...
## Warning in consistency.check(data, n0, nf, datasetName, details): Inconsistency
## of type.II in ts-recovered data detected -- 70 records (out of 253) show
## inconsistencies in the data...

## [1] "CANADA"
## [1] "US"
## [1] "MEXICO"
## ################################################################################ 
##   ##### TS-RECOVERED Cases  -- Data dated:  2020-09-01  ::  2020-09-02 21:05:51 
## ################################################################################ 
##   Number of Countries/Regions reported:  3 
##   Number of Cities/Provinces reported:  1 
##   Unique number of distinct geographical locations combined: 3 
## -------------------------------------------------------------------------------- 
##   For selected locations ts-recovered  Totals: 2820817 
## -------------------------------------------------------------------------------- 
##   Country.Region Province.State  Totals LastDayChange   t-2   t-3   t-7  t-14  t-30
## 1             US                2202663         17838 30886 13325 30766 26890 44757
## 2         Mexico                 501722          5500  6498  5441  2991  4566 10915
## 3         Canada                 116432           412   560   166   411   467    83
## -------------------------------------------------------------------------------- 
## -------------------------------------------------------------------------------- 
## ================================================================================
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/09-01-2020.csv

## [1] "CANADA"
## [1] "US"
## [1] "MEXICO"
## ############################################################################################################################################ 
##   ##### AGGREGATED Data  -- ORDERED BY  CONFIRMED Cases  -- Data dated:  2020-09-02  ::  2020-09-02 21:05:52 
## ############################################################################################################################################ 
##   Number of Countries/Regions reported: 3 
##   Number of Cities/Provinces reported: 102 
##   Unique number of distinct geographical locations combined: 3316 
## -------------------------------------------------------------------------------------------------------------------------------------------- 
##                       Location Confirmed Perc.Confirmed Deaths Perc.Deaths Recovered Perc.Recovered Active Perc.Active
## 1  Los Angeles, California, US    242521           0.94   5829        2.40         0           0.00 236692       97.60
## 2      Miami-Dade, Florida, US    159059           0.62   2537        1.60         0           0.00 156522       98.40
## 3        Maricopa, Arizona, US    134004           0.52   2976        2.22         0           0.00 131028       97.78
## 4           Cook, Illinois, US    126992           0.49   5065        3.99         0           0.00 121927       96.01
## 5            Harris, Texas, US    107490           0.42   2208        2.05         0           0.00 105282       97.95
## 6     Ciudad de Mexico, Mexico     99564           0.39  10591       10.64     82245          82.61   6728        6.76
## 7            Dallas, Texas, US     72252           0.28    959        1.33         0           0.00  71293       98.67
## 8         Broward, Florida, US     72245           0.28   1187        1.64         0           0.00  71058       98.36
## 9         Queens, New York, US     70288           0.27   7224       10.28         0           0.00  63064       89.72
## 10              Mexico, Mexico     68516           0.27   8082       11.80     57137          83.39   3297        4.81
## ============================================================================================================================================
## ############################################################################################################################################ 
##   ##### AGGREGATED Data  -- ORDERED BY  DEATHS Cases  -- Data dated:  2020-09-02  ::  2020-09-02 21:05:52 
## ############################################################################################################################################ 
##   Number of Countries/Regions reported: 3 
##   Number of Cities/Provinces reported: 102 
##   Unique number of distinct geographical locations combined: 3316 
## -------------------------------------------------------------------------------------------------------------------------------------------- 
##                       Location Confirmed Perc.Confirmed Deaths Perc.Deaths Recovered Perc.Recovered Active Perc.Active
## 1     Ciudad de Mexico, Mexico     99564           0.39  10591       10.64     82245          82.61   6728        6.76
## 2               Mexico, Mexico     68516           0.27   8082       11.80     57137          83.39   3297        4.81
## 3          Kings, New York, US     65118           0.25   7290       11.20         0           0.00  57828       88.80
## 4         Queens, New York, US     70288           0.27   7224       10.28         0           0.00  63064       89.72
## 5  Los Angeles, California, US    242521           0.94   5829        2.40         0           0.00 236692       97.60
## 6               Quebec, Canada     62614           0.24   5762        9.20     55438          88.54   1414        2.26
## 7           Cook, Illinois, US    126992           0.49   5065        3.99         0           0.00 121927       96.01
## 8          Bronx, New York, US     51663           0.20   4912        9.51         0           0.00  46751       90.49
## 9             Veracruz, Mexico     28581           0.11   3702       12.95     23486          82.17   1393        4.87
## 10              Puebla, Mexico     27070           0.11   3575       13.21     22217          82.07   1278        4.72
## ============================================================================================================================================
## ############################################################################################################################################ 
##   ##### AGGREGATED Data  -- ORDERED BY  RECOVERED Cases  -- Data dated:  2020-09-02  ::  2020-09-02 21:05:52 
## ############################################################################################################################################ 
##   Number of Countries/Regions reported: 3 
##   Number of Cities/Provinces reported: 102 
##   Unique number of distinct geographical locations combined: 3316 
## -------------------------------------------------------------------------------------------------------------------------------------------- 
##                    Location Confirmed Perc.Confirmed Deaths Perc.Deaths Recovered Perc.Recovered   Active Perc.Active
## 1             Recovered, US         0           0.00      0         NaN   2202663            Inf -2202663        -Inf
## 2  Ciudad de Mexico, Mexico     99564           0.39  10591       10.64     82245          82.61     6728        6.76
## 3            Mexico, Mexico     68516           0.27   8082       11.80     57137          83.39     3297        4.81
## 4            Quebec, Canada     62614           0.24   5762        9.20     55438          88.54     1414        2.26
## 5           Ontario, Canada     44418           0.17   2858        6.43     40192          90.49     1368        3.08
## 6        Guanajuato, Mexico     31998           0.12   2150        6.72     27062          84.57     2786        8.71
## 7           Tabasco, Mexico     28471           0.11   2589        9.09     24704          86.77     1178        4.14
## 8        Nuevo Leon, Mexico     29524           0.11   2285        7.74     24150          81.80     3089       10.46
## 9          Veracruz, Mexico     28581           0.11   3702       12.95     23486          82.17     1393        4.87
## 10           Puebla, Mexico     27070           0.11   3575       13.21     22217          82.07     1278        4.72
## ============================================================================================================================================
## ############################################################################################################################################ 
##   ##### AGGREGATED Data  -- ORDERED BY  ACTIVE Cases  -- Data dated:  2020-09-02  ::  2020-09-02 21:05:52 
## ############################################################################################################################################ 
##   Number of Countries/Regions reported: 3 
##   Number of Cities/Provinces reported: 102 
##   Unique number of distinct geographical locations combined: 3316 
## -------------------------------------------------------------------------------------------------------------------------------------------- 
##                       Location Confirmed Perc.Confirmed Deaths Perc.Deaths Recovered Perc.Recovered Active Perc.Active
## 1  Los Angeles, California, US    242521           0.94   5829        2.40         0              0 236692       97.60
## 2      Miami-Dade, Florida, US    159059           0.62   2537        1.60         0              0 156522       98.40
## 3        Maricopa, Arizona, US    134004           0.52   2976        2.22         0              0 131028       97.78
## 4           Cook, Illinois, US    126992           0.49   5065        3.99         0              0 121927       96.01
## 5            Harris, Texas, US    107490           0.42   2208        2.05         0              0 105282       97.95
## 6            Dallas, Texas, US     72252           0.28    959        1.33         0              0  71293       98.67
## 7         Broward, Florida, US     72245           0.28   1187        1.64         0              0  71058       98.36
## 8         Queens, New York, US     70288           0.27   7224       10.28         0              0  63064       89.72
## 9            Clark, Nevada, US     59716           0.23   1134        1.90         0              0  58582       98.10
## 10         Kings, New York, US     65118           0.25   7290       11.20         0              0  57828       88.80
## ============================================================================================================================================
##       Confirmed  Deaths  Recovered   Active 
##   Totals 
##       6811298    259084  2820817 NA 
##   Average 
##       2054.07    78.13   850.67  NA 
##   Standard Deviation 
##       8443.85    430.23  38329.52    NA 
##   
## 
##  * Statistical estimators computed considering 3316 independent reported entries
##  >>> checking data integrity...
## No critical issues have been found.

##  
## 
## ******************************************************************************** 
## ********************************  OVERALL SUMMARY******************************** 
## ******************************************************************************** 
##   ****  Time Series  CANADA,US,MEXICO TOTS **** 
##       ts-confirmed   ts-deaths   ts-recovered 
##       6811298    259084  2820817 
##              3.8%        41.41% 
##   ****  Time Series  CANADA,US,MEXICO AVGS **** 
##       ts-confirmed   ts-deaths   ts-recovered 
##       425706.12  16192.75    940272.33 
##              3.8%        220.87% 
##   ****  Time Series  CANADA,US,MEXICO SDS **** 
##       ts-confirmed   ts-deaths   ts-recovered 
##       1513612.27 47751.7 1110105.73 
##              3.15%       73.34% 
##   
## 
##  * Statistical estimators computed considering 16/16/3 independent reported entries per case-type 
## ********************************************************************************
report.summary(geo.loc="US")
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv
## Data retrieved on 2020-09-02 21:05:52 || Range of dates on data: 2020-01-22--2020-09-01 | Nbr of records: 266
## --------------------------------------------------------------------------------
##  >>> checking data integrity...
## No critical issues have been found.
##  >>> checking data consistency...
## Warning in consistency.check(data, n0, nf, datasetName, details): Inconsistency
## of type.II in ts-confirmed data detected -- 47 records (out of 266) show
## inconsistencies in the data...
## [1] "US"
## ################################################################################ 
##   ##### TS-CONFIRMED Cases  -- Data dated:  2020-09-01  ::  2020-09-02 21:05:53 
## ################################################################################ 
##   Number of Countries/Regions reported:  1 
##   Number of Cities/Provinces reported:  1 
##   Unique number of distinct geographical locations combined: 1 
## -------------------------------------------------------------------------------- 
##   For selected locations ts-confirmed  Totals: 6073840 
## -------------------------------------------------------------------------------- 
##   Country.Region Province.State  Totals RelPerc GlobalPerc LastDayChange   t-2   t-3   t-7  t-14  t-30
## 1             US                6073840     100      23.59         43253 34156 35337 44109 46436 45368
## -------------------------------------------------------------------------------- 
##   Global Perc. Average:  23.59 (sd: NA) 
##   Global Perc. Average in top  1 :  23.59 (sd: NA) 
## -------------------------------------------------------------------------------- 
## ================================================================================
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv
## Data retrieved on 2020-09-02 21:05:54 || Range of dates on data: 2020-01-22--2020-09-01 | Nbr of records: 266
## --------------------------------------------------------------------------------
##  >>> checking data integrity...
## No critical issues have been found.
##  >>> checking data consistency...
## Warning in consistency.check(data, n0, nf, datasetName, details): Inconsistency
## of type.II in ts-deaths data detected -- 36 records (out of 266) show
## inconsistencies in the data...

## [1] "US"
## ################################################################################ 
##   ##### TS-DEATHS Cases  -- Data dated:  2020-09-01  ::  2020-09-02 21:05:55 
## ################################################################################ 
##   Number of Countries/Regions reported:  1 
##   Number of Cities/Provinces reported:  1 
##   Unique number of distinct geographical locations combined: 1 
## -------------------------------------------------------------------------------- 
##   For selected locations ts-deaths  Totals: 184664 
## -------------------------------------------------------------------------------- 
##   Country.Region Province.State Totals Perc LastDayChange t-2 t-3  t-7 t-14 t-30
## 1             US                184664 3.04          1067 573 310 1225 1353  530
## -------------------------------------------------------------------------------- 
## -------------------------------------------------------------------------------- 
## ================================================================================
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_recovered_global.csv
## Data retrieved on 2020-09-02 21:05:55 || Range of dates on data: 2020-01-22--2020-09-01 | Nbr of records: 253
## --------------------------------------------------------------------------------
##  >>> checking data integrity...
## No critical issues have been found.
##  >>> checking data consistency...
## Warning in consistency.check(data, n0, nf, datasetName, details): Inconsistency
## of type.II in ts-recovered data detected -- 70 records (out of 253) show
## inconsistencies in the data...

## [1] "US"
## ################################################################################ 
##   ##### TS-RECOVERED Cases  -- Data dated:  2020-09-01  ::  2020-09-02 21:05:56 
## ################################################################################ 
##   Number of Countries/Regions reported:  1 
##   Number of Cities/Provinces reported:  1 
##   Unique number of distinct geographical locations combined: 1 
## -------------------------------------------------------------------------------- 
##   For selected locations ts-recovered  Totals: 2202663 
## -------------------------------------------------------------------------------- 
##   Country.Region Province.State  Totals  Perc LastDayChange   t-2   t-3   t-7  t-14  t-30
## 1             US                2202663 36.26         17838 30886 13325 30766 26890 44757
## -------------------------------------------------------------------------------- 
## -------------------------------------------------------------------------------- 
## ================================================================================
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/09-01-2020.csv

## [1] "US"
## ############################################################################################################################################ 
##   ##### AGGREGATED Data  -- ORDERED BY  CONFIRMED Cases  -- Data dated:  2020-09-02  ::  2020-09-02 21:05:56 
## ############################################################################################################################################ 
##   Number of Countries/Regions reported: 1 
##   Number of Cities/Provinces reported: 58 
##   Unique number of distinct geographical locations combined: 3270 
## -------------------------------------------------------------------------------------------------------------------------------------------- 
##                       Location Confirmed Perc.Confirmed Deaths Perc.Deaths Recovered Perc.Recovered Active Perc.Active
## 1  Los Angeles, California, US    242521           0.94   5829        2.40         0              0 236692       97.60
## 2      Miami-Dade, Florida, US    159059           0.62   2537        1.60         0              0 156522       98.40
## 3        Maricopa, Arizona, US    134004           0.52   2976        2.22         0              0 131028       97.78
## 4           Cook, Illinois, US    126992           0.49   5065        3.99         0              0 121927       96.01
## 5            Harris, Texas, US    107490           0.42   2208        2.05         0              0 105282       97.95
## 6            Dallas, Texas, US     72252           0.28    959        1.33         0              0  71293       98.67
## 7         Broward, Florida, US     72245           0.28   1187        1.64         0              0  71058       98.36
## 8         Queens, New York, US     70288           0.27   7224       10.28         0              0  63064       89.72
## 9          Kings, New York, US     65118           0.25   7290       11.20         0              0  57828       88.80
## 10           Clark, Nevada, US     59716           0.23   1134        1.90         0              0  58582       98.10
## ============================================================================================================================================
## ############################################################################################################################################ 
##   ##### AGGREGATED Data  -- ORDERED BY  DEATHS Cases  -- Data dated:  2020-09-02  ::  2020-09-02 21:05:56 
## ############################################################################################################################################ 
##   Number of Countries/Regions reported: 1 
##   Number of Cities/Provinces reported: 58 
##   Unique number of distinct geographical locations combined: 3270 
## -------------------------------------------------------------------------------------------------------------------------------------------- 
##                       Location Confirmed Perc.Confirmed Deaths Perc.Deaths Recovered Perc.Recovered Active Perc.Active
## 1          Kings, New York, US     65118           0.25   7290       11.20         0              0  57828       88.80
## 2         Queens, New York, US     70288           0.27   7224       10.28         0              0  63064       89.72
## 3  Los Angeles, California, US    242521           0.94   5829        2.40         0              0 236692       97.60
## 4           Cook, Illinois, US    126992           0.49   5065        3.99         0              0 121927       96.01
## 5          Bronx, New York, US     51663           0.20   4912        9.51         0              0  46751       90.49
## 6       New York, New York, US     32165           0.12   3170        9.86         0              0  28995       90.14
## 7        Maricopa, Arizona, US    134004           0.52   2976        2.22         0              0 131028       97.78
## 8          Wayne, Michigan, US     31357           0.12   2889        9.21         0              0  28468       90.79
## 9      Miami-Dade, Florida, US    159059           0.62   2537        1.60         0              0 156522       98.40
## 10           Harris, Texas, US    107490           0.42   2208        2.05         0              0 105282       97.95
## ============================================================================================================================================
## ############################################################################################################################################ 
##   ##### AGGREGATED Data  -- ORDERED BY  RECOVERED Cases  -- Data dated:  2020-09-02  ::  2020-09-02 21:05:56 
## ############################################################################################################################################ 
##   Number of Countries/Regions reported: 1 
##   Number of Cities/Provinces reported: 58 
##   Unique number of distinct geographical locations combined: 3270 
## -------------------------------------------------------------------------------------------------------------------------------------------- 
##                 Location Confirmed Perc.Confirmed Deaths Perc.Deaths Recovered Perc.Recovered   Active Perc.Active
## 1          Recovered, US         0           0.00      0         NaN   2202663            Inf -2202663        -Inf
## 2   Autauga, Alabama, US      1354           0.01     23        1.70         0              0     1331       98.30
## 3   Baldwin, Alabama, US      4445           0.02     38        0.85         0              0     4407       99.15
## 4   Barbour, Alabama, US       629           0.00      7        1.11         0              0      622       98.89
## 5      Bibb, Alabama, US       538           0.00      7        1.30         0              0      531       98.70
## 6    Blount, Alabama, US      1045           0.00     11        1.05         0              0     1034       98.95
## 7   Bullock, Alabama, US       541           0.00     13        2.40         0              0      528       97.60
## 8    Butler, Alabama, US       840           0.00     36        4.29         0              0      804       95.71
## 9   Calhoun, Alabama, US      2411           0.01     32        1.33         0              0     2379       98.67
## 10 Chambers, Alabama, US       874           0.00     39        4.46         0              0      835       95.54
## ============================================================================================================================================
## ############################################################################################################################################ 
##   ##### AGGREGATED Data  -- ORDERED BY  ACTIVE Cases  -- Data dated:  2020-09-02  ::  2020-09-02 21:05:56 
## ############################################################################################################################################ 
##   Number of Countries/Regions reported: 1 
##   Number of Cities/Provinces reported: 58 
##   Unique number of distinct geographical locations combined: 3270 
## -------------------------------------------------------------------------------------------------------------------------------------------- 
##                       Location Confirmed Perc.Confirmed Deaths Perc.Deaths Recovered Perc.Recovered Active Perc.Active
## 1  Los Angeles, California, US    242521           0.94   5829        2.40         0              0 236692       97.60
## 2      Miami-Dade, Florida, US    159059           0.62   2537        1.60         0              0 156522       98.40
## 3        Maricopa, Arizona, US    134004           0.52   2976        2.22         0              0 131028       97.78
## 4           Cook, Illinois, US    126992           0.49   5065        3.99         0              0 121927       96.01
## 5            Harris, Texas, US    107490           0.42   2208        2.05         0              0 105282       97.95
## 6            Dallas, Texas, US     72252           0.28    959        1.33         0              0  71293       98.67
## 7         Broward, Florida, US     72245           0.28   1187        1.64         0              0  71058       98.36
## 8         Queens, New York, US     70288           0.27   7224       10.28         0              0  63064       89.72
## 9            Clark, Nevada, US     59716           0.23   1134        1.90         0              0  58582       98.10
## 10         Kings, New York, US     65118           0.25   7290       11.20         0              0  57828       88.80
## ============================================================================================================================================
##       Confirmed  Deaths  Recovered   Active 
##   Totals 
##       6073840    184664  2202663 NA 
##   Average 
##       1857.44    56.47   673.6   NA 
##   Standard Deviation 
##       8008.52    305.46  38518.93    NA 
##   
## 
##  * Statistical estimators computed considering 3270 independent reported entries
##  >>> checking data integrity...
## No critical issues have been found.

##  
## 
## ******************************************************************************** 
## ********************************  OVERALL SUMMARY******************************** 
## ******************************************************************************** 
##   ****  Time Series  US TOTS **** 
##       ts-confirmed   ts-deaths   ts-recovered 
##       6073840    184664  2202663 
##              3.04%       36.26% 
##   ****  Time Series  US AVGS **** 
##       ts-confirmed   ts-deaths   ts-recovered 
##       6073840    184664  2202663 
##              3.04%       36.26% 
##   ****  Time Series  US SDS **** 
##       ts-confirmed   ts-deaths   ts-recovered 
##       NA NA  NA 
##              NA%         NA% 
##   
## 
##  * Statistical estimators computed considering 1/1/1 independent reported entries per case-type 
## ********************************************************************************
report.summary(geo.loc="China")
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv
## Data retrieved on 2020-09-02 21:05:57 || Range of dates on data: 2020-01-22--2020-09-01 | Nbr of records: 266
## --------------------------------------------------------------------------------
##  >>> checking data integrity...
## No critical issues have been found.
##  >>> checking data consistency...
## Warning in consistency.check(data, n0, nf, datasetName, details): Inconsistency
## of type.II in ts-confirmed data detected -- 47 records (out of 266) show
## inconsistencies in the data...
## [1] "CHINA"
## ################################################################################ 
##   ##### TS-CONFIRMED Cases  -- Data dated:  2020-09-01  ::  2020-09-02 21:05:58 
## ################################################################################ 
##   Number of Countries/Regions reported:  1 
##   Number of Cities/Provinces reported:  33 
##   Unique number of distinct geographical locations combined: 33 
## -------------------------------------------------------------------------------- 
##   For selected locations ts-confirmed  Totals: 89933 
## -------------------------------------------------------------------------------- 
##    Country.Region Province.State Totals RelPerc GlobalPerc LastDayChange t-2 t-3 t-7 t-14 t-30
## 1           China          Hubei  68139   75.77       0.26             0   0   0   0    0    0
## 2           China      Hong Kong   4822    5.36       0.02            12   9  15  24   26   78
## 3           China      Guangdong   1742    1.94       0.01             2   1   1   0    0    4
## 4           China       Zhejiang   1278    1.42       0.00             0   0   1   0    0    0
## 5           China          Henan   1276    1.42       0.00             0   0   0   0    0    0
## 6           China          Hunan   1019    1.13       0.00             0   0   0   0    0    0
## 7           China          Anhui    991    1.10       0.00             0   0   0   0    0    0
## 8           China   Heilongjiang    948    1.05       0.00             0   0   0   0    0    0
## 9           China        Beijing    935    1.04       0.00             0   0   0   0    0    0
## 10          China        Jiangxi    935    1.04       0.00             0   0   0   0    3    0
## -------------------------------------------------------------------------------- 
##   Global Perc. Average:  0.01 (sd: 0.05) 
##   Global Perc. Average in top  10 :  0.03 (sd: 0.08) 
## -------------------------------------------------------------------------------- 
## ================================================================================
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv
## Data retrieved on 2020-09-02 21:05:58 || Range of dates on data: 2020-01-22--2020-09-01 | Nbr of records: 266
## --------------------------------------------------------------------------------
##  >>> checking data integrity...
## No critical issues have been found.
##  >>> checking data consistency...
## Warning in consistency.check(data, n0, nf, datasetName, details): Inconsistency
## of type.II in ts-deaths data detected -- 36 records (out of 266) show
## inconsistencies in the data...

## [1] "CHINA"
## ################################################################################ 
##   ##### TS-DEATHS Cases  -- Data dated:  2020-09-01  ::  2020-09-02 21:05:59 
## ################################################################################ 
##   Number of Countries/Regions reported:  1 
##   Number of Cities/Provinces reported:  33 
##   Unique number of distinct geographical locations combined: 33 
## -------------------------------------------------------------------------------- 
##   For selected locations ts-deaths  Totals: 4724 
## -------------------------------------------------------------------------------- 
##    Country.Region Province.State Totals Perc LastDayChange t-2 t-3 t-7 t-14 t-30
## 1           China          Hubei   4512 6.62             0   0   0   0    0    0
## 2           China      Hong Kong     90 1.87             1   1   1   1    1    3
## 3           China          Henan     22 1.72             0   0   0   0    0    0
## 4           China   Heilongjiang     13 1.37             0   0   0   0    0    0
## 5           China        Beijing      9 0.96             0   0   0   0    0    0
## 6           China      Guangdong      8 0.46             0   0   0   0    0    0
## 7           China       Shandong      7 0.84             0   0   0   0    0    0
## 8           China       Shanghai      7 0.77             0   0   0   0    0    0
## 9           China          Anhui      6 0.61             0   0   0   0    0    0
## 10          China      Chongqing      6 1.03             0   0   0   0    0    0
## -------------------------------------------------------------------------------- 
## -------------------------------------------------------------------------------- 
## ================================================================================
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_recovered_global.csv
## Data retrieved on 2020-09-02 21:05:59 || Range of dates on data: 2020-01-22--2020-09-01 | Nbr of records: 253
## --------------------------------------------------------------------------------
##  >>> checking data integrity...
## No critical issues have been found.
##  >>> checking data consistency...
## Warning in consistency.check(data, n0, nf, datasetName, details): Inconsistency
## of type.II in ts-recovered data detected -- 70 records (out of 253) show
## inconsistencies in the data...

## [1] "CHINA"
## ################################################################################ 
##   ##### TS-RECOVERED Cases  -- Data dated:  2020-09-01  ::  2020-09-02 21:06:00 
## ################################################################################ 
##   Number of Countries/Regions reported:  1 
##   Number of Cities/Provinces reported:  33 
##   Unique number of distinct geographical locations combined: 33 
## -------------------------------------------------------------------------------- 
##   For selected locations ts-recovered  Totals: 84652 
## -------------------------------------------------------------------------------- 
##    Country.Region Province.State Totals  Perc LastDayChange t-2 t-3 t-7 t-14 t-30
## 1           China          Hubei  63627 93.38             0   0   1   0    0    0
## 2           China      Hong Kong   4380 90.83            38  22  33  53  102   78
## 3           China      Guangdong   1721 98.79             0   1   2   2    2    2
## 4           China       Zhejiang   1268 99.22             0   0   0   0    0    0
## 5           China          Henan   1254 98.28             0   0   0   0    0    0
## 6           China          Hunan   1015 99.61             0   0   0   0    0    0
## 7           China          Anhui    985 99.39             0   0   0   0    0    0
## 8           China   Heilongjiang    935 98.63             0   0   1   0    0    0
## 9           China        Jiangxi    934 99.89             0   0   0   1    0    0
## 10          China        Beijing    926 99.04             0   0   0   0    0    1
## -------------------------------------------------------------------------------- 
## -------------------------------------------------------------------------------- 
## ================================================================================
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/09-01-2020.csv

## [1] "CHINA"
## ############################################################################################################################################ 
##   ##### AGGREGATED Data  -- ORDERED BY  CONFIRMED Cases  -- Data dated:  2020-09-02  ::  2020-09-02 21:06:01 
## ############################################################################################################################################ 
##   Number of Countries/Regions reported: 1 
##   Number of Cities/Provinces reported: 33 
##   Unique number of distinct geographical locations combined: 33 
## -------------------------------------------------------------------------------------------------------------------------------------------- 
##               Location Confirmed Perc.Confirmed Deaths Perc.Deaths Recovered Perc.Recovered Active Perc.Active
## 1         Hubei, China     68139           0.26   4512        6.62     63627          93.38      0        0.00
## 2     Hong Kong, China      4822           0.02     90        1.87      4380          90.83    352        7.30
## 3     Guangdong, China      1742           0.01      8        0.46      1721          98.79     13        0.75
## 4      Zhejiang, China      1278           0.00      1        0.08      1268          99.22      9        0.70
## 5         Henan, China      1276           0.00     22        1.72      1254          98.28      0        0.00
## 6         Hunan, China      1019           0.00      4        0.39      1015          99.61      0        0.00
## 7         Anhui, China       991           0.00      6        0.61       985          99.39      0        0.00
## 8  Heilongjiang, China       948           0.00     13        1.37       935          98.63      0        0.00
## 9       Beijing, China       935           0.00      9        0.96       926          99.04      0        0.00
## 10      Jiangxi, China       935           0.00      1        0.11       934          99.89      0        0.00
## ============================================================================================================================================
## ############################################################################################################################################ 
##   ##### AGGREGATED Data  -- ORDERED BY  DEATHS Cases  -- Data dated:  2020-09-02  ::  2020-09-02 21:06:01 
## ############################################################################################################################################ 
##   Number of Countries/Regions reported: 1 
##   Number of Cities/Provinces reported: 33 
##   Unique number of distinct geographical locations combined: 33 
## -------------------------------------------------------------------------------------------------------------------------------------------- 
##               Location Confirmed Perc.Confirmed Deaths Perc.Deaths Recovered Perc.Recovered Active Perc.Active
## 1         Hubei, China     68139           0.26   4512        6.62     63627          93.38      0        0.00
## 2     Hong Kong, China      4822           0.02     90        1.87      4380          90.83    352        7.30
## 3         Henan, China      1276           0.00     22        1.72      1254          98.28      0        0.00
## 4  Heilongjiang, China       948           0.00     13        1.37       935          98.63      0        0.00
## 5       Beijing, China       935           0.00      9        0.96       926          99.04      0        0.00
## 6     Guangdong, China      1742           0.01      8        0.46      1721          98.79     13        0.75
## 7      Shandong, China       831           0.00      7        0.84       809          97.35     15        1.81
## 8      Shanghai, China       908           0.00      7        0.77       842          92.73     59        6.50
## 9         Anhui, China       991           0.00      6        0.61       985          99.39      0        0.00
## 10    Chongqing, China       583           0.00      6        1.03       577          98.97      0        0.00
## ============================================================================================================================================
## ############################################################################################################################################ 
##   ##### AGGREGATED Data  -- ORDERED BY  RECOVERED Cases  -- Data dated:  2020-09-02  ::  2020-09-02 21:06:01 
## ############################################################################################################################################ 
##   Number of Countries/Regions reported: 1 
##   Number of Cities/Provinces reported: 33 
##   Unique number of distinct geographical locations combined: 33 
## -------------------------------------------------------------------------------------------------------------------------------------------- 
##               Location Confirmed Perc.Confirmed Deaths Perc.Deaths Recovered Perc.Recovered Active Perc.Active
## 1         Hubei, China     68139           0.26   4512        6.62     63627          93.38      0        0.00
## 2     Hong Kong, China      4822           0.02     90        1.87      4380          90.83    352        7.30
## 3     Guangdong, China      1742           0.01      8        0.46      1721          98.79     13        0.75
## 4      Zhejiang, China      1278           0.00      1        0.08      1268          99.22      9        0.70
## 5         Henan, China      1276           0.00     22        1.72      1254          98.28      0        0.00
## 6         Hunan, China      1019           0.00      4        0.39      1015          99.61      0        0.00
## 7         Anhui, China       991           0.00      6        0.61       985          99.39      0        0.00
## 8  Heilongjiang, China       948           0.00     13        1.37       935          98.63      0        0.00
## 9       Jiangxi, China       935           0.00      1        0.11       934          99.89      0        0.00
## 10      Beijing, China       935           0.00      9        0.96       926          99.04      0        0.00
## ============================================================================================================================================
## ############################################################################################################################################ 
##   ##### AGGREGATED Data  -- ORDERED BY  ACTIVE Cases  -- Data dated:  2020-09-02  ::  2020-09-02 21:06:01 
## ############################################################################################################################################ 
##   Number of Countries/Regions reported: 1 
##   Number of Cities/Provinces reported: 33 
##   Unique number of distinct geographical locations combined: 33 
## -------------------------------------------------------------------------------------------------------------------------------------------- 
##            Location Confirmed Perc.Confirmed Deaths Perc.Deaths Recovered Perc.Recovered Active Perc.Active
## 1  Hong Kong, China      4822           0.02     90        1.87      4380          90.83    352        7.30
## 2   Shanghai, China       908           0.00      7        0.77       842          92.73     59        6.50
## 3    Sichuan, China       653           0.00      3        0.46       626          95.87     24        3.68
## 4   Xinjiang, China       902           0.00      3        0.33       877          97.23     22        2.44
## 5   Shandong, China       831           0.00      7        0.84       809          97.35     15        1.81
## 6     Fujian, China       383           0.00      1        0.26       369          96.34     13        3.39
## 7  Guangdong, China      1742           0.01      8        0.46      1721          98.79     13        0.75
## 8      Hebei, China       365           0.00      6        1.64       346          94.79     13        3.56
## 9    Tianjin, China       229           0.00      3        1.31       213          93.01     13        5.68
## 10  Zhejiang, China      1278           0.00      1        0.08      1268          99.22      9        0.70
## ============================================================================================================================================
##       Confirmed  Deaths  Recovered   Active 
##   Totals 
##       89933  4724    84652   557 
##   Average 
##       2725.24    143.15  2565.21 16.88 
##   Standard Deviation 
##       11774.5    784.44  10990.45    61.28 
##   
## 
##  * Statistical estimators computed considering 33 independent reported entries
##  >>> checking data integrity...
## No critical issues have been found.

##  
## 
## ******************************************************************************** 
## ********************************  OVERALL SUMMARY******************************** 
## ******************************************************************************** 
##   ****  Time Series  CHINA TOTS **** 
##       ts-confirmed   ts-deaths   ts-recovered 
##       89933  4724    84652 
##              5.25%       94.13% 
##   ****  Time Series  CHINA AVGS **** 
##       ts-confirmed   ts-deaths   ts-recovered 
##       2725.24    143.15  2565.21 
##              5.25%       94.13% 
##   ****  Time Series  CHINA SDS **** 
##       ts-confirmed   ts-deaths   ts-recovered 
##       11774.5    784.44  10990.45 
##              6.66%       93.34% 
##   
## 
##  * Statistical estimators computed considering 33/33/33 independent reported entries per case-type 
## ********************************************************************************
# displaying top 10s
report.summary()
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv
## Data retrieved on 2020-09-02 21:06:01 || Range of dates on data: 2020-01-22--2020-09-01 | Nbr of records: 266
## --------------------------------------------------------------------------------
##  >>> checking data integrity...
## No critical issues have been found.
##  >>> checking data consistency...
## Warning in consistency.check(data, n0, nf, datasetName, details): Inconsistency
## of type.II in ts-confirmed data detected -- 47 records (out of 266) show
## inconsistencies in the data...
## ################################################################################ 
##   ##### TS-CONFIRMED Cases  -- Data dated:  2020-09-01  ::  2020-09-02 21:06:02 
## ################################################################################ 
##   Number of Countries/Regions reported:  188 
##   Number of Cities/Provinces reported:  82 
##   Unique number of distinct geographical locations combined: 266 
## -------------------------------------------------------------------------------- 
##   Worldwide ts-confirmed  Totals: 25749642 
## -------------------------------------------------------------------------------- 
##    Country.Region Province.State  Totals GlobalPerc LastDayChange   t-2   t-3   t-7  t-14  t-30
## 1              US                6073840      23.59         43253 34156 35337 44109 46436 45368
## 2          Brazil                3950931      15.34         42659 45961 16158 47161 49298 16641
## 3           India                3769523      14.64         78357 69921 78512 85687 69672 52050
## 4          Russia                 997072       3.87          4670  4932  4897  4642  4790  5364
## 5            Peru                 652037       2.53          4871  7731  9474  6944  7828  4250
## 6    South Africa                 628259       2.44          1218  1985  2505  2684  3916  5377
## 7        Colombia                 624026       2.42          8932  7190  8020 10130 13056 10199
## 8          Mexico                 606036       2.35          6476  3719  4129  5267  5792  4767
## 9           Spain                 470973       1.83          8115 23572     0  7296  6671  8532
## 10      Argentina                 428239       1.66         10504  9309  7187 10550  6693  4824
## -------------------------------------------------------------------------------- 
##   Global Perc. Average:  0.38 (sd: 1.98) 
##   Global Perc. Average in top  10 :  7.07 (sd: 7.83) 
## -------------------------------------------------------------------------------- 
## ================================================================================
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv
## Data retrieved on 2020-09-02 21:06:02 || Range of dates on data: 2020-01-22--2020-09-01 | Nbr of records: 266
## --------------------------------------------------------------------------------
##  >>> checking data integrity...
## No critical issues have been found.
##  >>> checking data consistency...
## Warning in consistency.check(data, n0, nf, datasetName, details): Inconsistency
## of type.II in ts-deaths data detected -- 36 records (out of 266) show
## inconsistencies in the data...

## ################################################################################ 
##   ##### TS-DEATHS Cases  -- Data dated:  2020-09-01  ::  2020-09-02 21:06:03 
## ################################################################################ 
##   Number of Countries/Regions reported:  188 
##   Number of Cities/Provinces reported:  82 
##   Unique number of distinct geographical locations combined: 266 
## -------------------------------------------------------------------------------- 
##   Worldwide ts-deaths  Totals: 857015 
## -------------------------------------------------------------------------------- 
##    Country.Region Province.State Totals  Perc LastDayChange t-2 t-3  t-7 t-14 t-30
## 1              US                184664  3.04          1067 573 310 1225 1353  530
## 2          Brazil                122596  3.10          1215 553 566 1085 1212  561
## 3           India                 66333  1.76          1045 819 971 1115  978  803
## 4          Mexico                 65241 10.77           827 256 339  626  707  266
## 5  United Kingdom                 41504 12.31             3   2   1   16   16    1
## 6           Italy                 35491 13.14             8   6   4   13    7   12
## 7          France                 30518  9.94            23  25  10    0   -1   -1
## 8           Spain                 29152  6.19            58  83   0   47  127   27
## 9            Peru                 28944  4.44           156 181 136  188  177  197
## 10           Iran                 21672  5.75           101 109 103  119  153  215
## -------------------------------------------------------------------------------- 
## -------------------------------------------------------------------------------- 
## ================================================================================
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_recovered_global.csv
## Data retrieved on 2020-09-02 21:06:04 || Range of dates on data: 2020-01-22--2020-09-01 | Nbr of records: 253
## --------------------------------------------------------------------------------
##  >>> checking data integrity...
## No critical issues have been found.
##  >>> checking data consistency...
## Warning in consistency.check(data, n0, nf, datasetName, details): Inconsistency
## of type.II in ts-recovered data detected -- 70 records (out of 253) show
## inconsistencies in the data...

## ################################################################################ 
##   ##### TS-RECOVERED Cases  -- Data dated:  2020-09-01  ::  2020-09-02 21:06:04 
## ################################################################################ 
##   Number of Countries/Regions reported:  188 
##   Number of Cities/Provinces reported:  68 
##   Unique number of distinct geographical locations combined: 253 
## -------------------------------------------------------------------------------- 
##   Worldwide ts-recovered  Totals: 17073236 
## -------------------------------------------------------------------------------- 
##    Country.Region Province.State  Totals LastDayChange   t-2   t-3   t-7  t-14  t-30
## 1          Brazil                3345240         76649 30976 35430 49896 50685 36100
## 2           India                2901908         62026 65081 60868 65432 58848 44306
## 3              US                2202663         17838 30886 13325 30766 26890 44757
## 4          Russia                 813603          6264  2398  2576  6317  6757  3411
## 5    South Africa                 549993          9070  2319  1910  4861  5973 10810
## 6          Mexico                 501722          5500  6498  5441  2991  4566 10915
## 7            Peru                 471599         16142  8782  8658     0  3434  3904
## 8        Colombia                 469552         10092  8851 10047 11651 13975  6488
## 9           Chile                 385790          1911  1295  1401  1805  1845  1565
## 10           Iran                 325124          1891  1812  1574  1812  1647  2126
## -------------------------------------------------------------------------------- 
## -------------------------------------------------------------------------------- 
## ================================================================================
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/09-01-2020.csv

## ############################################################################################################################################ 
##   ##### AGGREGATED Data  -- ORDERED BY  CONFIRMED Cases  -- Data dated:  2020-09-02  ::  2020-09-02 21:06:05 
## ############################################################################################################################################ 
##   Number of Countries/Regions reported: 188 
##   Number of Cities/Provinces reported: 563 
##   Unique number of distinct geographical locations combined: 3954 
## -------------------------------------------------------------------------------------------------------------------------------------------- 
##                 Location Confirmed Perc.Confirmed Deaths Perc.Deaths Recovered Perc.Recovered Active Perc.Active
## 1      Sao Paulo, Brazil    814375           3.16  30375        3.73    655747          80.52 128253       15.75
## 2     Maharashtra, India    808306           3.14  24903        3.08    584537          72.32 198866       24.60
## 3           South Africa    628259           2.44  14263        2.27    549993          87.54  64003       10.19
## 4  Andhra Pradesh, India    445139           1.73   4053        0.91    339876          76.35 101210       22.74
## 5      Tamil Nadu, India    433969           1.69   7418        1.71    374172          86.22  52379       12.07
## 6              Argentina    428239           1.66   8919        2.08    308376          72.01 110944       25.91
## 7                   Iran    376894           1.46  21672        5.75    325124          86.26  30098        7.99
## 8       Karnataka, India    351481           1.36   5837        1.66    254626          72.44  91018       25.90
## 9           Saudi Arabia    316670           1.23   3929        1.24    291514          92.06  21227        6.70
## 10            Bangladesh    314946           1.22   4316        1.37    208177          66.10 102453       32.53
## ============================================================================================================================================
## ############################################################################################################################################ 
##   ##### AGGREGATED Data  -- ORDERED BY  DEATHS Cases  -- Data dated:  2020-09-02  ::  2020-09-02 21:06:05 
## ############################################################################################################################################ 
##   Number of Countries/Regions reported: 188 
##   Number of Cities/Provinces reported: 563 
##   Unique number of distinct geographical locations combined: 3954 
## -------------------------------------------------------------------------------------------------------------------------------------------- 
##                    Location Confirmed Perc.Confirmed Deaths Perc.Deaths Recovered Perc.Recovered Active Perc.Active
## 1   England, United Kingdom    291179           1.13  36854       12.66         0           0.00 254325       87.34
## 2                    France    306951           1.19  30518        9.94     73727          24.02 202706       66.04
## 3         Sao Paulo, Brazil    814375           3.16  30375        3.73    655747          80.52 128253       15.75
## 4        Maharashtra, India    808306           3.14  24903        3.08    584537          72.32 198866       24.60
## 5                      Iran    376894           1.46  21672        5.75    325124          86.26  30098        7.99
## 6          Lombardia, Italy    100317           0.39  16867       16.81     76368          76.13   7082        7.06
## 7    Rio de Janeiro, Brazil    226800           0.88  16217        7.15    204845          90.32   5738        2.53
## 8              South Africa    628259           2.44  14263        2.27    549993          87.54  64003       10.19
## 9                Lima, Peru    309162           1.20  12832        4.15         0           0.00 296330       95.85
## 10 Ciudad de Mexico, Mexico     99564           0.39  10591       10.64     82245          82.61   6728        6.76
## ============================================================================================================================================
## ############################################################################################################################################ 
##   ##### AGGREGATED Data  -- ORDERED BY  RECOVERED Cases  -- Data dated:  2020-09-02  ::  2020-09-02 21:06:05 
## ############################################################################################################################################ 
##   Number of Countries/Regions reported: 188 
##   Number of Cities/Provinces reported: 563 
##   Unique number of distinct geographical locations combined: 3954 
## -------------------------------------------------------------------------------------------------------------------------------------------- 
##                 Location Confirmed Perc.Confirmed Deaths Perc.Deaths Recovered Perc.Recovered   Active Perc.Active
## 1          Recovered, US         0           0.00      0         NaN   2202663            Inf -2202663        -Inf
## 2      Sao Paulo, Brazil    814375           3.16  30375        3.73    655747          80.52   128253       15.75
## 3     Maharashtra, India    808306           3.14  24903        3.08    584537          72.32   198866       24.60
## 4           South Africa    628259           2.44  14263        2.27    549993          87.54    64003       10.19
## 5          Unknown, Peru         0           0.00      0         NaN    471599            Inf  -471599        -Inf
## 6      Tamil Nadu, India    433969           1.69   7418        1.71    374172          86.22    52379       12.07
## 7  Andhra Pradesh, India    445139           1.73   4053        0.91    339876          76.35   101210       22.74
## 8                   Iran    376894           1.46  21672        5.75    325124          86.26    30098        7.99
## 9              Argentina    428239           1.66   8919        2.08    308376          72.01   110944       25.91
## 10          Saudi Arabia    316670           1.23   3929        1.24    291514          92.06    21227        6.70
## ============================================================================================================================================
## ############################################################################################################################################ 
##   ##### AGGREGATED Data  -- ORDERED BY  ACTIVE Cases  -- Data dated:  2020-09-02  ::  2020-09-02 21:06:05 
## ############################################################################################################################################ 
##   Number of Countries/Regions reported: 188 
##   Number of Cities/Provinces reported: 563 
##   Unique number of distinct geographical locations combined: 3954 
## -------------------------------------------------------------------------------------------------------------------------------------------- 
##                       Location Confirmed Perc.Confirmed Deaths Perc.Deaths Recovered Perc.Recovered Active Perc.Active
## 1                   Lima, Peru    309162           1.20  12832        4.15         0           0.00 296330       95.85
## 2      England, United Kingdom    291179           1.13  36854       12.66         0           0.00 254325       87.34
## 3  Los Angeles, California, US    242521           0.94   5829        2.40         0           0.00 236692       97.60
## 4                       France    306951           1.19  30518        9.94     73727          24.02 202706       66.04
## 5           Maharashtra, India    808306           3.14  24903        3.08    584537          72.32 198866       24.60
## 6      Miami-Dade, Florida, US    159059           0.62   2537        1.60         0           0.00 156522       98.40
## 7        Maricopa, Arizona, US    134004           0.52   2976        2.22         0           0.00 131028       97.78
## 8            Sao Paulo, Brazil    814375           3.16  30375        3.73    655747          80.52 128253       15.75
## 9           Cook, Illinois, US    126992           0.49   5065        3.99         0           0.00 121927       96.01
## 10                   Argentina    428239           1.66   8919        2.08    308376          72.01 110944       25.91
## ============================================================================================================================================
##       Confirmed  Deaths  Recovered   Active 
##   Totals 
##       25749642   857015  17074386    NA 
##   Average 
##       6512.3 216.75  4318.26 NA 
##   Standard Deviation 
##       33882.64   1344.45 44218.98    NA 
##   
## 
##  * Statistical estimators computed considering 3954 independent reported entries
##  >>> checking data integrity...
## No critical issues have been found.

##  
## 
## ******************************************************************************** 
## ********************************  OVERALL SUMMARY******************************** 
## ******************************************************************************** 
##   ****  Time Series Worldwide TOTS **** 
##       ts-confirmed   ts-deaths   ts-recovered 
##       25749642   857015  17073236 
##              3.33%       66.3% 
##   ****  Time Series Worldwide AVGS **** 
##       ts-confirmed   ts-deaths   ts-recovered 
##       96803.17   3221.86 67483.15 
##              3.33%       69.71% 
##   ****  Time Series Worldwide SDS **** 
##       ts-confirmed   ts-deaths   ts-recovered 
##       508760.74  15411.2 320756.79 
##              3.03%       63.05% 
##   
## 
##  * Statistical estimators computed considering 266/266/253 independent reported entries per case-type 
## ********************************************************************************
# get the top 20
report.summary(Nentries=20,graphical.output=FALSE)
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv
## Data retrieved on 2020-09-02 21:06:06 || Range of dates on data: 2020-01-22--2020-09-01 | Nbr of records: 266
## --------------------------------------------------------------------------------
##  >>> checking data integrity...
## No critical issues have been found.
##  >>> checking data consistency...
## Warning in consistency.check(data, n0, nf, datasetName, details): Inconsistency
## of type.II in ts-confirmed data detected -- 47 records (out of 266) show
## inconsistencies in the data...
## ################################################################################ 
##   ##### TS-CONFIRMED Cases  -- Data dated:  2020-09-01  ::  2020-09-02 21:06:06 
## ################################################################################ 
##   Number of Countries/Regions reported:  188 
##   Number of Cities/Provinces reported:  82 
##   Unique number of distinct geographical locations combined: 266 
## -------------------------------------------------------------------------------- 
##   Worldwide ts-confirmed  Totals: 25749642 
## -------------------------------------------------------------------------------- 
##    Country.Region Province.State  Totals GlobalPerc LastDayChange   t-2   t-3   t-7  t-14  t-30
## 1              US                6073840      23.59         43253 34156 35337 44109 46436 45368
## 2          Brazil                3950931      15.34         42659 45961 16158 47161 49298 16641
## 3           India                3769523      14.64         78357 69921 78512 85687 69672 52050
## 4          Russia                 997072       3.87          4670  4932  4897  4642  4790  5364
## 5            Peru                 652037       2.53          4871  7731  9474  6944  7828  4250
## 6    South Africa                 628259       2.44          1218  1985  2505  2684  3916  5377
## 7        Colombia                 624026       2.42          8932  7190  8020 10130 13056 10199
## 8          Mexico                 606036       2.35          6476  3719  4129  5267  5792  4767
## 9           Spain                 470973       1.83          8115 23572     0  7296  6671  8532
## 10      Argentina                 428239       1.66         10504  9309  7187 10550  6693  4824
## 11          Chile                 413145       1.60          1419  1752  1965  1380  1182  1762
## 12           Iran                 376894       1.46          1682  1642  1754  2243  2444  2598
## 13 United Kingdom                 337168       1.31          1295  1406  1715  1048   812   938
## 14   Saudi Arabia                 316670       1.23           898   951   910  1068  1363  1258
## 15     Bangladesh                 314946       1.22          1950  2174  1897  2519  2747  1356
## 16         France                 306951       1.19          4776  2855 10789  5185   -54  -144
## 17       Pakistan                 296149       1.15           300   213   264   482   613   762
## 18         Turkey                 271705       1.06          1572  1587  1482  1313  1303   995
## 19          Italy                 270189       1.05           975   996  1365  1366   642   159
## 20        Germany                 246015       0.96          1213  1497   470  1427  1586   891
## -------------------------------------------------------------------------------- 
##   Global Perc. Average:  0.38 (sd: 1.98) 
##   Global Perc. Average in top  20 :  4.14 (sd: 6.17) 
## -------------------------------------------------------------------------------- 
## ================================================================================
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv
## Data retrieved on 2020-09-02 21:06:07 || Range of dates on data: 2020-01-22--2020-09-01 | Nbr of records: 266
## --------------------------------------------------------------------------------
##  >>> checking data integrity...
## No critical issues have been found.
##  >>> checking data consistency...
## Warning in consistency.check(data, n0, nf, datasetName, details): Inconsistency
## of type.II in ts-deaths data detected -- 36 records (out of 266) show
## inconsistencies in the data...
## ################################################################################ 
##   ##### TS-DEATHS Cases  -- Data dated:  2020-09-01  ::  2020-09-02 21:06:07 
## ################################################################################ 
##   Number of Countries/Regions reported:  188 
##   Number of Cities/Provinces reported:  82 
##   Unique number of distinct geographical locations combined: 266 
## -------------------------------------------------------------------------------- 
##   Worldwide ts-deaths  Totals: 857015 
## -------------------------------------------------------------------------------- 
##    Country.Region Province.State Totals  Perc LastDayChange t-2 t-3  t-7 t-14 t-30
## 1              US                184664  3.04          1067 573 310 1225 1353  530
## 2          Brazil                122596  3.10          1215 553 566 1085 1212  561
## 3           India                 66333  1.76          1045 819 971 1115  978  803
## 4          Mexico                 65241 10.77           827 256 339  626  707  266
## 5  United Kingdom                 41504 12.31             3   2   1   16   16    1
## 6           Italy                 35491 13.14             8   6   4   13    7   12
## 7          France                 30518  9.94            23  25  10    0   -1   -1
## 8           Spain                 29152  6.19            58  83   0   47  127   27
## 9            Peru                 28944  4.44           156 181 136  188  177  197
## 10           Iran                 21672  5.75           101 109 103  119  153  215
## 11       Colombia                 20050  3.21           388 299 300  295  360  367
## 12         Russia                 17250  1.73           122  83  68  114  115   79
## 13   South Africa                 14263  2.27           114 121  47  194  159  173
## 14          Chile                 11321  2.74            32  45  63   32   32   99
## 15        Belgium                  9897 11.58             2   1   3 -117   10    5
## 16        Germany                  9307  3.78             4   3   1    4    8    0
## 17      Argentina                  8919  2.08           259 203 104  276  282  165
## 18      Indonesia                  7505  4.23            88  74  82   86   69   66
## 19           Iraq                  7123  2.99            81  83  68   72   85   66
## 20        Ecuador                  6571  5.75            15   1  18   42   41   31
## -------------------------------------------------------------------------------- 
## -------------------------------------------------------------------------------- 
## ================================================================================
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_recovered_global.csv
## Data retrieved on 2020-09-02 21:06:08 || Range of dates on data: 2020-01-22--2020-09-01 | Nbr of records: 253
## --------------------------------------------------------------------------------
##  >>> checking data integrity...
## No critical issues have been found.
##  >>> checking data consistency...
## Warning in consistency.check(data, n0, nf, datasetName, details): Inconsistency
## of type.II in ts-recovered data detected -- 70 records (out of 253) show
## inconsistencies in the data...
## ################################################################################ 
##   ##### TS-RECOVERED Cases  -- Data dated:  2020-09-01  ::  2020-09-02 21:06:09 
## ################################################################################ 
##   Number of Countries/Regions reported:  188 
##   Number of Cities/Provinces reported:  68 
##   Unique number of distinct geographical locations combined: 253 
## -------------------------------------------------------------------------------- 
##   Worldwide ts-recovered  Totals: 17073236 
## -------------------------------------------------------------------------------- 
##    Country.Region Province.State  Totals LastDayChange   t-2   t-3   t-7  t-14  t-30
## 1          Brazil                3345240         76649 30976 35430 49896 50685 36100
## 2           India                2901908         62026 65081 60868 65432 58848 44306
## 3              US                2202663         17838 30886 13325 30766 26890 44757
## 4          Russia                 813603          6264  2398  2576  6317  6757  3411
## 5    South Africa                 549993          9070  2319  1910  4861  5973 10810
## 6          Mexico                 501722          5500  6498  5441  2991  4566 10915
## 7            Peru                 471599         16142  8782  8658     0  3434  3904
## 8        Colombia                 469552         10092  8851 10047 11651 13975  6488
## 9           Chile                 385790          1911  1295  1401  1805  1845  1565
## 10           Iran                 325124          1891  1812  1574  1812  1647  2126
## 11      Argentina                 308376          7181  7188  6787  5599  5194  2276
## 12   Saudi Arabia                 291514           718  1129  1226  1013  1180  1974
## 13       Pakistan                 280970           288   135   207   514  2139   820
## 14         Turkey                 245929          1003  1087  1027  1002  1002  1003
## 15        Germany                 218403          1608  1512   493  1358   777   686
## 16     Bangladesh                 208177          3290  2980  3044  3427  2913  1066
## 17          Italy                 207944           291  -883   312   314   364   129
## 18           Iraq                 180473          3871  3722  3860  3454  2529  2225
## 19    Philippines                 158012           450   159 22302  1064   620   264
## 20          Spain                 150376             0     0     0     0     0     0
## -------------------------------------------------------------------------------- 
## -------------------------------------------------------------------------------- 
## ================================================================================
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/09-01-2020.csv
## ############################################################################################################################################ 
##   ##### AGGREGATED Data  -- ORDERED BY  CONFIRMED Cases  -- Data dated:  2020-09-02  ::  2020-09-02 21:06:09 
## ############################################################################################################################################ 
##   Number of Countries/Regions reported: 188 
##   Number of Cities/Provinces reported: 563 
##   Unique number of distinct geographical locations combined: 3954 
## -------------------------------------------------------------------------------------------------------------------------------------------- 
##                       Location Confirmed Perc.Confirmed Deaths Perc.Deaths Recovered Perc.Recovered Active Perc.Active
## 1            Sao Paulo, Brazil    814375           3.16  30375        3.73    655747          80.52 128253       15.75
## 2           Maharashtra, India    808306           3.14  24903        3.08    584537          72.32 198866       24.60
## 3                 South Africa    628259           2.44  14263        2.27    549993          87.54  64003       10.19
## 4        Andhra Pradesh, India    445139           1.73   4053        0.91    339876          76.35 101210       22.74
## 5            Tamil Nadu, India    433969           1.69   7418        1.71    374172          86.22  52379       12.07
## 6                    Argentina    428239           1.66   8919        2.08    308376          72.01 110944       25.91
## 7                         Iran    376894           1.46  21672        5.75    325124          86.26  30098        7.99
## 8             Karnataka, India    351481           1.36   5837        1.66    254626          72.44  91018       25.90
## 9                 Saudi Arabia    316670           1.23   3929        1.24    291514          92.06  21227        6.70
## 10                  Bangladesh    314946           1.22   4316        1.37    208177          66.10 102453       32.53
## 11                  Lima, Peru    309162           1.20  12832        4.15         0           0.00 296330       95.85
## 12                      France    306951           1.19  30518        9.94     73727          24.02 202706       66.04
## 13     England, United Kingdom    291179           1.13  36854       12.66         0           0.00 254325       87.34
## 14        Metropolitana, Chile    274145           1.06   8559        3.12    260827          95.14   4759        1.74
## 15                      Turkey    271705           1.06   6417        2.36    245929          90.51  19359        7.13
## 16              Moscow, Russia    263059           1.02   4832        1.84    215383          81.88  42844       16.29
## 17               Bahia, Brazil    259418           1.01   5448        2.10    243876          94.01  10094        3.89
## 18 Los Angeles, California, US    242521           0.94   5829        2.40         0           0.00 236692       97.60
## 19                        Iraq    238338           0.93   7123        2.99    180473          75.72  50742       21.29
## 20        Uttar Pradesh, India    235757           0.92   3542        1.50    176677          74.94  55538       23.56
## ============================================================================================================================================ 
## ############################################################################################################################################ 
##   ##### AGGREGATED Data  -- ORDERED BY  DEATHS Cases  -- Data dated:  2020-09-02  ::  2020-09-02 21:06:09 
## ############################################################################################################################################ 
##   Number of Countries/Regions reported: 188 
##   Number of Cities/Provinces reported: 563 
##   Unique number of distinct geographical locations combined: 3954 
## -------------------------------------------------------------------------------------------------------------------------------------------- 
##                    Location Confirmed Perc.Confirmed Deaths Perc.Deaths Recovered Perc.Recovered Active Perc.Active
## 1   England, United Kingdom    291179           1.13  36854       12.66         0           0.00 254325       87.34
## 2                    France    306951           1.19  30518        9.94     73727          24.02 202706       66.04
## 3         Sao Paulo, Brazil    814375           3.16  30375        3.73    655747          80.52 128253       15.75
## 4        Maharashtra, India    808306           3.14  24903        3.08    584537          72.32 198866       24.60
## 5                      Iran    376894           1.46  21672        5.75    325124          86.26  30098        7.99
## 6          Lombardia, Italy    100317           0.39  16867       16.81     76368          76.13   7082        7.06
## 7    Rio de Janeiro, Brazil    226800           0.88  16217        7.15    204845          90.32   5738        2.53
## 8              South Africa    628259           2.44  14263        2.27    549993          87.54  64003       10.19
## 9                Lima, Peru    309162           1.20  12832        4.15         0           0.00 296330       95.85
## 10 Ciudad de Mexico, Mexico     99564           0.39  10591       10.64     82245          82.61   6728        6.76
## 11                  Belgium     85487           0.33   9897       11.58     18457          21.59  57133       66.83
## 12                Argentina    428239           1.66   8919        2.08    308376          72.01 110944       25.91
## 13            Madrid, Spain    128178           0.50   8662        6.76     40736          31.78  78780       61.46
## 14     Metropolitana, Chile    274145           1.06   8559        3.12    260827          95.14   4759        1.74
## 15            Ceara, Brazil    216333           0.84   8447        3.90    191511          88.53  16375        7.57
## 16           Mexico, Mexico     68516           0.27   8082       11.80     57137          83.39   3297        4.81
## 17       Pernambuco, Brazil    127287           0.49   7614        5.98    110583          86.88   9090        7.14
## 18                Indonesia    177571           0.69   7505        4.23    128057          72.12  42009       23.66
## 19        Tamil Nadu, India    433969           1.69   7418        1.71    374172          86.22  52379       12.07
## 20      Kings, New York, US     65118           0.25   7290       11.20         0           0.00  57828       88.80
## ============================================================================================================================================ 
## ############################################################################################################################################ 
##   ##### AGGREGATED Data  -- ORDERED BY  RECOVERED Cases  -- Data dated:  2020-09-02  ::  2020-09-02 21:06:09 
## ############################################################################################################################################ 
##   Number of Countries/Regions reported: 188 
##   Number of Cities/Provinces reported: 563 
##   Unique number of distinct geographical locations combined: 3954 
## -------------------------------------------------------------------------------------------------------------------------------------------- 
##                  Location Confirmed Perc.Confirmed Deaths Perc.Deaths Recovered Perc.Recovered   Active Perc.Active
## 1           Recovered, US         0           0.00      0         NaN   2202663            Inf -2202663        -Inf
## 2       Sao Paulo, Brazil    814375           3.16  30375        3.73    655747          80.52   128253       15.75
## 3      Maharashtra, India    808306           3.14  24903        3.08    584537          72.32   198866       24.60
## 4            South Africa    628259           2.44  14263        2.27    549993          87.54    64003       10.19
## 5           Unknown, Peru         0           0.00      0         NaN    471599            Inf  -471599        -Inf
## 6       Tamil Nadu, India    433969           1.69   7418        1.71    374172          86.22    52379       12.07
## 7   Andhra Pradesh, India    445139           1.73   4053        0.91    339876          76.35   101210       22.74
## 8                    Iran    376894           1.46  21672        5.75    325124          86.26    30098        7.99
## 9               Argentina    428239           1.66   8919        2.08    308376          72.01   110944       25.91
## 10           Saudi Arabia    316670           1.23   3929        1.24    291514          92.06    21227        6.70
## 11   Metropolitana, Chile    274145           1.06   8559        3.12    260827          95.14     4759        1.74
## 12       Karnataka, India    351481           1.36   5837        1.66    254626          72.44    91018       25.90
## 13                 Turkey    271705           1.06   6417        2.36    245929          90.51    19359        7.13
## 14          Bahia, Brazil    259418           1.01   5448        2.10    243876          94.01    10094        3.89
## 15         Moscow, Russia    263059           1.02   4832        1.84    215383          81.88    42844       16.29
## 16             Bangladesh    314946           1.22   4316        1.37    208177          66.10   102453       32.53
## 17 Rio de Janeiro, Brazil    226800           0.88  16217        7.15    204845          90.32     5738        2.53
## 18          Ceara, Brazil    216333           0.84   8447        3.90    191511          88.53    16375        7.57
## 19           Para, Brazil    200985           0.78   6176        3.07    186253          92.67     8556        4.26
## 20   Minas Gerais, Brazil    218781           0.85   5364        2.45    181888          83.14    31529       14.41
## ============================================================================================================================================ 
## ############################################################################################################################################ 
##   ##### AGGREGATED Data  -- ORDERED BY  ACTIVE Cases  -- Data dated:  2020-09-02  ::  2020-09-02 21:06:09 
## ############################################################################################################################################ 
##   Number of Countries/Regions reported: 188 
##   Number of Cities/Provinces reported: 563 
##   Unique number of distinct geographical locations combined: 3954 
## -------------------------------------------------------------------------------------------------------------------------------------------- 
##                       Location Confirmed Perc.Confirmed Deaths Perc.Deaths Recovered Perc.Recovered Active Perc.Active
## 1                   Lima, Peru    309162           1.20  12832        4.15         0           0.00 296330       95.85
## 2      England, United Kingdom    291179           1.13  36854       12.66         0           0.00 254325       87.34
## 3  Los Angeles, California, US    242521           0.94   5829        2.40         0           0.00 236692       97.60
## 4                       France    306951           1.19  30518        9.94     73727          24.02 202706       66.04
## 5           Maharashtra, India    808306           3.14  24903        3.08    584537          72.32 198866       24.60
## 6      Miami-Dade, Florida, US    159059           0.62   2537        1.60         0           0.00 156522       98.40
## 7        Maricopa, Arizona, US    134004           0.52   2976        2.22         0           0.00 131028       97.78
## 8            Sao Paulo, Brazil    814375           3.16  30375        3.73    655747          80.52 128253       15.75
## 9           Cook, Illinois, US    126992           0.49   5065        3.99         0           0.00 121927       96.01
## 10                   Argentina    428239           1.66   8919        2.08    308376          72.01 110944       25.91
## 11           Harris, Texas, US    107490           0.42   2208        2.05         0           0.00 105282       97.95
## 12                  Bangladesh    314946           1.22   4316        1.37    208177          66.10 102453       32.53
## 13       Andhra Pradesh, India    445139           1.73   4053        0.91    339876          76.35 101210       22.74
## 14            Karnataka, India    351481           1.36   5837        1.66    254626          72.44  91018       25.90
## 15               Madrid, Spain    128178           0.50   8662        6.76     40736          31.78  78780       61.46
## 16            Catalonia, Spain    110667           0.43   5749        5.19     26203          23.68  78715       71.13
## 17           Dallas, Texas, US     72252           0.28    959        1.33         0           0.00  71293       98.67
## 18        Broward, Florida, US     72245           0.28   1187        1.64         0           0.00  71058       98.36
## 19                South Africa    628259           2.44  14263        2.27    549993          87.54  64003       10.19
## 20        Queens, New York, US     70288           0.27   7224       10.28         0           0.00  63064       89.72
## ============================================================================================================================================ 
##       Confirmed  Deaths  Recovered   Active 
##   Totals 
##       25749642   857015  17074386    NA 
##   Average 
##       6512.3 216.75  4318.26 NA 
##   Standard Deviation 
##       33882.64   1344.45 44218.98    NA 
##   
## 
##  * Statistical estimators computed considering 3954 independent reported entries
##  >>> checking data integrity...
## No critical issues have been found.
##  
## 
## ******************************************************************************** 
## ********************************  OVERALL SUMMARY******************************** 
## ******************************************************************************** 
##   ****  Time Series Worldwide TOTS **** 
##       ts-confirmed   ts-deaths   ts-recovered 
##       25749642   857015  17073236 
##              3.33%       66.3% 
##   ****  Time Series Worldwide AVGS **** 
##       ts-confirmed   ts-deaths   ts-recovered 
##       96803.17   3221.86 67483.15 
##              3.33%       69.71% 
##   ****  Time Series Worldwide SDS **** 
##       ts-confirmed   ts-deaths   ts-recovered 
##       508760.74  15411.2 320756.79 
##              3.03%       63.05% 
##   
## 
##  * Statistical estimators computed considering 266/266/253 independent reported entries per case-type 
## ********************************************************************************

More next week!!