library(tidyverse)
library(openintro)
Exercise 1
## [1] 4683 4457 4102 4590 4839 4820 4928 4605 4457 4952 4784 5332 5200 4910 4617
## [16] 3997 3919 3395 3536 3181 2746 2722 2840 2908 2959 3179 3349 3382 3289 3013
## [31] 2781 3247 4107 4803 4881 5681 4858 4319 5322 5560 5829 5719 6061 6120 5822
## [46] 5738 5717 5847 6203 6033 6041 6299 6533 6744 7158 7127 7246 7119 7214 7101
## [61] 7167 7302 7392 7316 7483 6647 6713 7229 7767 7626 7452 7061 7514 7656 7683
## [76] 5738 7779 7417 7687 7623 7380 7288
Exercise 2
The data indicates an upward trend in the # of baptisms for girls.
# Insert code for Exercise 2 here
ggplot(data = arbuthnot, aes(x = year, y = girls)) + geom_line()

Exercise 3
The ratio of boys to girls seems to have generally remained the same over time, with the # of boys outnumbering girls each year.
# Insert code for Exercise 3 here
# Create the new columns
arbuthnot <- arbuthnot %>%
mutate(total = boys + girls)
arbuthnot <- arbuthnot %>%
mutate(boy_to_girl_ratio = boys / girls)
# Plot the data
ggplot(data = arbuthnot, aes(x = year, y = boy_to_girl_ratio)) + geom_line()

Exercise 4
The data set ranges from 1940 to 2002. The data frame has 63 rows and 3 columns, and the variable names are: year, boys and girls.
# Insert code for Exercise 4 here
glimpse(present)
## Rows: 63
## Columns: 3
## $ year <dbl> 1940, 1941, 1942, 1943, 1944, 1945, 1946, 1947, 1948, 1949, 1...
## $ boys <dbl> 1211684, 1289734, 1444365, 1508959, 1435301, 1404587, 1691220...
## $ girls <dbl> 1148715, 1223693, 1364631, 1427901, 1359499, 1330869, 1597452...
Exercise 5
The present day dataset includes significantly higher figures.
# Insert code for Exercise 5 here
arbuthnot %>% summarize(min = min(boys), max = max(boys))
## # A tibble: 1 x 2
## min max
## <int> <int>
## 1 2890 8426
present %>% summarize(min = min(boys), max = max(boys))
## # A tibble: 1 x 2
## min max
## <dbl> <dbl>
## 1 1211684 2186274
Exercise 6
In difference to the Arbhuthnot dataset, the ratio of boys to girls in the ‘Present’ dataset seems to be decreasing over time.
# Insert code for Exercise 6 here
# Create the new columns
present <- present %>% mutate(total = boys + girls)
present <- present %>% mutate(boy_ratio = boys / total)
# Plot the data
ggplot(data = present, aes(x = year, y = boy_ratio)) + geom_line()

Exercise 7
The most total number of births in the U.S. occurred in 1961, with 4,268,326 births.
# Insert code for Exercise 7 here
present[c(1,4)] %>%
arrange(desc(total))
## # A tibble: 63 x 2
## year total
## <dbl> <dbl>
## 1 1961 4268326
## 2 1960 4257850
## 3 1957 4254784
## 4 1959 4244796
## 5 1958 4203812
## 6 1962 4167362
## 7 1956 4163090
## 8 1990 4158212
## 9 1991 4110907
## 10 1963 4098020
## # ... with 53 more rows
LS0tDQp0aXRsZTogIkxhYiAxOiBJbnRybyB0byBSIg0KYXV0aG9yOiAiQ2FtZXJvbiBTbWl0aCINCmRhdGU6ICJgciBTeXMuRGF0ZSgpYCINCm91dHB1dDogb3BlbmludHJvOjpsYWJfcmVwb3J0DQotLS0NCg0KYGBge3IgbG9hZC1wYWNrYWdlcywgbWVzc2FnZT1GQUxTRX0NCmxpYnJhcnkodGlkeXZlcnNlKQ0KbGlicmFyeShvcGVuaW50cm8pDQpgYGANCg0KIyMjIEV4ZXJjaXNlIDENCg0KYGBge3Igdmlldy1naXJscy1jb3VudHN9DQphcmJ1dGhub3QkZ2lybHMNCmBgYA0KDQoNCiMjIyBFeGVyY2lzZSAyDQoNClRoZSBkYXRhIGluZGljYXRlcyBhbiB1cHdhcmQgdHJlbmQgaW4gdGhlICMgb2YgYmFwdGlzbXMgZm9yIGdpcmxzLg0KDQpgYGB7ciB0cmVuZC1naXJsc30NCiMgSW5zZXJ0IGNvZGUgZm9yIEV4ZXJjaXNlIDIgaGVyZQ0KZ2dwbG90KGRhdGEgPSBhcmJ1dGhub3QsIGFlcyh4ID0geWVhciwgeSA9IGdpcmxzKSkgKyAgICAgZ2VvbV9saW5lKCkNCmBgYA0KDQoNCiMjIyBFeGVyY2lzZSAzDQoNClRoZSByYXRpbyBvZiBib3lzIHRvIGdpcmxzIHNlZW1zIHRvIGhhdmUgZ2VuZXJhbGx5IHJlbWFpbmVkIHRoZSBzYW1lIG92ZXIgdGltZSwgd2l0aCB0aGUgIyBvZiBib3lzIG91dG51bWJlcmluZyBnaXJscyBlYWNoIHllYXIuDQoNCmBgYHtyIHBsb3QtcHJvcC1ib3lzLWFyYnV0aG5vdH0NCiMgSW5zZXJ0IGNvZGUgZm9yIEV4ZXJjaXNlIDMgaGVyZQ0KIyBDcmVhdGUgdGhlIG5ldyBjb2x1bW5zDQphcmJ1dGhub3QgPC0gYXJidXRobm90ICU+JQ0KICBtdXRhdGUodG90YWwgPSBib3lzICsgZ2lybHMpDQphcmJ1dGhub3QgPC0gYXJidXRobm90ICU+JQ0KICBtdXRhdGUoYm95X3RvX2dpcmxfcmF0aW8gPSBib3lzIC8gZ2lybHMpDQoNCiMgUGxvdCB0aGUgZGF0YQ0KZ2dwbG90KGRhdGEgPSBhcmJ1dGhub3QsIGFlcyh4ID0geWVhciwgeSA9IGJveV90b19naXJsX3JhdGlvKSkgKyAgICAgZ2VvbV9saW5lKCkNCmBgYA0KDQoNCiMjIyBFeGVyY2lzZSA0DQoNClRoZSBkYXRhIHNldCByYW5nZXMgZnJvbSAxOTQwIHRvIDIwMDIuICBUaGUgZGF0YSBmcmFtZSBoYXMgNjMgcm93cyBhbmQgMyBjb2x1bW5zLCBhbmQgdGhlIHZhcmlhYmxlIG5hbWVzIGFyZTogeWVhciwgYm95cyBhbmQgZ2lybHMuDQoNCmBgYHtyIGRpbS1wcmVzZW50fQ0KIyBJbnNlcnQgY29kZSBmb3IgRXhlcmNpc2UgNCBoZXJlDQpnbGltcHNlKHByZXNlbnQpDQpgYGANCg0KDQojIyMgRXhlcmNpc2UgNQ0KDQpUaGUgcHJlc2VudCBkYXkgZGF0YXNldCBpbmNsdWRlcyBzaWduaWZpY2FudGx5IGhpZ2hlciBmaWd1cmVzLg0KDQpgYGB7ciBjb3VudC1jb21wYXJlfQ0KIyBJbnNlcnQgY29kZSBmb3IgRXhlcmNpc2UgNSBoZXJlDQphcmJ1dGhub3QgJT4lIHN1bW1hcml6ZShtaW4gPSBtaW4oYm95cyksIG1heCA9IG1heChib3lzKSkNCnByZXNlbnQgJT4lIHN1bW1hcml6ZShtaW4gPSBtaW4oYm95cyksIG1heCA9IG1heChib3lzKSkNCmBgYA0KDQoNCiMjIyBFeGVyY2lzZSA2DQoNCkluIGRpZmZlcmVuY2UgdG8gdGhlIEFyYmh1dGhub3QgZGF0YXNldCwgdGhlIHJhdGlvIG9mIGJveXMgdG8gZ2lybHMgaW4gdGhlICdQcmVzZW50JyBkYXRhc2V0IHNlZW1zIHRvIGJlIGRlY3JlYXNpbmcgb3ZlciB0aW1lLg0KDQpgYGB7ciBwbG90LXByb3AtYm95cy1wcmVzZW50fQ0KIyBJbnNlcnQgY29kZSBmb3IgRXhlcmNpc2UgNiBoZXJlDQojIENyZWF0ZSB0aGUgbmV3IGNvbHVtbnMNCnByZXNlbnQgPC0gcHJlc2VudCAlPiUgbXV0YXRlKHRvdGFsID0gYm95cyArIGdpcmxzKQ0KcHJlc2VudCA8LSBwcmVzZW50ICU+JSBtdXRhdGUoYm95X3JhdGlvID0gYm95cyAvIHRvdGFsKQ0KDQojIFBsb3QgdGhlIGRhdGENCmdncGxvdChkYXRhID0gcHJlc2VudCwgYWVzKHggPSB5ZWFyLCB5ID0gYm95X3JhdGlvKSkgKyBnZW9tX2xpbmUoKQ0KYGBgDQoNCg0KIyMjIEV4ZXJjaXNlIDcNCg0KVGhlIG1vc3QgdG90YWwgbnVtYmVyIG9mIGJpcnRocyBpbiB0aGUgVS5TLiBvY2N1cnJlZCBpbiAxOTYxLCB3aXRoIDQsMjY4LDMyNiBiaXJ0aHMuDQoNCmBgYHtyIGZpbmQtbWF4LXRvdGFsfQ0KIyBJbnNlcnQgY29kZSBmb3IgRXhlcmNpc2UgNyBoZXJlDQpwcmVzZW50W2MoMSw0KV0gJT4lDQogICAgYXJyYW5nZShkZXNjKHRvdGFsKSkNCmBgYA0KDQo=