R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

library(readxl)
ageandheight <- read_excel("r0manual.xlsx") #Upload the data
R0_v <- c()
comuna_v <- c()
codigo_comuna_v <- c()
a <- 0
s <- 0
s_v <- c()
y_bueno <- c()
# yy=ageandheight$Y
# xx=ageandheight$X
# eee <-summary(lm(yy ~ xx))$coefficients[2]
#lmHeight = lm(Y~X, data = ageandheight) #Create the linear regression
#eee <-lmHeight
# eee
# write.table(eee,'R0_panama_por_corr.csv', col.names=F, append=T, sep = ",")


m <- seq(2, 42)
    
    for (i in m)
    {        
        # xx <- ageandheight$Recuperados[1:i]
        xx <- ageandheight$X[i-1:i]

        # yy <- y[1:i]
        yy <- ageandheight$Y[i-1:i]
        
        if(!is.null(yy)){
        estimacion.R0 = -summary(lm(yy ~ xx))$coefficients[2]
        R0_v[i] <- estimacion.R0
        comuna_v <- "Santiago"
        # codigo_comuna_v <- codigo_comuna
        # fecha_v <- fecha
        # dia_v <- dia
        }
    }
    
    eee <- data.frame(comuna_v, R0_v )
    print(eee)
##    comuna_v       R0_v
## 1  Santiago         NA
## 2  Santiago        NaN
## 3  Santiago -14.504079
## 4  Santiago -13.432805
## 5  Santiago -22.600642
## 6  Santiago -26.360837
## 7  Santiago -30.406099
## 8  Santiago   1.784559
## 9  Santiago   1.740990
## 10 Santiago   1.782479
## 11 Santiago   1.797518
## 12 Santiago   1.848548
## 13 Santiago   1.903664
## 14 Santiago   2.066441
## 15 Santiago   2.278689
## 16 Santiago   2.470336
## 17 Santiago   2.544744
## 18 Santiago   2.611445
## 19 Santiago   2.559428
## 20 Santiago   2.475253
## 21 Santiago   2.395268
## 22 Santiago   2.327299
## 23 Santiago   2.274253
## 24 Santiago   2.223010
## 25 Santiago   2.192639
## 26 Santiago   2.183675
## 27 Santiago   2.169267
## 28 Santiago   2.171172
## 29 Santiago   2.165865
## 30 Santiago   2.158960
## 31 Santiago   2.148959
## 32 Santiago   2.140419
## 33 Santiago   2.132763
## 34 Santiago   2.127087
## 35 Santiago   2.121011
## 36 Santiago   2.115299
## 37 Santiago   2.109237
## 38 Santiago   2.104500
## 39 Santiago   2.100103
## 40 Santiago   2.096466
## 41 Santiago   2.093234
## 42 Santiago   2.090487
    write.table(
        eee,
        'R0.csv',
        col.names = F,
        append = T,
        sep = ","
    )
    
    R0_v <- c()
    comuna_v <- c()
    codigo_comuna_v <-  c()
    a <- 0
    s <- 0
    s_v <- c()
    y <- c()
income.graph<-ggplot(ageandheight, aes(x=X, y=Y))+
                     geom_point()
income.graph

income.graph <- income.graph + geom_smooth(method="lm", col="red", size = 11)
income.graph
## `geom_smooth()` using formula 'y ~ x'