Pollution in our lakes and rivers has become a major problem, particularly over the past 50 years.
In order to improve this situation in the future, it is necessary to gain a good understanding of the processes involved.
Some way of predicting how the situation might improve (or decline) as a result of current management practices is vital.
To this end we need to be able to predict how pollutant amounts or concentrations vary over time and under different management strategies.
This problem can be considered as a compartmental model with a single compartment, the lake.
Applying the balance law there is an input of polluted water from the river(s) flowing into the lake, or due to a pollution dump into the lake, and an output as water flows from the lake carrying some pollution with it.
\[ \frac{dS}{dt} = 10 c_{in}(t) - \frac{1}{10}S(t), \,\, S(0)= s_0 \]
\[ \frac{dS}{dt} + \frac{1}{10}S(t) = 10 c_{in}(t) , \,\, S(0)= s_0 \]
\[ \frac{dS}{dt} + \frac{1}{10}S(t) = 10 c_{in}(t) , \,\, S(0)= s_0 \]
\[ \begin{align*} \mu(t) & = e^{\int \frac{1}{10} dt } = e^{\frac{t}{10} }\\ S(t) & = e^{-\frac{t}{10} } \int 10 e^{\frac{s}{10} }c_{in}(s) ds + s_0 e^{-\frac{t}{10} } \end{align*} \]
\[ \lim_{t \rightarrow \infty} s_0 e^{-\frac{t}{10}} = 0 \]
\[ \frac{dS}{dt} + \frac{1}{10}S(t) = 10 c_{in}(t) , \,\, S(0)= s_0 \]
\[ S(t) = s_0 e^{-t/10} + 100c_1(1-e^{-t/10}) \]
\[ S(t) = s_0 e^{-t/10} + 20 + \frac{10}{101}(\sin(t) - 10\cos(t) - 192e^{-t/10}) \]
\[ c_{in}\, \frac{g}{m^3} = \mathrm{constant} \]
\[ F \, \frac{m^3}{day} = \mathrm{constant} \]
\[ M'(t) = F c_{in} - F \frac{M(t)}{V} \]
\[ M'(t) = F c_{in} - F \frac{M(t)}{V} \]
\[ C'(t) = \frac{F}{V} c_{in} - \frac{F}{V}C \]
\[ \begin{align*} \frac{dC}{dt} & = \frac{F}{V}c_{in} - \frac{F}{V}C(t) , \,\, C(0)= c_0 \\ & = \frac{F}{V}\left(c_{in} - C(t)\right) \end{align*} \]
\[ \begin{align*} C(t) & = c_{in} - (c_{in} - c_0) e^{-Ft/V } \\ & = c_{in}\left(1 - e^{-Ft/V }\right) + c_0e^{-Ft/V } \end{align*} \]
\[ \begin{align*} C(t) & = c_{in} - (c_{in} - c_0) e^{-Ft/V } \\ & = c_{in}\left(1 - e^{-Ft/V }\right) + c_0e^{-Ft/V } \end{align*} \]
\[ \lim_{t \rightarrow \infty} \left(c_{in} - (c_{in} - c_0) e^{-Ft/V }\right) = c_{in} \]
\[ C(t) = c_{in} - (c_{in} - c_0) e^{-Ft/V } = c_0 e^{-Ft/V } \]
\[ t = \frac{V}{F} \ln \left( \frac{C}{c_0} \right) = - \frac{V}{F}\ln(0.05) \cong \frac{3F}{V} \]
\[ t \cong \frac{3F}{V} \]
\[ t \cong 7.8 \, \mathrm{years} \]
\[ t \cong 23.5 \, \mathrm{years} \]