This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
library(readxl)
ageandheight <- read_excel("r0manual.xlsx") #Upload the data
R0_v <- c()
comuna_v <- c()
codigo_comuna_v <- c()
a <- 0
s <- 0
s_v <- c()
y_bueno <- c()
# yy=ageandheight$Y
# xx=ageandheight$X
# eee <-summary(lm(yy ~ xx))$coefficients[2]
#lmHeight = lm(Y~X, data = ageandheight) #Create the linear regression
#eee <-lmHeight
# eee
# write.table(eee,'R0_panama_por_corr.csv', col.names=F, append=T, sep = ",")
m <- seq(2, 42)
for (i in m)
{
# xx <- ageandheight$Recuperados[1:i]
xx <- ageandheight$X[i-1:i]
# yy <- y[1:i]
yy <- ageandheight$Y[i-1:i]
if(!is.null(yy)){
estimacion.R0 = -summary(lm(yy ~ xx))$coefficients[2]
R0_v[i] <- estimacion.R0
comuna_v <- "Santiago"
# codigo_comuna_v <- codigo_comuna
# fecha_v <- fecha
# dia_v <- dia
}
}
eee <- data.frame(comuna_v, R0_v )
print(eee)
## comuna_v R0_v
## 1 Santiago NA
## 2 Santiago NaN
## 3 Santiago -14.504079
## 4 Santiago -13.432805
## 5 Santiago -22.600642
## 6 Santiago -26.360837
## 7 Santiago -30.406099
## 8 Santiago 1.784559
## 9 Santiago 1.740990
## 10 Santiago 1.782479
## 11 Santiago 1.797518
## 12 Santiago 1.848548
## 13 Santiago 1.903664
## 14 Santiago 2.066441
## 15 Santiago 2.278689
## 16 Santiago 2.470336
## 17 Santiago 2.544744
## 18 Santiago 2.611445
## 19 Santiago 2.559428
## 20 Santiago 2.475253
## 21 Santiago 2.395268
## 22 Santiago 2.327299
## 23 Santiago 2.274253
## 24 Santiago 2.223010
## 25 Santiago 2.192639
## 26 Santiago 2.183675
## 27 Santiago 2.169267
## 28 Santiago 2.171172
## 29 Santiago 2.165865
## 30 Santiago 2.158960
## 31 Santiago 2.148959
## 32 Santiago 2.140419
## 33 Santiago 2.132763
## 34 Santiago 2.127087
## 35 Santiago 2.121011
## 36 Santiago 2.115299
## 37 Santiago 2.109237
## 38 Santiago 2.104500
## 39 Santiago 2.100103
## 40 Santiago 2.096466
## 41 Santiago 2.093234
## 42 Santiago 2.090487
write.table(
eee,
'R0.csv',
col.names = F,
append = T,
sep = ","
)
R0_v <- c()
comuna_v <- c()
codigo_comuna_v <- c()
a <- 0
s <- 0
s_v <- c()
y <- c()
income.graph<-ggplot(ageandheight, aes(x=X, y=Y))+
geom_point()
income.graph
income.graph <- income.graph + geom_smooth(method="lm", col="red", size = 11)
income.graph
## `geom_smooth()` using formula 'y ~ x'