Q1. Using basic statistical properties of the variance, as well as single variable calculus, derive (5.6). In other words, prove that \(\alpha\) given by (5.6) does indeed minimize \(\mathrm{Var}(\alpha X + (1 - \alpha)Y)\).
We have \[\mathrm{Var}(\alpha X + (1 - \alpha) Y) = \alpha^2\sigma_X^2 + (1 - \alpha)^2\sigma_Y^2 + 2\alpha(1 - \alpha)\sigma_{XY}.\] We now take the fist derivative of \(\mathrm{Var}(\alpha X + (1 - \alpha) Y)\) relative to \(\alpha\) and we get \[\frac{\partial}{\partial\alpha}\mathrm{Var}(\alpha X + (1 - \alpha) Y) = 2\alpha\sigma_X^2 - 2\sigma_Y^2 + 2\alpha\sigma_Y^2 + 2\sigma_{XY} - 4\alpha\sigma_{XY}.\] We now seek critical points by equalling the last expression to \(0\), \[2\alpha\sigma_X^2 - 2\sigma_Y^2 + 2\alpha\sigma_Y^2 + 2\sigma_{XY} - 4\alpha\sigma_{XY} = 0,\] which implies that \[\alpha = \frac{\sigma_Y^2 - \sigma_{XY}}{\sigma_X^2 + \sigma_Y^2 - 2\sigma_{XY}}.\] It remains to check that this point is in fact a minimum, this is equivalent to prove that the second derivative is positive, \[\frac{\partial^2}{\partial\alpha^2}\mathrm{Var}(\alpha X + (1 - \alpha) Y) = 2\sigma_X^2 + 2\sigma_Y^2 - 4\sigma_{XY} = 2\mathrm{Var}(X - Y)\ge 0.\]
Q2. We will now derive the probability that a given observation is part of a bootstrap sample. Suppose that we obtain a bootstrap sample from a set of \(n\) observations.
\(1 - 1/n\).
\(1 - 1/n\).
As bootstrapping sample with replacement, we have that the probability that the jth observation is not in the bootstrap sample is the product of the probabilities that each bootstrap observation is not the jth observation from the original sample \[(1 - 1/n)\cdots(1 - 1/n) = (1 - 1/n)^n\] as these probabilities are independant.
We have \[P(\text{jth obs in bootstrap sample}) = 1 - (1 - 1/5)^5 = 0.672.\]
We have \[P(\text{jth obs in bootstrap sample}) = 1 - (1 - 1/100)^{100} = 0.634.\]
We have \[P(\text{jth obs in bootstrap sample}) = 1 - (1 - 1/10000)^{10000} = 0.632.\]
x <- 1:100000
plot(x, 1 - (1 - 1/x)^x)
We may see that the plot quickly reaches an asymptote at about \(0.632\).
store <- rep(NA, 10000)
for (i in 1:10000) {
store[i] <- sum(sample(1:100, rep = TRUE) == 4) > 0
}
mean(store)
## [1] 0.6332
Comment on the results obtained.
A known fact from calculus tells us that \[\lim_{n\rightarrow\infty}(1 + x/n)^n = e^x.\] If we apply this fact to our case, we get that the probability that a bootstrap sample of size \(n\) contains the jth observation converges to \(1 - 1/e = 0.632\) as \(n\rightarrow\infty\).
Q3. We now review k-fold cross-validation.
The k-fold cross validation is implemented by taking the \(n\) observations and randomly splitting it into \(k\) non-overlapping groups of length of (approximately) \(n/k\). These groups acts as a validation set, and the remainder (of length \(n - n/k\)) acts as a training set. The test error is then estimated by averaging the \(k\) resulting MSE estimates.
The validation set approach has two main drawbacks compared to k-fold cross-validation. First, the validation estimate of the test error rate can be highly variable (depending on precisely which observations are included in the training set and which observations are included in the validation set). Second, only a subset of the observations are used to fit the model. Since statistical methods tend to perform worse when trained on fewer observations, this suggests that the validation set error rate may tend to overestimate the test error rate for the model fit on the entire data set.
The LOOCV cross-validation approach is a special case of k-fold cross-validation in which \(k = n\). This approach has two drawbacks compared to k-fold cross-validation. First, it requires fitting the potentially computationally expensive model \(n\) times compared to k-fold cross-validation which requires the model to be fitted only \(k\) times. Second, the LOOCV cross-validation approach may give approximately unbiased estimates of the test error, since each training set contains \(n - 1\) observations; however, this approach has higher variance than k-fold cross-validation (since we are averaging the outputs of \(n\) fitted models trained on an almost identical set of observations, these outputs are highly correlated, and the mean of highly correlated quantities has higher variance than less correlated ones). So, there is a bias-variance trade-off associated with the choice of \(k\) in k-fold cross-validation; typically using \(k = 5\) or \(k = 10\) yield test error rate estimates that suffer neither from excessively high bias nor from very high variance.
Q4. Suppose that we use some statistical learning method to make a prediction for the response \(Y\) for a particular value of the predictor \(X\). Carefully describe how we might estimate the standard deviation of our prediction.
We may estimate the standard deviation of our prediction by using the bootstrap method. In this case, rather than obtaining new independant data sets from the population and fitting our model on those data sets, we instead obtain repeated random samples from the original data set. In this case, we perform sampling with replacement \(B\) times and then find the corresponding estimates and the standard deviation of those \(B\) estimates by using equation (5.8).
Q5. In Chapter 4, we used logisitc regression to predict the probability of “default” using “income” and “balance” on the “Default” data set. We will now estimate the test error of this logistic regression model using the validation set approach. Do not forget to set a random seed before beginning your analysis.
library(ISLR)
attach(Default)
set.seed(1)
fit.glm <- glm(default ~ income + balance, data = Default, family = "binomial")
summary(fit.glm)
##
## Call:
## glm(formula = default ~ income + balance, family = "binomial",
## data = Default)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.4725 -0.1444 -0.0574 -0.0211 3.7245
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.154e+01 4.348e-01 -26.545 < 2e-16 ***
## income 2.081e-05 4.985e-06 4.174 2.99e-05 ***
## balance 5.647e-03 2.274e-04 24.836 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2920.6 on 9999 degrees of freedom
## Residual deviance: 1579.0 on 9997 degrees of freedom
## AIC: 1585
##
## Number of Fisher Scoring iterations: 8
train <- sample(dim(Default)[1], dim(Default)[1] / 2)
fit.glm <- glm(default ~ income + balance, data = Default, family = "binomial", subset = train)
summary(fit.glm)
##
## Call:
## glm(formula = default ~ income + balance, family = "binomial",
## data = Default, subset = train)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.3583 -0.1268 -0.0475 -0.0165 3.8116
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.208e+01 6.658e-01 -18.148 <2e-16 ***
## income 1.858e-05 7.573e-06 2.454 0.0141 *
## balance 6.053e-03 3.467e-04 17.457 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1457.0 on 4999 degrees of freedom
## Residual deviance: 734.4 on 4997 degrees of freedom
## AIC: 740.4
##
## Number of Fisher Scoring iterations: 8
probs <- predict(fit.glm, newdata = Default[-train, ], type = "response")
pred.glm <- rep("No", length(probs))
pred.glm[probs > 0.5] <- "Yes"
mean(pred.glm != Default[-train, ]$default)
## [1] 0.0286
We have a \(2.86\%\) test error rate with the validation set approach.
train <- sample(dim(Default)[1], dim(Default)[1] / 2)
fit.glm <- glm(default ~ income + balance, data = Default, family = "binomial", subset = train)
probs <- predict(fit.glm, newdata = Default[-train, ], type = "response")
pred.glm <- rep("No", length(probs))
pred.glm[probs > 0.5] <- "Yes"
mean(pred.glm != Default[-train, ]$default)
## [1] 0.0236
train <- sample(dim(Default)[1], dim(Default)[1] / 2)
fit.glm <- glm(default ~ income + balance, data = Default, family = "binomial", subset = train)
probs <- predict(fit.glm, newdata = Default[-train, ], type = "response")
pred.glm <- rep("No", length(probs))
pred.glm[probs > 0.5] <- "Yes"
mean(pred.glm != Default[-train, ]$default)
## [1] 0.028
train <- sample(dim(Default)[1], dim(Default)[1] / 2)
fit.glm <- glm(default ~ income + balance, data = Default, family = "binomial", subset = train)
probs <- predict(fit.glm, newdata = Default[-train, ], type = "response")
pred.glm <- rep("No", length(probs))
pred.glm[probs > 0.5] <- "Yes"
mean(pred.glm != Default[-train, ]$default)
## [1] 0.0268
We see that the validation estimate of the test error rate can be variable, depending on precisely which observations are included in the training set and which observations are included in the validation set.
train <- sample(dim(Default)[1], dim(Default)[1] / 2)
fit.glm <- glm(default ~ income + balance + student, data = Default, family = "binomial", subset = train)
pred.glm <- rep("No", length(probs))
probs <- predict(fit.glm, newdata = Default[-train, ], type = "response")
pred.glm[probs > 0.5] <- "Yes"
mean(pred.glm != Default[-train, ]$default)
## [1] 0.0264
It doesn’t seem that adding the “student” dummy variable leads to a reduction in the validation set estimate of the test error rate.
Q6. We continue to consider the use of a logistic regression model to predict the probability of “default” using “income” and “balance” on the “Default” data set. In particular, we will now computes estimates for the standard errors of the “income” and “balance” logistic regression coefficients in two different ways : (1) using the bootstrap, and (2) using the standard formula for computing the standard errors in the glm() function. Do not forget to set a random seed before beginning your analysis.
set.seed(1)
attach(Default)
## The following objects are masked from Default (pos = 3):
##
## balance, default, income, student
fit.glm <- glm(default ~ income + balance, data = Default, family = "binomial")
summary(fit.glm)
##
## Call:
## glm(formula = default ~ income + balance, family = "binomial",
## data = Default)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.4725 -0.1444 -0.0574 -0.0211 3.7245
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.154e+01 4.348e-01 -26.545 < 2e-16 ***
## income 2.081e-05 4.985e-06 4.174 2.99e-05 ***
## balance 5.647e-03 2.274e-04 24.836 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2920.6 on 9999 degrees of freedom
## Residual deviance: 1579.0 on 9997 degrees of freedom
## AIC: 1585
##
## Number of Fisher Scoring iterations: 8
The glm() estimates of the standard errors for the coefficients \(\beta_0\), \(\beta_1\) and \(\beta_2\) are respectively 0.4347564, 4.985167210^{-6} and 2.273731410^{-4}.
boot.fn <- function(data, index) {
fit <- glm(default ~ income + balance, data = data, family = "binomial", subset = index)
return (coef(fit))
}
library(boot)
boot(Default, boot.fn, 1000)
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = Default, statistic = boot.fn, R = 1000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* -1.154047e+01 -8.008379e-03 4.239273e-01
## t2* 2.080898e-05 5.870933e-08 4.582525e-06
## t3* 5.647103e-03 2.299970e-06 2.267955e-04
The bootstrap estimates of the standard errors for the coefficients \(\beta_0\), \(\beta_1\) and \(\beta_2\) are respectively 0.4239, 4.583 x 10^(-6) and 2.268 x 10^(-4).
The estimated standard errors obtained by the two methods are pretty close.
Q7. In sections 5.3.2 and 5.3.3, we saw that the cv.glm() function can be used in order to compute the LOOCV test error estimate. Alternatively, one could compute those quantities using just the glm() and predict.glm() functions, and a for loop. You will now take this approach in order to compute the LOOCV error for a simple logistic regression model on the “Weekly” data set. Recall that in the context of classification problems, the LOOCV error is given in (5.4).
set.seed(1)
attach(Weekly)
fit.glm <- glm(Direction ~ Lag1 + Lag2, data = Weekly, family = "binomial")
summary(fit.glm)
##
## Call:
## glm(formula = Direction ~ Lag1 + Lag2, family = "binomial", data = Weekly)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.623 -1.261 1.001 1.083 1.506
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.22122 0.06147 3.599 0.000319 ***
## Lag1 -0.03872 0.02622 -1.477 0.139672
## Lag2 0.06025 0.02655 2.270 0.023232 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1496.2 on 1088 degrees of freedom
## Residual deviance: 1488.2 on 1086 degrees of freedom
## AIC: 1494.2
##
## Number of Fisher Scoring iterations: 4
fit.glm.1 <- glm(Direction ~ Lag1 + Lag2, data = Weekly[-1, ], family = "binomial")
summary(fit.glm.1)
##
## Call:
## glm(formula = Direction ~ Lag1 + Lag2, family = "binomial", data = Weekly[-1,
## ])
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.6258 -1.2617 0.9999 1.0819 1.5071
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.22324 0.06150 3.630 0.000283 ***
## Lag1 -0.03843 0.02622 -1.466 0.142683
## Lag2 0.06085 0.02656 2.291 0.021971 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1494.6 on 1087 degrees of freedom
## Residual deviance: 1486.5 on 1085 degrees of freedom
## AIC: 1492.5
##
## Number of Fisher Scoring iterations: 4
predict.glm(fit.glm.1, Weekly[1, ], type = "response") > 0.5
## 1
## TRUE
We may conclude that the prediction for the first observation is “Up”. This observation was not correctly classified as the true direction is “Down”.
Fit a logistic regression model using all but the ith observation to predict “Direction” using “Lag1” and “Lag2”.
Compute the posterior probability of the market moving up for the ith observation.
Use the posterior probability for the ith observation in order to predict whether or not the market moves up.
Determine whether or not an error was made in predicting the direction for the ith observation. If an error was made, then indicate this as a 1, and otherwise indicate it as a 0.
error <- rep(0, dim(Weekly)[1])
for (i in 1:dim(Weekly)[1]) {
fit.glm <- glm(Direction ~ Lag1 + Lag2, data = Weekly[-i, ], family = "binomial")
pred.up <- predict.glm(fit.glm, Weekly[i, ], type = "response") > 0.5
true.up <- Weekly[i, ]$Direction == "Up"
if (pred.up != true.up)
error[i] <- 1
}
error
## [1] 1 1 0 1 0 1 0 0 0 1 1 0 1 0 1 0 1 0 1 0 0 0 1 1 1 1 1 1 0 1 1 1 1 0
## [35] 1 0 0 0 1 0 1 0 0 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 1 0 1 1 0 0
## [69] 1 0 1 1 0 0 0 1 0 1 1 0 0 1 1 0 1 1 0 0 1 0 0 1 1 1 0 0 0 0 0 1 0 1
## [103] 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 1 1 1 0 0 0 1 0 1 0 1 1 0 0 0
## [137] 1 1 1 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 0 1
## [171] 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0
## [205] 0 1 0 1 0 1 1 1 0 0 1 1 0 1 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 1 0 0 0 1
## [239] 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0
## [273] 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 1
## [307] 0 0 1 0 0 0 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 0 1 0 1 0 0 1 1 1 1 0 1 0
## [341] 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 1 1 0 1 1 1 1 1
## [375] 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 1 0 0 1 1 1 0 1 0 1 0
## [409] 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 1 1
## [443] 1 1 0 1 1 0 1 0 1 1 0 1 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 1 0 1 0 0 0 1
## [477] 0 0 1 0 0 0 1 1 1 0 1 0 0 0 1 0 1 1 1 0 0 0 0 1 1 1 0 1 1 0 1 0 0 0
## [511] 1 0 1 0 0 0 1 0 1 1 0 0 1 1 0 0 0 1 1 0 1 0 1 1 1 1 1 0 0 0 1 0 0 0
## [545] 1 1 0 1 0 0 0 1 1 1 1 1 1 0 1 0 1 0 0 1 0 0 1 1 1 0 0 0 1 1 1 1 1 1
## [579] 1 1 1 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 1 0 1 0 1 0 1 0
## [613] 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 0 1 0 1 1 1 1 0 1 1 0 0 0 1 1 1 1 0 1
## [647] 1 1 0 1 0 0 0 1 1 1 1 1 1 0 1 0 0 1 0 0 0 1 1 0 1 0 1 1 1 1 0 0 0 1
## [681] 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 1 0 1 0 1 0 1
## [715] 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 0 1 1 0 1 1 1 1 0 0 0 1
## [749] 1 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 0 1 0 0 0 1 1 1 0 0 0
## [783] 1 0 0 1 1 1 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 0 1 1 0 1
## [817] 1 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0 1 0 1 0 1 1 0 0
## [851] 1 1 1 0 1 1 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 1
## [885] 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 1 1 1 1 0 1 1 0 0
## [919] 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 1 0 0 1 1 0 1 1 1 1 0 1 0 1 0 1 0 1 0
## [953] 1 0 0 1 1 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0
## [987] 1 1 1 0 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 1 1 1 0 1 0 0 1 0 0 1
## [1021] 0 0 1 1 0 1 1 1 0 1 1 0 0 0 1 0 1 0 1 1 1 1 0 0 1 0 0 0 0 0 0 1 0 1
## [1055] 1 0 0 0 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0
## [1089] 0
mean(error)
## [1] 0.4499541
The LOOCV estimate for the test error rate is 44.9954086%.
Q8. We will now perform cross-validation on a simulated data set.
set.seed(1)
y <- rnorm(100)
x <- rnorm(100)
y <- x - 2 * x^2 + rnorm(100)
In this data set, what is \(n\) and what is \(p\) ? Write out the model used to generate the data in equation form.
Here we have that \(n = 100\) and \(p = 2\), the model used is \[Y = X - 2X^2 + \varepsilon.\]
plot(x, y)
The data obviously suggests a curved relationship.
library(boot)
set.seed(1)
Data <- data.frame(x, y)
fit.glm.1 <- glm(y ~ x)
cv.glm(Data, fit.glm.1)$delta[1]
## [1] 5.890979
fit.glm.2 <- glm(y ~ poly(x, 2))
cv.glm(Data, fit.glm.2)$delta[1]
## [1] 1.086596
fit.glm.3 <- glm(y ~ poly(x, 3))
cv.glm(Data, fit.glm.3)$delta[1]
## [1] 1.102585
fit.glm.4 <- glm(y ~ poly(x, 4))
cv.glm(Data, fit.glm.4)$delta[1]
## [1] 1.114772
set.seed(10)
fit.glm.1 <- glm(y ~ x)
cv.glm(Data, fit.glm.1)$delta[1]
## [1] 5.890979
fit.glm.2 <- glm(y ~ poly(x, 2))
cv.glm(Data, fit.glm.2)$delta[1]
## [1] 1.086596
fit.glm.3 <- glm(y ~ poly(x, 3))
cv.glm(Data, fit.glm.3)$delta[1]
## [1] 1.102585
fit.glm.4 <- glm(y ~ poly(x, 4))
cv.glm(Data, fit.glm.4)$delta[1]
## [1] 1.114772
The results above are identical to the results obtained in (c) since LOOCV evaluates \(n\) folds of a single observation.
We may see that the LOOCV estimate for the test MSE is minimum for “fit.glm.2”, this is not surprising since we saw clearly in (b) that the relation between “x” and “y” is quadratic.
summary(fit.glm.4)
##
## Call:
## glm(formula = y ~ poly(x, 4))
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.8914 -0.5244 0.0749 0.5932 2.7796
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.8277 0.1041 -17.549 <2e-16 ***
## poly(x, 4)1 2.3164 1.0415 2.224 0.0285 *
## poly(x, 4)2 -21.0586 1.0415 -20.220 <2e-16 ***
## poly(x, 4)3 -0.3048 1.0415 -0.293 0.7704
## poly(x, 4)4 -0.4926 1.0415 -0.473 0.6373
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 1.084654)
##
## Null deviance: 552.21 on 99 degrees of freedom
## Residual deviance: 103.04 on 95 degrees of freedom
## AIC: 298.78
##
## Number of Fisher Scoring iterations: 2
The p-values show that the linear and quadratic terms are statistically significants and that the cubic and 4th degree terms are not statistically significants. This agree strongly with our cross-validation results which were minimum for the quadratic model.
Q9. We will now consider the “Boston” housing data set, from the “MASS” library.
library(MASS)
attach(Boston)
mu.hat <- mean(medv)
mu.hat
## [1] 22.53281
se.hat <- sd(medv) / sqrt(dim(Boston)[1])
se.hat
## [1] 0.4088611
set.seed(1)
boot.fn <- function(data, index) {
mu <- mean(data[index])
return (mu)
}
boot(medv, boot.fn, 1000)
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = medv, statistic = boot.fn, R = 1000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 22.53281 0.008517589 0.4119374
The bootstrap estimated standard error of \(\hat{\mu}\) of 0.4119 is very close to the estimate found in (b) of 0.4089.
t.test(medv)
##
## One Sample t-test
##
## data: medv
## t = 55.1111, df = 505, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 21.72953 23.33608
## sample estimates:
## mean of x
## 22.53281
CI.mu.hat <- c(22.53 - 2 * 0.4119, 22.53 + 2 * 0.4119)
CI.mu.hat
## [1] 21.7062 23.3538
The bootstrap confidence interval is very close to the one provided by the t.test() function.
med.hat <- median(medv)
med.hat
## [1] 21.2
boot.fn <- function(data, index) {
mu <- median(data[index])
return (mu)
}
boot(medv, boot.fn, 1000)
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = medv, statistic = boot.fn, R = 1000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 21.2 -0.0098 0.3874004
We get an estimated median value of 21.2 which is equal to the value obtained in (e), with a standard error of 0.3874 which is relatively small compared to median value.
percent.hat <- quantile(medv, c(0.1))
percent.hat
## 10%
## 12.75
boot.fn <- function(data, index) {
mu <- quantile(data[index], c(0.1))
return (mu)
}
boot(medv, boot.fn, 1000)
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = medv, statistic = boot.fn, R = 1000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 12.75 0.00515 0.5113487
We get an estimated tenth percentile value of 12.75 which is again equal to the value obtained in (g), with a standard error of 0.5113 which is relatively small compared to percentile value.