NOTE: all the experiments were using the six sensors.
Three scripts were used for generating the results:
caprino_catboost.R
caprino_rf.R
caprino_catboost_caret.R
RF vs. catboost
Evaluation using a low iteration number

Checking results for trainset
The iteration number of catboost is critical to avoid overfitting. Results with a very low iteration number are shown below for training dataset.

catboost (various approaches)
Two different approaches for catboost. 1. catboost.cv
to estimate the iteration number. 2. catboost using the caret interface and selecting the best model according to CV 3. Random Forest

LS0tCnRpdGxlOiAiQ2F0Ym9vc3QgdnMgUkYgZm9yIGdvYXQgYmVoYXZpb3IgZGV0ZWN0aW9uIgpvdXRwdXQ6IAogIGh0bWxfbm90ZWJvb2s6IAogICAgY29kZV9mb2xkaW5nOiBoaWRlCi0tLQoKPiBOT1RFOiBhbGwgdGhlIGV4cGVyaW1lbnRzIHdlcmUgdXNpbmcgdGhlIHNpeCBzZW5zb3JzLgoKVGhyZWUgc2NyaXB0cyB3ZXJlIHVzZWQgZm9yIGdlbmVyYXRpbmcgdGhlIHJlc3VsdHM6CgoxLiBjYXByaW5vX2NhdGJvb3N0LlIKCjIuIGNhcHJpbm9fcmYuUgoKMy4gY2Fwcmlub19jYXRib29zdF9jYXJldC5SCgojIyMgUkYgdnMuIGNhdGJvb3N0CgpFdmFsdWF0aW9uIHVzaW5nIGEgbG93IGl0ZXJhdGlvbiBudW1iZXIKYGBge3IgZmlnLmhlaWdodD00LCBmaWcud2lkdGg9MTB9CnNlbnNvcnNfY2Fwcmlub19jYXRib29zdCA8LSByZWFkcjo6cmVhZF9jc3YoInJlc3VsdHMvcmVzdWx0c19jYXRib29zdF9hbGwtc2Vuc29ycy5jc3YiKQpzZW5zb3JzX2NhcHJpbm8gPC0gcmVhZHI6OnJlYWRfY3N2KCJyZXN1bHRzL3Jlc3VsdHNfcmZfYWxsLXNlbnNvcnMuY3N2IikKc2Vuc29yc19jYXByaW5vX2NhdGJvb3N0JG1ldGhvZDwtImNhdGJvb3N0IgpzZW5zb3JzX2NhcHJpbm8kbWV0aG9kPC0icmYiCgpzZW5zb3JzX2NhcHJpbm9fbWV0aG9kczwtcmJpbmQoc2Vuc29yc19jYXByaW5vX2NhdGJvb3N0LHNlbnNvcnNfY2FwcmlubykKCmFub3ZhX3Jlc19tZXRob2RzPC1yYmluZCh0LnRlc3QobWFjcm9+bWV0aG9kLGRhdGE9c2Vuc29yc19jYXByaW5vX21ldGhvZHMgJT4lIGZpbHRlcihtZXRyaWMgPT0gIkYxIikpICU+JSBicm9vbTo6dGlkeSgpLAp0LnRlc3QobWljcm9+bWV0aG9kLGRhdGE9c2Vuc29yc19jYXByaW5vX21ldGhvZHMgICU+JSBmaWx0ZXIobWV0cmljID09ICJGMSIpKSAlPiUgYnJvb206OnRpZHkoKSkKCgoKcGxvdDE8LXNlbnNvcnNfY2Fwcmlub19tZXRob2RzICU+JSBnZ3Bsb3QoKSsgZ2VvbV9ib3hwbG90KGFlcyh5PW1hY3JvLHg9bWV0aG9kLGZpbGw9bWV0aG9kKSkrCmxhYnModGl0bGU9IlJlc3VsdGFkb3MgZGUgTWFjcm8gIHBhcmEgZGlmZXJlbnRlcyBNb2RlbG9zIFxuWzMwIHJlcGV0aWNpb25lc10iLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzdWJ0aXRsZT1wYXN0ZSgiRjEgdC50ZXN0IHAudmFsdWU9Iixhbm92YV9yZXNfbWV0aG9kc1sxLF0kcC52YWx1ZSkpKwogIGdnZGFyazo6ZGFya190aGVtZV9ncmF5KCkgKwogIHRoZW1lKGF4aXMudGV4dC54ID0gZWxlbWVudF90ZXh0KGFuZ2xlID0gNDUsIHZqdXN0ID0gMC41LCBoanVzdD0xKSkrCiAgdGhlbWUobGVnZW5kLnBvc2l0aW9uID0gIm5vbmUiKSArCiAgZmFjZXRfd3JhcCh+bWV0cmljKQoKcGxvdDI8LXNlbnNvcnNfY2Fwcmlub19tZXRob2RzICU+JSBnZ3Bsb3QoKSsgZ2VvbV9ib3hwbG90KGFlcyh5PW1pY3JvLHg9bWV0aG9kLGZpbGw9bWV0aG9kKSkrCmxhYnModGl0bGU9IlJlc3VsdGFkb3MgZGUgTWljcm8gIHBhcmEgZGlmZXJlbnRlcyBNb2RlbG9zIFxuWzMwIHJlcGV0aWNpb25lc10iLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzdWJ0aXRsZT1wYXN0ZSgiRjEgdC50ZXN0IHAudmFsdWU9Iixhbm92YV9yZXNfbWV0aG9kc1syLF0kcC52YWx1ZSkpKwogIGdnZGFyazo6ZGFya190aGVtZV9ncmF5KCkgKwogIHRoZW1lKGF4aXMudGV4dC54ID0gZWxlbWVudF90ZXh0KGFuZ2xlID0gNDUsIHZqdXN0ID0gMC41LCBoanVzdD0xKSkrCiAgdGhlbWUobGVnZW5kLnBvc2l0aW9uID0gIm5vbmUiKSArCiAgZmFjZXRfd3JhcCh+bWV0cmljKQoKCmdyaWRFeHRyYTo6Z3JpZC5hcnJhbmdlKHBsb3QxLHBsb3QyLG5jb2w9MikKYGBgCgojIyMgQ2hlY2tpbmcgcmVzdWx0cyBmb3IgdHJhaW5zZXQKClRoZSBpdGVyYXRpb24gbnVtYmVyIG9mIGNhdGJvb3N0IGlzIGNyaXRpY2FsIHRvIGF2b2lkIG92ZXJmaXR0aW5nLiBSZXN1bHRzIHdpdGggYSB2ZXJ5IGxvdyBpdGVyYXRpb24gbnVtYmVyIGFyZSBzaG93biBiZWxvdyBmb3IgdHJhaW5pbmcgZGF0YXNldC4KCmBgYHtyIGZpZy5oZWlnaHQ9NCwgZmlnLndpZHRoPTEwfQpzZW5zb3JzX2NhcHJpbm9fY2F0Ym9vc3QgPC0gcmVhZHI6OnJlYWRfY3N2KCJyZXN1bHRzL3Jlc3VsdHNfY2F0Ym9vc3RfYWxsLXNlbnNvcnMtdHJhaW4uY3N2IikKc2Vuc29yc19jYXByaW5vIDwtIHJlYWRyOjpyZWFkX2NzdigicmVzdWx0cy9yZXN1bHRzX3JmX2FsbC1zZW5zb3JzLXRyYWluLmNzdiIpCnNlbnNvcnNfY2Fwcmlub19jYXRib29zdCRtZXRob2Q8LSJjYXRib29zdCIKc2Vuc29yc19jYXByaW5vJG1ldGhvZDwtInJmIgoKc2Vuc29yc19jYXByaW5vX21ldGhvZHM8LXJiaW5kKHNlbnNvcnNfY2Fwcmlub19jYXRib29zdCxzZW5zb3JzX2NhcHJpbm8pCgphbm92YV9yZXNfbWV0aG9kczwtcmJpbmQodC50ZXN0KG1hY3Jvfm1ldGhvZCxkYXRhPXNlbnNvcnNfY2Fwcmlub19tZXRob2RzICU+JSBmaWx0ZXIobWV0cmljID09ICJGMSIpKSAlPiUgYnJvb206OnRpZHkoKSwKdC50ZXN0KG1pY3Jvfm1ldGhvZCxkYXRhPXNlbnNvcnNfY2Fwcmlub19tZXRob2RzICAlPiUgZmlsdGVyKG1ldHJpYyA9PSAiRjEiKSkgJT4lIGJyb29tOjp0aWR5KCkpCgpwbG90MTwtc2Vuc29yc19jYXByaW5vX21ldGhvZHMgJT4lIGdncGxvdCgpKyBnZW9tX2JveHBsb3QoYWVzKHk9bWFjcm8seD1tZXRob2QsZmlsbD1tZXRob2QpKSsKbGFicyh0aXRsZT0iUmVzdWx0YWRvcyBkZSBNYWNybyAgcGFyYSBkaWZlcmVudGVzIE1vZGVsb3MgXG5bMzAgcmVwZXRpY2lvbmVzXVt0cmFpbnNldF0iLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzdWJ0aXRsZT1wYXN0ZSgiRjEgdC50ZXN0IHAudmFsdWU9Iixhbm92YV9yZXNfbWV0aG9kc1sxLF0kcC52YWx1ZSkpKwogIGdnZGFyazo6ZGFya190aGVtZV9ncmF5KCkgKwogIHRoZW1lKGF4aXMudGV4dC54ID0gZWxlbWVudF90ZXh0KGFuZ2xlID0gNDUsIHZqdXN0ID0gMC41LCBoanVzdD0xKSkrCiAgdGhlbWUobGVnZW5kLnBvc2l0aW9uID0gIm5vbmUiKSArCiAgZmFjZXRfd3JhcCh+bWV0cmljKQoKcGxvdDI8LXNlbnNvcnNfY2Fwcmlub19tZXRob2RzICU+JSBnZ3Bsb3QoKSsgZ2VvbV9ib3hwbG90KGFlcyh5PW1pY3JvLHg9bWV0aG9kLGZpbGw9bWV0aG9kKSkrCmxhYnModGl0bGU9IlJlc3VsdGFkb3MgZGUgTWljcm8gIHBhcmEgZGlmZXJlbnRlcyBNb2RlbG9zIFxuWzMwIHJlcGV0aWNpb25lc11bdHJhaW5zZXRdIiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgc3VidGl0bGU9cGFzdGUoIkYxIHQudGVzdCBwLnZhbHVlPSIsYW5vdmFfcmVzX21ldGhvZHNbMixdJHAudmFsdWUpKSsKICBnZ2Rhcms6OmRhcmtfdGhlbWVfZ3JheSgpICsKICB0aGVtZShheGlzLnRleHQueCA9IGVsZW1lbnRfdGV4dChhbmdsZSA9IDQ1LCB2anVzdCA9IDAuNSwgaGp1c3Q9MSkpKwogIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbiA9ICJub25lIikgKwogIGZhY2V0X3dyYXAofm1ldHJpYykKCgpncmlkRXh0cmE6OmdyaWQuYXJyYW5nZShwbG90MSxwbG90MixuY29sPTIpCmBgYAoKIyMjIGNhdGJvb3N0ICh2YXJpb3VzIGFwcHJvYWNoZXMpCgpUd28gZGlmZmVyZW50IGFwcHJvYWNoZXMgZm9yIGNhdGJvb3N0LiAKMS4gIGBjYXRib29zdC5jdmAgdG8gZXN0aW1hdGUgdGhlIGl0ZXJhdGlvbiBudW1iZXIuCjIuIGNhdGJvb3N0IHVzaW5nIHRoZSBjYXJldCBpbnRlcmZhY2UgYW5kIHNlbGVjdGluZyB0aGUgYmVzdCBtb2RlbCBhY2NvcmRpbmcgdG8gQ1YKMy4gUmFuZG9tIEZvcmVzdCAKYGBge3IgZmlnLmhlaWdodD00LCBmaWcud2lkdGg9MTB9CnNlbnNvcnNfY2Fwcmlub19jYXRib29zdCA8LSByZWFkcjo6cmVhZF9jc3YoInJlc3VsdHMvcmVzdWx0c19jYXRib29zdF9hbGwtc2Vuc29ycy1jdi5jc3YiKQpzZW5zb3JzX2NhcHJpbm9fY2F0Ym9vc3RfY2FyZXQgPC0gcmVhZHI6OnJlYWRfY3N2KCJyZXN1bHRzL3Jlc3VsdHNfY2F0Ym9vc3RfY2FyZXRhbGwtc2Vuc29ycy5jc3YiKQpzZW5zb3JzX2NhcHJpbm8gPC0gcmVhZHI6OnJlYWRfY3N2KCJyZXN1bHRzL3Jlc3VsdHNfcmZfYWxsLXNlbnNvcnMuY3N2IikKc2Vuc29yc19jYXByaW5vX2NhdGJvb3N0JG1ldGhvZDwtImNhdGJvb3N0IgpzZW5zb3JzX2NhcHJpbm9fY2F0Ym9vc3RfY2FyZXQkbWV0aG9kPC0iY2F0Ym9vc3RfY2FyZXQiCnNlbnNvcnNfY2FwcmlubyRtZXRob2Q8LSJyZiIKCnNlbnNvcnNfY2Fwcmlub19tZXRob2RzPC1yYmluZChzZW5zb3JzX2NhcHJpbm9fY2F0Ym9vc3Qsc2Vuc29yc19jYXByaW5vLHNlbnNvcnNfY2Fwcmlub19jYXRib29zdF9jYXJldCkKCmFub3ZhX3Jlc19tZXRob2RzPC1yYmluZChvbmV3YXkudGVzdChtYWNyb35tZXRob2QsZGF0YT1zZW5zb3JzX2NhcHJpbm9fbWV0aG9kcyAlPiUgZmlsdGVyKG1ldHJpYyA9PSAiRjEiKSkgJT4lIGJyb29tOjp0aWR5KCksCm9uZXdheS50ZXN0KG1pY3Jvfm1ldGhvZCxkYXRhPXNlbnNvcnNfY2Fwcmlub19tZXRob2RzICAlPiUgZmlsdGVyKG1ldHJpYyA9PSAiRjEiKSkgJT4lIGJyb29tOjp0aWR5KCkpCgpwbG90MTwtc2Vuc29yc19jYXByaW5vX21ldGhvZHMgJT4lIGdncGxvdCgpKyBnZW9tX2JveHBsb3QoYWVzKHk9bWFjcm8seD1tZXRob2QsZmlsbD1tZXRob2QpKSsKbGFicyh0aXRsZT0iUmVzdWx0YWRvcyBkZSBNYWNybyAgcGFyYSBkaWZlcmVudGVzIE1vZGVsb3MgXG5bMzAgcmVwZXRpY2lvbmVzXSIsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHN1YnRpdGxlPXBhc3RlKCJGMSBhbm92YS50ZXN0IHAudmFsdWU9Iixhbm92YV9yZXNfbWV0aG9kc1sxLF0kcC52YWx1ZSkpKwogIGdnZGFyazo6ZGFya190aGVtZV9ncmF5KCkgKwogIHRoZW1lKGF4aXMudGV4dC54ID0gZWxlbWVudF90ZXh0KGFuZ2xlID0gNDUsIHZqdXN0ID0gMC41LCBoanVzdD0xKSkrCiAgdGhlbWUobGVnZW5kLnBvc2l0aW9uID0gIm5vbmUiKSArCiAgZmFjZXRfd3JhcCh+bWV0cmljKQoKcGxvdDI8LXNlbnNvcnNfY2Fwcmlub19tZXRob2RzICU+JSBnZ3Bsb3QoKSsgZ2VvbV9ib3hwbG90KGFlcyh5PW1pY3JvLHg9bWV0aG9kLGZpbGw9bWV0aG9kKSkrCmxhYnModGl0bGU9IlJlc3VsdGFkb3MgZGUgTWljcm8gIHBhcmEgZGlmZXJlbnRlcyBNb2RlbG9zIFxuWzMwIHJlcGV0aWNpb25lc10iLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzdWJ0aXRsZT1wYXN0ZSgiRjEgYW5vdmEudGVzdCBwLnZhbHVlPSIsYW5vdmFfcmVzX21ldGhvZHNbMixdJHAudmFsdWUpKSsKICBnZ2Rhcms6OmRhcmtfdGhlbWVfZ3JheSgpICsKICB0aGVtZShheGlzLnRleHQueCA9IGVsZW1lbnRfdGV4dChhbmdsZSA9IDQ1LCB2anVzdCA9IDAuNSwgaGp1c3Q9MSkpKwogIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbiA9ICJub25lIikgKwogIGZhY2V0X3dyYXAofm1ldHJpYykKCgpncmlkRXh0cmE6OmdyaWQuYXJyYW5nZShwbG90MSxwbG90MixuY29sPTIpCmBgYAoK