Este documento hace parte del trabajo del curso de Analítica Predictiva de la Universidad Nacional de Colombia para la Maestría en Ingeniería y Especialización en Analítica. El alcance de este documento reporta de manera técnica el paso a paso que se llevó a cabo para la consolidación del proyecto final del curso.
La manera en que se espera abordar este documento técnico es la de ir recorriendo las diferentes etapas de todo el proceso del proyecto (exploratory descriptive analysis, preprocessing data y clustering,predictive model) e ir evidenciando aquellos hechos, tesis, supuestos y resultados obtenidos de cada una de estas etapas e ir conectando estos hallazgos con cada uno de los siguientes procesos. En suma, este documento para el lector constituye una hoja de ruta que demarca los diferentes pasos realizados y como cada uno entrelazado llega a unos resultados finales.
La primera consideración a tener en cuenta son las fuentes de datos utilizadas para el proceso. Inicialmente se tenian las fuentes primarias y obligatoris para el proceso: Datos de Accidentalidad Georeferenciada para el periodo 2014-2018. Son con estos datos que se realiza la etapa de exploración así como el clustering. Posteriormente en la etapa de modelado se tienen en cuenta otros datos que fueron incluidos, pero, para efectos prácticos se describirán cuando se haga mención a la parte de los modelos predictivos. Por los pronto solo se evidencian los datos iniciales.
| X | DIA | PERIODO | CLASE | DIRECCION | DIRECCION_ENC | CBML | TIPO_GEOCOD | GRAVEDAD | BARRIO | COMUNA | DISENO | DIA_NOMBRE | MES | LONGITUD | LATITUD | FECHA |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 2014 | choque | cr 63 cl 94 | cr 063 094 000 00000 | no ubicada | solo danos | tramo de via | miercoles | 1 | -75.70382 | 6.221806 | 2014-01-01 19:00:00 | |||
| 2 | 1 | 2014 | choque | cl 30 cr 66 b | cl 030 066 b 000 00000 | 1602 | malla vial | solo danos | rosales | belen | interseccion | miercoles | 1 | -75.58727 | 6.231716 | 2014-01-01 07:40:00 |
| 3 | 1 | 2014 | choque | cr 52 cl 97 | cr 052 097 000 00000 | 0402 | malla vial | solo danos | san isidro | aranjuez | interseccion | miercoles | 1 | -75.56253 | 6.289907 | 2014-01-01 05:30:00 |
| 4 | 1 | 2014 | choque | tv 78 cl 65 | tv 078 065 000 00000 | 0519 | malla vial | solo danos | el progreso | castilla | tramo de via | miercoles | 1 | -75.57365 | 6.275473 | 2014-01-01 13:50:00 |
| 5 | 1 | 2014 | otro | cr 63 cl 50 | cr 063 050 000 00000 | 1101 | malla vial | solo danos | carlos e. restrepo | laureles estadio | tramo de via | miercoles | 1 | -75.57697 | 6.255457 | 2014-01-01 07:25:00 |
| 6 | 1 | 2014 | choque | cr 57 cl 51 | cr 057 051 000 00000 | 1006 | malla vial | solo danos | san benito | la candelaria | tramo de via | miercoles | 1 | -75.57481 | 6.254322 | 2014-01-01 04:15:00 |
La primera etapa del proceso que se comenzó a construir fue el exploratory descriptive analysis del cual se derivaron varios análisis relevantes. Uno de ellos que para la variable barrio no se tienen todos los datos, cerca del 8.6% de los datos totales son vacíos al igual que es una variable con muchos labels. Esto por suspuesto era de esperarse toda vez que son muchos los barrios para la ciudad de Medellin, esto tambien sucede para direccion, comuna, latitud y longuitud como se evidencia a continuación:
| BARRIO | FRECUENCIA | PROPORCION |
|---|---|---|
| 19766 | 0.086 | |
| la candelaria | 5101 | 0.022 |
| caribe | 4436 | 0.019 |
| campo amor | 4147 | 0.018 |
| perpetuo socorro | 4122 | 0.018 |
| los conquistadores | 3756 | 0.016 |
| barrio colon | 3630 | 0.016 |
| guayaquil | 3513 | 0.015 |
| san benito | 3437 | 0.015 |
| santa fe | 3376 | 0.015 |
Como se puede observar, 19766 observaciones, no tienen el barrio asociado donde ocurrió el siniestro. Entendiendo esto como una cantidad importante de los datos, se procede a realizar una imputación por distancia acorde a la latitud y longitud de esos registros y los centroides de estas dos variables de los registros que sí poseen información.
Antes de esto, se valida la completitud de las columnas de latitud y longitud de los datos.
| LATITUD | LONGITUD | |
|---|---|---|
| na_values | 0.00000 | 0.00000 |
| avg | 6.24840 | -75.58750 |
| std | 0.02787 | 0.03950 |
| min_value | 6.15193 | -75.70382 |
| max_value | 6.34341 | -75.47344 |
No obstante, al indagar un poco más sobre los diferentes labels para barrio se observó que hay algunos otros barrio que están etiquetados con números (0, 6001, 7001, 9004 y 9086). Al investigar si estos hacen alusión quizás al código postal del barrio estos números no equivalen a ningún código postal. De esta manera y en adelante, se procede a excluir estos datos del análisis de clustering y del eda.
| BARRIO | N_ACCIDENTES | LNG | LAT |
|---|---|---|---|
| 6001 | 39 | -75.63489 | 6.275228 |
| 7001 | 11 | -75.61529 | 6.221771 |
| 0 | 5 | -75.65716 | 6.172951 |
| 9004 | 2 | -75.55018 | 6.212052 |
| 9086 | 2 | -75.52790 | 6.200256 |
Una vez se realiza la exclusión de los datos mencionados se puede observar que, no hay valores extremos o atípicos dentro de la longitud y latitud, al igual que no hay valores nulos por lo que se puede proceder con la estrategia planteada de extraer el centroide de cada barrio de acuerdo a los accidentes, e imputar los valores de los barrios de acuerdo a la cercanía del registro del accidente con los centroides de los barrios. Para esto, se usará la distancia de haversine entre dos puntos.
| BARRIO | N_ACCIDENTES | LNG | LAT |
|---|---|---|---|
| la candelaria | 5101 | -75.56578 | 6.248704 |
| caribe | 4436 | -75.57446 | 6.268025 |
| campo amor | 4147 | -75.58192 | 6.214046 |
| perpetuo socorro | 4122 | -75.57427 | 6.233385 |
| los conquistadores | 3756 | -75.58306 | 6.240020 |
| barrio colon | 3630 | -75.56921 | 6.243275 |
| guayaquil | 3513 | -75.57357 | 6.246122 |
| san benito | 3437 | -75.57384 | 6.253888 |
| santa fe | 3376 | -75.57825 | 6.223634 |
| carlos e. restrepo | 2987 | -75.58015 | 6.256308 |
| villa nueva | 2908 | -75.56299 | 6.253410 |
| terminal de transporte | 2906 | -75.57280 | 6.276299 |
| san diego | 2860 | -75.56941 | 6.233526 |
| naranjal | 2709 | -75.58253 | 6.248620 |
| castilla | 2599 | -75.57047 | 6.289639 |
A continuación, se visualizarán los centroides de los barrios de acuerdo a los registros de los accidentes.
Lo primero que se observa en los centroides de los barrios, es que hay 2 barrios, específicamente los cercanos a San Felix y otros hacia el oriente del área metropolitana que se encuentran muy lejos de la densidad de accidentes. Por otro lado, hay otros 14 barrios cercanos a San Antonio de Prado, lo cual ya se encuentra cerca del borde del área metropolitana, con lo cual hace cuestionar la calidad y la validez de estos datos. Sin bien estos corregimientos hacen parte del municipio de Medellín hace razonable que se detenga un poco para indagar sobre esto mismo.
Ahora, teniendo la tabla de referencia de la latitud y la longitud para los barrios conocidos, se usa la fórmula del semiverseno para calcular la distancia espacial entre los centroides de los barrios conocidos y las coordenadas de los registros que no tienen barrio. Una vez computada estas distancias, se toma las coordenadas con menor distancia y se asigna ese barrio.
En el próximo mapa se logra visualizar que la mayoría de las asignaciones corresponden al barrio la oculta , el cual es un barrio de San Antonio de Prado. Lo que hace dudar bastante sobre la calidad del barrio como una variable que se deba tener en cuenta para el modelo.
| BARRIO | N_RECORDS | PROPORTION |
|---|---|---|
| la oculta | 19251 | 97.1046658 |
| la aguacatala | 224 | 1.1298865 |
| suburbano chacaltaya | 139 | 0.7011349 |
| media luna | 37 | 0.1866330 |
| auc1 | 28 | 0.1412358 |
| piedras blancas represa | 19 | 0.0958386 |
| alejandro echavarria | 12 | 0.0605296 |
| suburbano el llano | 12 | 0.0605296 |
| eduardo santos | 9 | 0.0453972 |
| los cerros el vergel | 8 | 0.0403531 |
| ocho de marzo | 8 | 0.0403531 |
Además de esto, se observa que el punto donde ubica los resultados para la oculta es una amplia zona boscosa lo cual hace suponer que al tratar de imputar los barrios faltantes bajo esta metodología carecería de todo sustento creíble que haga al menos pensar que en esta zona tan apartada, distante y por su posición geográfica puedan si quiera transitar vehículo. De otra manera, si se quisiera obviar este hecho es inverosímil que se presente una tasa de incidentes viales tan alto (19251)
Como parte de un experimento se prueba la imputacion no con los valores minimos (como en el apartado anterior) sino con los valores maximos. Los resultados para este analisis se visualizan a continuacion:
| BARRIO | N_RECORDS | PROPORTION |
|---|---|---|
| piedra gorda | 19311 | 97.4073140 |
| suburbano palmitas | 513 | 2.5876419 |
| el vergel | 1 | 0.0050441 |
Se observa entonces que la distribución de los valores imputados son menos barrios para la imputación con los valores mínimos piedra gorda, suburbano palmitas y el vergel. Un hecho importante a resaltar de esto es que cuando se trata de imputar con los valores máximos de lat y lng estos valores se ubican en los corregimientos de Medellín mas hacia el norte.
En consecuencia, considerando la calidad del análisis anterior, ésta imputación está altamente sesgada por la zona de los accidentes, lo cual se considera innecesario proceder con los barrios imputados con la oculta, con lo cual solo se toma en cuenta la imputación para el 3% restante
Después del Exploratory Descriptive Analysis, se evidenció que el problema de los barrios se extiende de igual forma a las comunas, pero viendo el mapa anterior donde el promedio de estos registros se encuentran en las afueras del área metropolitana, no es de extrañarse que estos faltantes o registros nulos se refieran al mismo caso. Sin embargo, hubo un porcentaje pequeño que si podía registrarse en el área, como fue el caso del 1.2% del subconjunto de datos (registros sin barrio). Volvemos a repetir los mismos pasos anteriores para hacer imputación, sin embargo, antes vamos a visualizar el promedio de la latitud y longitud y ubicarlo en un mapa.
| COMUNA | N_VALUES |
|---|---|
| el poblado | 17149 |
| 19736 | |
| castilla | 21209 |
| laureles estadio | 23850 |
| la candelaria | 43715 |
| alejandro echavarria | 1 |
| alfonso lopez | 1 |
| altavista | 1 |
| antonio narino | 1 |
| barrio colon | 1 |
Debido a que se aplica el mismo método de imputación de barrio para comuna, este evidencia la ubicación del mismo que se halló para barrio. En consecuencia, y debido a que la clusterización se va hacer a nivel de barrio, se va dejar este campo vacío para los registros que no se tienen datos
Antes de proceder a realizar el agrupamiento de los barrios en función de la accidentalidad, se debe hacer una exploración rápida de los accidentes en función del tiempo, para validar si el agrupamiento se debe hacer también en función del tiempo, como el año, o sobre todo el conjunto de datos sin discriminar el tiempo.
Como se ve en el siguiente gráfico, el número de accidentes por año es muy estable a lo largo de los 5 años del análisis.
Tan para el análisis mensual como para el anual se observa que los días domingo se presentan menos accidentes en comparación con los demás días de la semana, esto bajo el supuesto que son días de ocio de las personas y el uso de los medios de transporte son menores. Así mismo, estos gráficos muestran que para todos los días con excepción para domingo todos los días tienen valores muy similares en cuanto al comportamiento anual y mensual.
Cuando se analiza el número de accidentes anuales por hora resalta que: El año 2015 parece tener un comportamiento diferente respecto a los demás años. Esto hace sugerir que es razonable realizar la clusterización diferenciada por año, toda vez que realizarlo de manera conjunta para todos los años podría generar resultados no tan robustos.
En consecuencia con lo anterior, las variables para realizar la clusterización serán las siguientes:
De la construcción de variables del conjunto de datos inicial, resultamos con un conjunto de datos de 1575 observaciones por 21 variables, sin embargo, al ser de nuestro interés hacer un clustering por año, el resultado son 5 conjuntos de datos con aproximadamente 315 observaciones por conjunto de datos. A continuación se puede visualizar la tabla resultante.
| BARRIO | PERIODO | PROMEDIO_ACCIDENTE_MES | STD_ACCIDENTES_MES | AVG_OTRO_ACCIDENTE | AVG_ATROPELLOS | AVG_CAIDA_OCUPANTE | AVG_CHOQUE | AVG_INCENDIO | AVG_VOLCAMIENTOS | AVG_HERIDO | AVG_MUERTO | AVG_SOLO_DANOS | AVG_SIN_DISENO | AVG_CICLO_RUTA | AVG_GLORIETA | AVG_INTERSECCION | AVG_LOTE_PREDIO | AVG_TRAMO_VIDA | AVG_VIA_PEATOLNAL | AVG_DISENO_TUNEL_PUENTE |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 2015 | 2.000000 | NA | 0 | 0 | 1 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| 0 | 2016 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 2018 | 1.000000 | 0.0000000 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| 6001 | 2014 | 2.250000 | 0.9574271 | 3 | 2 | 0 | 4 | 0 | 0 | 6 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 8 | 0 | 0 |
| 6001 | 2015 | 1.250000 | 0.4629100 | 1 | 2 | 3 | 4 | 0 | 0 | 7 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 9 | 0 | 0 |
| 6001 | 2016 | 1.666667 | 0.5773503 | 1 | 2 | 0 | 2 | 0 | 0 | 4 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 |
| 6001 | 2017 | 1.400000 | 0.8944272 | 0 | 0 | 1 | 6 | 0 | 0 | 5 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 6 | 0 | 0 |
| 6001 | 2018 | 1.600000 | 0.8944272 | 1 | 1 | 3 | 3 | 0 | 0 | 6 | 0 | 2 | 0 | 0 | 0 | 0 | 3 | 5 | 0 | 0 |
| 7001 | 2018 | 1.833333 | 0.7527727 | 1 | 3 | 1 | 5 | 0 | 1 | 8 | 0 | 3 | 0 | 0 | 0 | 1 | 4 | 6 | 0 | 0 |
| 9004 | 2018 | 2.000000 | NA | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| 9086 | 2017 | 2.000000 | NA | 0 | 0 | 1 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
| aguas frias | 2014 | 2.272727 | 1.1037127 | 3 | 5 | 6 | 10 | 0 | 1 | 22 | 0 | 3 | 0 | 0 | 0 | 1 | 1 | 23 | 0 | 0 |
| aguas frias | 2015 | 1.900000 | 0.7378648 | 2 | 3 | 1 | 13 | 0 | 0 | 10 | 0 | 9 | 0 | 0 | 1 | 2 | 0 | 16 | 0 | 0 |
| aguas frias | 2016 | 2.222222 | 1.0929064 | 3 | 3 | 2 | 10 | 0 | 2 | 14 | 0 | 6 | 0 | 0 | 0 | 0 | 1 | 19 | 0 | 0 |
| aguas frias | 2017 | 1.555556 | 0.8819171 | 5 | 3 | 2 | 3 | 0 | 1 | 12 | 0 | 2 | 0 | 0 | 0 | 0 | 9 | 5 | 0 | 0 |
| aguas frias | 2018 | 1.750000 | 0.5000000 | 1 | 2 | 1 | 3 | 0 | 0 | 5 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 5 | 0 | 0 |
| aldea pablo vi | 2014 | 1.700000 | 0.6749486 | 4 | 4 | 2 | 7 | 0 | 0 | 14 | 0 | 3 | 0 | 0 | 0 | 2 | 0 | 15 | 0 | 0 |
| aldea pablo vi | 2015 | 1.363636 | 0.6741999 | 0 | 7 | 0 | 7 | 0 | 1 | 12 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 14 | 0 | 0 |
| aldea pablo vi | 2016 | 1.818182 | 0.8738629 | 2 | 9 | 5 | 4 | 0 | 0 | 17 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 19 | 0 | 0 |
| aldea pablo vi | 2017 | 1.571429 | 0.7867958 | 1 | 4 | 1 | 5 | 0 | 0 | 9 | 1 | 1 | 1 | 0 | 0 | 0 | 3 | 7 | 0 | 0 |
| aldea pablo vi | 2018 | 2.000000 | 0.8164966 | 1 | 3 | 4 | 12 | 0 | 0 | 12 | 1 | 7 | 0 | 0 | 0 | 0 | 4 | 16 | 0 | 0 |
| alejandria | 2014 | 6.500000 | 3.3439226 | 3 | 2 | 2 | 70 | 0 | 1 | 18 | 0 | 60 | 0 | 0 | 0 | 10 | 5 | 63 | 0 | 0 |
| alejandria | 2015 | 5.333333 | 2.6400184 | 1 | 1 | 4 | 58 | 0 | 0 | 18 | 0 | 46 | 0 | 0 | 1 | 6 | 8 | 49 | 0 | 0 |
| alejandria | 2016 | 8.750000 | 2.7010099 | 6 | 1 | 3 | 93 | 0 | 2 | 35 | 0 | 70 | 0 | 0 | 0 | 20 | 6 | 79 | 0 | 0 |
| alejandria | 2017 | 10.250000 | 2.0504988 | 7 | 4 | 3 | 108 | 0 | 1 | 24 | 1 | 98 | 1 | 0 | 1 | 21 | 27 | 73 | 0 | 0 |
| alejandria | 2018 | 10.750000 | 2.5271256 | 8 | 6 | 6 | 105 | 0 | 4 | 37 | 0 | 92 | 0 | 1 | 1 | 20 | 21 | 85 | 0 | 1 |
| alejandro echavarria | 2014 | 13.250000 | 1.5447860 | 28 | 29 | 15 | 76 | 0 | 11 | 123 | 1 | 35 | 1 | 0 | 1 | 22 | 5 | 130 | 0 | 0 |
| alejandro echavarria | 2015 | 12.083333 | 4.1660606 | 23 | 17 | 12 | 85 | 0 | 8 | 102 | 0 | 43 | 0 | 0 | 3 | 17 | 9 | 116 | 0 | 0 |
| alejandro echavarria | 2016 | 15.583333 | 3.3698755 | 31 | 20 | 22 | 101 | 0 | 13 | 145 | 1 | 41 | 1 | 1 | 1 | 28 | 11 | 145 | 0 | 0 |
| alejandro echavarria | 2017 | 15.000000 | 3.2473766 | 22 | 15 | 13 | 121 | 0 | 9 | 117 | 0 | 63 | 0 | 1 | 2 | 46 | 23 | 108 | 0 | 0 |
| alejandro echavarria | 2018 | 14.083333 | 4.9810246 | 21 | 17 | 22 | 99 | 0 | 10 | 108 | 0 | 61 | 0 | 1 | 2 | 37 | 34 | 94 | 0 | 1 |
| alfonso lopez | 2014 | 19.500000 | 6.2885177 | 42 | 20 | 39 | 129 | 0 | 4 | 152 | 3 | 79 | 3 | 1 | 0 | 19 | 9 | 202 | 0 | 0 |
| alfonso lopez | 2015 | 20.333333 | 5.1932357 | 35 | 33 | 30 | 137 | 0 | 9 | 160 | 0 | 84 | 0 | 2 | 0 | 27 | 3 | 212 | 0 | 0 |
| alfonso lopez | 2016 | 24.083333 | 3.9876704 | 50 | 37 | 42 | 145 | 0 | 15 | 204 | 1 | 84 | 1 | 1 | 0 | 39 | 7 | 241 | 0 | 0 |
| alfonso lopez | 2017 | 16.250000 | 4.4746762 | 34 | 20 | 25 | 103 | 0 | 13 | 132 | 1 | 62 | 1 | 4 | 0 | 21 | 27 | 142 | 0 | 0 |
| alfonso lopez | 2018 | 15.500000 | 4.9267360 | 21 | 22 | 42 | 93 | 0 | 8 | 124 | 1 | 61 | 1 | 1 | 0 | 32 | 58 | 94 | 0 | 0 |
| altamira | 2014 | 18.000000 | 3.3303017 | 34 | 19 | 39 | 121 | 0 | 3 | 145 | 1 | 70 | 1 | 2 | 0 | 25 | 13 | 175 | 0 | 0 |
| altamira | 2015 | 13.500000 | 4.2103768 | 22 | 12 | 25 | 101 | 0 | 2 | 100 | 0 | 62 | 0 | 1 | 0 | 16 | 12 | 133 | 0 | 0 |
| altamira | 2016 | 11.416667 | 3.7769236 | 18 | 7 | 22 | 87 | 0 | 3 | 88 | 0 | 49 | 0 | 0 | 2 | 14 | 8 | 113 | 0 | 0 |
| altamira | 2017 | 11.833333 | 4.8210397 | 11 | 4 | 35 | 86 | 0 | 6 | 97 | 1 | 44 | 1 | 4 | 3 | 18 | 26 | 90 | 0 | 0 |
| altamira | 2018 | 9.916667 | 2.5746433 | 15 | 8 | 23 | 71 | 0 | 2 | 74 | 0 | 45 | 0 | 0 | 2 | 21 | 31 | 65 | 0 | 0 |
| altavista | 2014 | 6.500000 | 2.3931721 | 10 | 15 | 7 | 43 | 0 | 3 | 47 | 0 | 31 | 0 | 2 | 0 | 13 | 6 | 57 | 0 | 0 |
| altavista | 2015 | 6.416667 | 1.8809250 | 5 | 15 | 2 | 54 | 0 | 1 | 39 | 0 | 38 | 0 | 0 | 0 | 11 | 6 | 60 | 0 | 0 |
| altavista | 2016 | 6.833333 | 2.0375267 | 10 | 15 | 9 | 46 | 0 | 2 | 51 | 0 | 31 | 0 | 0 | 0 | 12 | 1 | 69 | 0 | 0 |
| altavista | 2017 | 5.250000 | 2.2207697 | 12 | 7 | 7 | 33 | 0 | 4 | 44 | 0 | 19 | 0 | 0 | 0 | 13 | 11 | 39 | 0 | 0 |
| altavista | 2018 | 4.416667 | 2.3532698 | 7 | 10 | 4 | 30 | 0 | 2 | 33 | 2 | 18 | 2 | 0 | 0 | 8 | 7 | 36 | 0 | 0 |
| altavista sector central | 2014 | 1.916667 | 0.9962049 | 4 | 5 | 6 | 8 | 0 | 0 | 18 | 0 | 5 | 0 | 1 | 0 | 0 | 3 | 19 | 0 | 0 |
| altavista sector central | 2015 | 2.727273 | 1.6180797 | 4 | 8 | 5 | 12 | 0 | 1 | 22 | 3 | 5 | 3 | 0 | 0 | 2 | 3 | 22 | 0 | 0 |
| altavista sector central | 2016 | 2.727273 | 1.4206273 | 9 | 1 | 6 | 10 | 0 | 4 | 23 | 1 | 6 | 1 | 0 | 0 | 4 | 3 | 22 | 0 | 0 |
| altavista sector central | 2017 | 2.500000 | 0.7977240 | 10 | 4 | 4 | 10 | 0 | 2 | 24 | 1 | 5 | 1 | 1 | 0 | 0 | 5 | 23 | 0 | 0 |
| altavista sector central | 2018 | 2.200000 | 1.6431677 | 1 | 4 | 0 | 6 | 0 | 0 | 8 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 11 | 0 | 0 |
| altos del poblado | 2014 | 4.083333 | 2.0207259 | 1 | 1 | 3 | 44 | 0 | 0 | 19 | 0 | 30 | 0 | 0 | 1 | 5 | 1 | 42 | 0 | 0 |
| altos del poblado | 2015 | 4.500000 | 1.8829377 | 3 | 2 | 4 | 43 | 0 | 2 | 23 | 0 | 31 | 0 | 0 | 0 | 6 | 5 | 43 | 0 | 0 |
| altos del poblado | 2016 | 6.666667 | 2.3094011 | 5 | 8 | 8 | 52 | 0 | 7 | 48 | 0 | 32 | 0 | 0 | 0 | 14 | 6 | 60 | 0 | 0 |
| altos del poblado | 2017 | 3.727273 | 1.6180797 | 6 | 1 | 2 | 31 | 0 | 1 | 19 | 0 | 22 | 0 | 1 | 0 | 4 | 7 | 27 | 0 | 2 |
| altos del poblado | 2018 | 3.818182 | 1.9908883 | 8 | 3 | 2 | 29 | 0 | 0 | 17 | 0 | 25 | 0 | 0 | 0 | 2 | 10 | 30 | 0 | 0 |
| andalucia | 2014 | 4.083333 | 2.1933094 | 1 | 14 | 6 | 26 | 0 | 2 | 31 | 1 | 17 | 1 | 0 | 0 | 5 | 0 | 43 | 0 | 0 |
| andalucia | 2015 | 3.916667 | 1.4433757 | 8 | 12 | 5 | 21 | 0 | 1 | 32 | 1 | 14 | 1 | 1 | 0 | 1 | 1 | 43 | 0 | 0 |
| andalucia | 2016 | 4.727273 | 1.9021519 | 10 | 13 | 3 | 24 | 0 | 2 | 31 | 1 | 20 | 1 | 0 | 0 | 2 | 4 | 45 | 0 | 0 |
| andalucia | 2017 | 4.083333 | 1.9286516 | 5 | 14 | 5 | 20 | 0 | 5 | 36 | 0 | 13 | 0 | 1 | 0 | 4 | 6 | 38 | 0 | 0 |
| andalucia | 2018 | 3.583333 | 1.7298625 | 6 | 5 | 6 | 24 | 0 | 2 | 29 | 0 | 14 | 0 | 0 | 0 | 10 | 12 | 21 | 0 | 0 |
| antonio narino | 2014 | 4.416667 | 1.7298625 | 10 | 9 | 10 | 22 | 0 | 2 | 45 | 0 | 8 | 0 | 1 | 0 | 4 | 3 | 45 | 0 | 0 |
| antonio narino | 2015 | 4.909091 | 1.7002674 | 9 | 8 | 16 | 17 | 0 | 4 | 43 | 0 | 11 | 0 | 0 | 0 | 4 | 0 | 50 | 0 | 0 |
| antonio narino | 2016 | 4.545454 | 2.0670576 | 8 | 9 | 7 | 22 | 0 | 4 | 39 | 0 | 11 | 0 | 0 | 0 | 5 | 3 | 42 | 0 | 0 |
| antonio narino | 2017 | 4.500000 | 2.5045413 | 6 | 9 | 9 | 25 | 0 | 5 | 42 | 0 | 12 | 0 | 0 | 0 | 7 | 14 | 33 | 0 | 0 |
| antonio narino | 2018 | 2.636364 | 1.2060454 | 5 | 5 | 4 | 13 | 0 | 2 | 21 | 0 | 8 | 0 | 0 | 0 | 6 | 13 | 10 | 0 | 0 |
| aranjuez | 2014 | 6.000000 | 2.5584086 | 9 | 11 | 10 | 41 | 0 | 1 | 52 | 0 | 20 | 0 | 0 | 1 | 14 | 1 | 56 | 0 | 0 |
| aranjuez | 2015 | 7.166667 | 2.9180733 | 12 | 17 | 6 | 44 | 0 | 7 | 65 | 1 | 20 | 1 | 0 | 0 | 19 | 0 | 66 | 0 | 0 |
| aranjuez | 2016 | 6.083333 | 2.3143164 | 7 | 11 | 13 | 39 | 0 | 3 | 49 | 1 | 23 | 1 | 0 | 1 | 10 | 3 | 58 | 0 | 0 |
| aranjuez | 2017 | 6.916667 | 3.9186810 | 10 | 12 | 5 | 50 | 0 | 6 | 51 | 8 | 24 | 8 | 0 | 0 | 15 | 15 | 45 | 0 | 0 |
| aranjuez | 2018 | 5.583333 | 2.5030285 | 8 | 8 | 16 | 35 | 0 | 0 | 46 | 0 | 21 | 0 | 0 | 0 | 10 | 14 | 43 | 0 | 0 |
| area de expansion altavista | 2014 | 1.444444 | 0.5270463 | 0 | 2 | 5 | 5 | 0 | 1 | 10 | 0 | 3 | 0 | 0 | 0 | 1 | 0 | 12 | 0 | 0 |
| area de expansion altavista | 2015 | 1.857143 | 1.2149858 | 1 | 4 | 1 | 6 | 0 | 1 | 12 | 0 | 1 | 0 | 0 | 0 | 2 | 1 | 10 | 0 | 0 |
| area de expansion altavista | 2016 | 2.400000 | 1.3416408 | 3 | 4 | 4 | 1 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
| area de expansion altavista | 2017 | 1.200000 | 0.4472136 | 1 | 0 | 0 | 5 | 0 | 0 | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 5 | 0 | 0 |
| area de expansion altavista | 2018 | 1.000000 | 0.0000000 | 1 | 1 | 0 | 1 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 |
| area de expansion altos de calasanz | 2014 | 2.000000 | 0.8944272 | 0 | 3 | 1 | 8 | 0 | 0 | 6 | 0 | 6 | 0 | 0 | 0 | 0 | 1 | 11 | 0 | 0 |
| area de expansion altos de calasanz | 2015 | 1.900000 | 1.4491377 | 1 | 1 | 1 | 15 | 0 | 1 | 10 | 0 | 9 | 0 | 0 | 0 | 0 | 1 | 18 | 0 | 0 |
| area de expansion altos de calasanz | 2016 | 1.800000 | 1.2292726 | 3 | 0 | 1 | 14 | 0 | 0 | 8 | 1 | 9 | 1 | 0 | 0 | 1 | 3 | 13 | 0 | 0 |
| area de expansion altos de calasanz | 2017 | 2.727273 | 1.3483997 | 4 | 4 | 4 | 17 | 0 | 1 | 17 | 0 | 13 | 0 | 0 | 0 | 1 | 9 | 20 | 0 | 0 |
| area de expansion altos de calasanz | 2018 | 2.181818 | 1.3280197 | 1 | 1 | 1 | 20 | 0 | 1 | 10 | 0 | 14 | 0 | 0 | 0 | 1 | 4 | 19 | 0 | 0 |
| area de expansion belen rincon | 2014 | 1.000000 | 0.0000000 | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
| area de expansion belen rincon | 2015 | 1.000000 | 0.0000000 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| area de expansion belen rincon | 2016 | 1.250000 | 0.5000000 | 1 | 0 | 0 | 4 | 0 | 0 | 3 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 |
| area de expansion belen rincon | 2017 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| area de expansion belen rincon | 2018 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| area de expansion pajarito | 2014 | 11.750000 | 4.2879323 | 22 | 24 | 23 | 68 | 0 | 4 | 108 | 2 | 31 | 2 | 0 | 0 | 7 | 4 | 128 | 0 | 0 |
| area de expansion pajarito | 2015 | 13.666667 | 3.0846639 | 24 | 19 | 34 | 78 | 0 | 9 | 129 | 0 | 35 | 0 | 0 | 0 | 17 | 8 | 139 | 0 | 0 |
| area de expansion pajarito | 2016 | 12.166667 | 4.3866188 | 36 | 19 | 23 | 61 | 1 | 6 | 113 | 1 | 32 | 1 | 1 | 0 | 11 | 14 | 118 | 0 | 1 |
| area de expansion pajarito | 2017 | 13.833333 | 5.5240521 | 31 | 16 | 31 | 78 | 0 | 10 | 117 | 3 | 46 | 3 | 0 | 0 | 21 | 35 | 105 | 0 | 2 |
| area de expansion pajarito | 2018 | 11.416667 | 3.6045006 | 17 | 14 | 23 | 72 | 0 | 11 | 102 | 3 | 32 | 2 | 0 | 0 | 15 | 44 | 75 | 0 | 1 |
| area de expansion san antonio de prado | 2014 | 1.000000 | 0.0000000 | 0 | 3 | 0 | 5 | 0 | 0 | 5 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 |
| area de expansion san antonio de prado | 2015 | 1.500000 | 0.7559289 | 1 | 1 | 2 | 8 | 0 | 0 | 9 | 0 | 3 | 0 | 0 | 0 | 1 | 1 | 10 | 0 | 0 |
| area de expansion san antonio de prado | 2016 | 1.400000 | 0.5163978 | 3 | 1 | 0 | 9 | 0 | 1 | 9 | 1 | 4 | 1 | 0 | 0 | 0 | 1 | 12 | 0 | 0 |
| area de expansion san antonio de prado | 2017 | 2.000000 | 1.4142136 | 1 | 0 | 1 | 6 | 0 | 0 | 4 | 1 | 3 | 1 | 0 | 0 | 1 | 0 | 6 | 0 | 0 |
| area de expansion san antonio de prado | 2018 | 2.142857 | 0.6900656 | 2 | 2 | 2 | 8 | 0 | 1 | 12 | 0 | 3 | 0 | 0 | 1 | 1 | 6 | 6 | 0 | 1 |
| asomadera no. 1 | 2014 | 4.166667 | 1.9462474 | 5 | 3 | 4 | 38 | 0 | 0 | 20 | 0 | 30 | 0 | 0 | 0 | 8 | 1 | 41 | 0 | 0 |
| asomadera no. 1 | 2015 | 4.000000 | 1.9069252 | 5 | 4 | 4 | 34 | 0 | 1 | 26 | 0 | 22 | 0 | 0 | 0 | 2 | 0 | 45 | 0 | 1 |
| asomadera no. 1 | 2016 | 4.727273 | 2.4120908 | 5 | 0 | 5 | 38 | 0 | 4 | 27 | 0 | 25 | 0 | 0 | 0 | 4 | 1 | 47 | 0 | 0 |
| asomadera no. 1 | 2017 | 11.500000 | 6.0527980 | 7 | 3 | 5 | 110 | 0 | 13 | 52 | 0 | 86 | 0 | 0 | 0 | 12 | 13 | 109 | 0 | 4 |
| asomadera no. 1 | 2018 | 10.583333 | 3.6296339 | 9 | 6 | 6 | 103 | 0 | 3 | 42 | 1 | 84 | 1 | 0 | 0 | 12 | 16 | 95 | 0 | 3 |
| asomadera no. 2 | 2014 | 7.333333 | 2.6400184 | 12 | 1 | 3 | 67 | 0 | 5 | 35 | 1 | 52 | 1 | 0 | 0 | 6 | 4 | 76 | 0 | 1 |
| asomadera no. 2 | 2015 | 7.166667 | 2.5524795 | 8 | 3 | 3 | 70 | 0 | 2 | 31 | 0 | 55 | 0 | 1 | 0 | 4 | 9 | 72 | 0 | 0 |
| asomadera no. 2 | 2016 | 7.416667 | 2.7784343 | 9 | 1 | 8 | 68 | 0 | 3 | 39 | 0 | 50 | 0 | 0 | 0 | 4 | 10 | 75 | 0 | 0 |
| asomadera no. 2 | 2017 | 10.166667 | 3.7859389 | 9 | 3 | 3 | 99 | 0 | 8 | 39 | 0 | 83 | 0 | 1 | 0 | 18 | 11 | 92 | 0 | 0 |
| asomadera no. 2 | 2018 | 8.666667 | 3.0846639 | 8 | 0 | 7 | 87 | 0 | 2 | 37 | 0 | 67 | 0 | 0 | 1 | 10 | 10 | 83 | 0 | 0 |
| asomadera no. 3 | 2014 | 2.454546 | 1.2933396 | 3 | 0 | 3 | 20 | 0 | 1 | 11 | 0 | 16 | 0 | 1 | 0 | 3 | 3 | 20 | 0 | 0 |
| asomadera no. 3 | 2015 | 2.500000 | 1.5092309 | 1 | 1 | 4 | 17 | 0 | 2 | 13 | 1 | 11 | 1 | 0 | 0 | 5 | 0 | 19 | 0 | 0 |
| asomadera no. 3 | 2016 | 2.583333 | 1.1645002 | 4 | 0 | 2 | 23 | 0 | 2 | 14 | 0 | 17 | 0 | 0 | 0 | 3 | 0 | 28 | 0 | 0 |
| asomadera no. 3 | 2017 | 2.900000 | 1.1005049 | 2 | 1 | 1 | 22 | 0 | 3 | 11 | 0 | 18 | 0 | 0 | 1 | 3 | 3 | 22 | 0 | 0 |
| asomadera no. 3 | 2018 | 2.666667 | 1.4974726 | 4 | 0 | 3 | 23 | 0 | 2 | 15 | 0 | 17 | 0 | 0 | 0 | 4 | 4 | 24 | 0 | 0 |
| asomadera no.1 | 2014 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| astorga | 2014 | 6.166667 | 3.0401356 | 2 | 4 | 3 | 65 | 0 | 0 | 29 | 0 | 45 | 0 | 1 | 0 | 20 | 0 | 53 | 0 | 0 |
| astorga | 2015 | 5.083333 | 2.4293034 | 1 | 2 | 0 | 58 | 0 | 0 | 16 | 0 | 45 | 0 | 0 | 0 | 24 | 3 | 34 | 0 | 0 |
| astorga | 2016 | 4.916667 | 2.1933094 | 3 | 3 | 1 | 52 | 0 | 0 | 20 | 0 | 39 | 0 | 0 | 0 | 12 | 0 | 47 | 0 | 0 |
| astorga | 2017 | 4.250000 | 2.4167973 | 4 | 2 | 1 | 42 | 0 | 2 | 18 | 0 | 33 | 0 | 0 | 0 | 27 | 2 | 22 | 0 | 0 |
| astorga | 2018 | 4.666667 | 2.1881222 | 4 | 0 | 1 | 49 | 0 | 2 | 21 | 0 | 35 | 0 | 0 | 0 | 31 | 4 | 21 | 0 | 0 |
| auc1 | 2014 | 1.333333 | 0.5773503 | 0 | 2 | 0 | 2 | 0 | 0 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
| auc1 | 2015 | 1.000000 | 0.0000000 | 0 | 1 | 1 | 2 | 0 | 0 | 3 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 3 | 0 | 0 |
| auc1 | 2016 | 1.000000 | 0.0000000 | 0 | 0 | 2 | 2 | 0 | 0 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
| auc1 | 2017 | 1.000000 | 0.0000000 | 1 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
| auc1 | 2018 | 1.000000 | 0.0000000 | 1 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
| auc2 | 2014 | 1.000000 | 0.0000000 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| aures no. 2 | 2014 | 8.083333 | 2.4664414 | 21 | 14 | 29 | 31 | 0 | 2 | 83 | 0 | 14 | 0 | 0 | 0 | 8 | 2 | 87 | 0 | 0 |
| aures no. 2 | 2015 | 9.583333 | 3.6545945 | 33 | 12 | 30 | 33 | 0 | 7 | 98 | 0 | 17 | 0 | 0 | 0 | 10 | 10 | 94 | 0 | 1 |
| aures no. 2 | 2016 | 10.000000 | 3.5419563 | 24 | 12 | 32 | 46 | 0 | 6 | 91 | 1 | 28 | 1 | 0 | 0 | 14 | 10 | 95 | 0 | 0 |
| aures no. 2 | 2017 | 9.750000 | 5.2070756 | 18 | 22 | 30 | 39 | 0 | 8 | 95 | 0 | 22 | 0 | 1 | 0 | 20 | 27 | 68 | 0 | 1 |
| aures no. 2 | 2018 | 10.583333 | 4.3995523 | 25 | 14 | 28 | 48 | 0 | 12 | 98 | 1 | 28 | 1 | 2 | 0 | 20 | 45 | 55 | 0 | 4 |
| aures no.1 | 2014 | 7.500000 | 2.8762349 | 26 | 15 | 26 | 22 | 0 | 1 | 77 | 0 | 13 | 0 | 0 | 0 | 4 | 5 | 81 | 0 | 0 |
| aures no.1 | 2015 | 8.416667 | 3.1754265 | 23 | 17 | 24 | 32 | 0 | 5 | 78 | 1 | 22 | 1 | 0 | 0 | 11 | 11 | 78 | 0 | 0 |
| aures no.1 | 2016 | 7.416667 | 2.3532698 | 25 | 12 | 18 | 31 | 0 | 3 | 74 | 1 | 14 | 1 | 0 | 0 | 9 | 4 | 75 | 0 | 0 |
| aures no.1 | 2017 | 8.750000 | 2.5628464 | 17 | 17 | 19 | 41 | 0 | 11 | 79 | 1 | 25 | 1 | 0 | 0 | 22 | 19 | 63 | 0 | 0 |
| aures no.1 | 2018 | 8.416667 | 2.5030285 | 17 | 14 | 23 | 44 | 0 | 3 | 78 | 0 | 23 | 0 | 0 | 0 | 12 | 33 | 56 | 0 | 0 |
| aures no.2 | 2014 | 1.000000 | 0.0000000 | 1 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| aures no.2 | 2015 | 1.000000 | NA | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| aures no.2 | 2016 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| aures no.2 | 2018 | 1.000000 | 0.0000000 | 1 | 0 | 0 | 2 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 |
|
2014 | 3.500000 | 1.8829377 | 7 | 6 | 4 | 25 | 0 | 0 | 22 | 0 | 20 | 0 | 0 | 0 | 7 | 1 | 34 | 0 | 0 |
|
2015 | 2.625000 | 0.9161254 | 3 | 4 | 0 | 14 | 0 | 0 | 11 | 0 | 10 | 0 | 0 | 0 | 1 | 0 | 20 | 0 | 0 |
|
2016 | 3.090909 | 1.2210279 | 7 | 7 | 6 | 14 | 0 | 0 | 25 | 0 | 9 | 0 | 0 | 0 | 2 | 1 | 31 | 0 | 0 |
|
2017 | 2.909091 | 1.3003496 | 1 | 6 | 3 | 21 | 0 | 1 | 20 | 0 | 12 | 0 | 0 | 0 | 4 | 3 | 25 | 0 | 0 |
|
2018 | 3.545454 | 1.1281521 | 4 | 4 | 3 | 27 | 0 | 1 | 21 | 1 | 17 | 1 | 0 | 0 | 4 | 6 | 28 | 0 | 0 |
|
2016 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| barrio caicedo | 2014 | 16.833333 | 3.7859389 | 31 | 25 | 25 | 110 | 0 | 11 | 126 | 2 | 74 | 2 | 0 | 1 | 47 | 7 | 145 | 0 | 0 |
| barrio caicedo | 2015 | 16.333333 | 5.0332230 | 19 | 31 | 30 | 103 | 0 | 13 | 135 | 2 | 59 | 2 | 1 | 5 | 39 | 6 | 143 | 0 | 0 |
| barrio caicedo | 2016 | 15.833333 | 4.2175679 | 36 | 27 | 18 | 100 | 0 | 9 | 125 | 1 | 64 | 1 | 1 | 5 | 31 | 8 | 144 | 0 | 0 |
| barrio caicedo | 2017 | 13.750000 | 2.8001623 | 24 | 15 | 18 | 98 | 0 | 10 | 93 | 1 | 71 | 1 | 2 | 6 | 39 | 24 | 91 | 0 | 2 |
| barrio caicedo | 2018 | 12.916667 | 3.2879486 | 14 | 18 | 17 | 97 | 0 | 9 | 94 | 1 | 60 | 1 | 2 | 6 | 43 | 26 | 75 | 0 | 2 |
| barrio colombia | 2014 | 20.166667 | 5.0781767 | 21 | 15 | 18 | 184 | 0 | 4 | 110 | 3 | 129 | 3 | 2 | 1 | 18 | 6 | 211 | 1 | 0 |
| barrio colombia | 2015 | 16.666667 | 3.2003788 | 20 | 12 | 13 | 151 | 0 | 4 | 97 | 0 | 103 | 0 | 0 | 3 | 13 | 6 | 178 | 0 | 0 |
| barrio colombia | 2016 | 20.750000 | 4.4338573 | 20 | 17 | 20 | 185 | 0 | 7 | 117 | 0 | 132 | 0 | 0 | 2 | 35 | 8 | 204 | 0 | 0 |
| barrio colombia | 2017 | 22.500000 | 6.8290822 | 17 | 9 | 9 | 231 | 0 | 4 | 100 | 1 | 169 | 1 | 0 | 7 | 42 | 17 | 203 | 0 | 0 |
| barrio colombia | 2018 | 19.083333 | 5.2476546 | 13 | 6 | 10 | 195 | 0 | 5 | 89 | 3 | 137 | 3 | 0 | 2 | 54 | 20 | 149 | 0 | 1 |
| barrio colon | 2014 | 57.083333 | 6.3023565 | 43 | 62 | 38 | 534 | 0 | 8 | 281 | 2 | 402 | 2 | 1 | 13 | 93 | 12 | 550 | 0 | 14 |
| barrio colon | 2015 | 62.250000 | 10.3671246 | 51 | 75 | 35 | 570 | 0 | 16 | 318 | 3 | 426 | 3 | 3 | 13 | 118 | 8 | 592 | 0 | 10 |
| barrio colon | 2016 | 58.583333 | 6.9603857 | 49 | 61 | 37 | 544 | 0 | 12 | 268 | 3 | 432 | 3 | 3 | 17 | 127 | 12 | 526 | 0 | 15 |
| barrio colon | 2017 | 62.333333 | 11.0891703 | 47 | 61 | 37 | 590 | 0 | 13 | 281 | 1 | 466 | 1 | 1 | 28 | 164 | 36 | 502 | 0 | 16 |
| barrio colon | 2018 | 62.250000 | 8.5930733 | 41 | 60 | 24 | 613 | 0 | 9 | 254 | 7 | 486 | 5 | 2 | 14 | 178 | 50 | 478 | 0 | 20 |
| barrio cristobal | 2014 | 2.181818 | 0.8738629 | 2 | 2 | 2 | 18 | 0 | 0 | 13 | 0 | 11 | 0 | 0 | 0 | 4 | 0 | 20 | 0 | 0 |
| barrio cristobal | 2015 | 3.400000 | 2.1705094 | 3 | 2 | 2 | 27 | 0 | 0 | 17 | 0 | 17 | 0 | 0 | 0 | 6 | 1 | 27 | 0 | 0 |
| barrio cristobal | 2016 | 3.300000 | 1.8287822 | 2 | 6 | 3 | 21 | 0 | 1 | 22 | 1 | 10 | 1 | 0 | 0 | 12 | 0 | 20 | 0 | 0 |
| barrio cristobal | 2017 | 2.916667 | 1.4433757 | 3 | 2 | 2 | 28 | 0 | 0 | 22 | 0 | 13 | 0 | 0 | 0 | 15 | 4 | 16 | 0 | 0 |
| barrio cristobal | 2018 | 2.333333 | 1.6143298 | 5 | 0 | 3 | 20 | 0 | 0 | 16 | 0 | 12 | 0 | 1 | 0 | 10 | 4 | 13 | 0 | 0 |
| barrio de jesus | 2014 | 3.727273 | 1.2720778 | 8 | 7 | 8 | 18 | 0 | 0 | 30 | 1 | 10 | 1 | 0 | 0 | 1 | 2 | 37 | 0 | 0 |
| barrio de jesus | 2015 | 3.916667 | 2.0207259 | 4 | 9 | 9 | 23 | 0 | 2 | 28 | 1 | 18 | 1 | 0 | 0 | 4 | 0 | 42 | 0 | 0 |
| barrio de jesus | 2016 | 4.416667 | 2.7122059 | 6 | 9 | 6 | 27 | 0 | 5 | 36 | 0 | 17 | 0 | 0 | 0 | 5 | 1 | 47 | 0 | 0 |
| barrio de jesus | 2017 | 5.166667 | 2.0375267 | 7 | 12 | 8 | 31 | 0 | 4 | 43 | 1 | 18 | 1 | 2 | 0 | 2 | 13 | 44 | 0 | 0 |
| barrio de jesus | 2018 | 5.166667 | 1.6966991 | 14 | 5 | 5 | 38 | 0 | 0 | 38 | 1 | 23 | 1 | 0 | 0 | 5 | 9 | 45 | 0 | 2 |
| barrios de jesus | 2015 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| barrios de jesus | 2018 | 1.000000 | NA | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| batallon girardot | 2015 | 1.500000 | 0.7071068 | 0 | 2 | 0 | 1 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 |
| batallon girardot | 2016 | 1.500000 | 0.7071068 | 0 | 2 | 0 | 1 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 |
| batallon girardot | 2017 | 1.000000 | 0.0000000 | 0 | 1 | 0 | 2 | 0 | 0 | 2 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
| batallon girardot | 2018 | 1.000000 | 0.0000000 | 0 | 1 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
| belalcazar | 2014 | 8.333333 | 2.9644357 | 20 | 4 | 11 | 63 | 0 | 2 | 62 | 3 | 35 | 3 | 0 | 0 | 11 | 1 | 84 | 0 | 1 |
| belalcazar | 2015 | 8.416667 | 3.6545945 | 14 | 7 | 3 | 76 | 0 | 1 | 56 | 0 | 45 | 0 | 1 | 0 | 4 | 2 | 94 | 0 | 0 |
| belalcazar | 2016 | 9.750000 | 3.0488448 | 13 | 9 | 10 | 80 | 0 | 5 | 66 | 1 | 50 | 1 | 0 | 0 | 6 | 5 | 105 | 0 | 0 |
| belalcazar | 2017 | 10.166667 | 2.8230652 | 9 | 8 | 8 | 94 | 0 | 3 | 59 | 0 | 63 | 0 | 0 | 0 | 6 | 8 | 108 | 0 | 0 |
| belalcazar | 2018 | 9.666667 | 3.2566947 | 17 | 5 | 6 | 85 | 0 | 3 | 63 | 0 | 53 | 0 | 2 | 0 | 5 | 12 | 97 | 0 | 0 |
| belen | 2014 | 37.333333 | 8.6058472 | 37 | 47 | 39 | 315 | 0 | 10 | 203 | 3 | 242 | 3 | 3 | 33 | 55 | 22 | 332 | 0 | 0 |
| belen | 2015 | 40.583333 | 9.0197595 | 36 | 45 | 28 | 362 | 0 | 16 | 214 | 0 | 273 | 0 | 0 | 39 | 62 | 16 | 370 | 0 | 0 |
| belen | 2016 | 46.000000 | 6.8357350 | 44 | 40 | 31 | 415 | 0 | 22 | 254 | 2 | 296 | 2 | 2 | 50 | 76 | 36 | 386 | 0 | 0 |
| belen | 2017 | 42.166667 | 6.2643774 | 46 | 33 | 25 | 392 | 0 | 10 | 213 | 9 | 284 | 9 | 3 | 78 | 85 | 69 | 258 | 0 | 4 |
| belen | 2018 | 37.916667 | 5.9154395 | 25 | 23 | 24 | 377 | 0 | 6 | 163 | 0 | 292 | 0 | 1 | 77 | 84 | 47 | 246 | 0 | 0 |
| belencito | 2014 | 2.333333 | 1.7320508 | 4 | 5 | 2 | 10 | 0 | 0 | 18 | 0 | 3 | 0 | 0 | 0 | 2 | 0 | 19 | 0 | 0 |
| belencito | 2015 | 3.272727 | 1.7372915 | 5 | 6 | 4 | 20 | 0 | 1 | 26 | 0 | 10 | 0 | 0 | 0 | 2 | 0 | 34 | 0 | 0 |
| belencito | 2016 | 2.500000 | 1.7837652 | 5 | 1 | 4 | 19 | 0 | 1 | 23 | 0 | 7 | 0 | 0 | 0 | 1 | 0 | 29 | 0 | 0 |
| belencito | 2017 | 3.333333 | 1.6696942 | 11 | 6 | 1 | 22 | 0 | 0 | 27 | 1 | 12 | 1 | 0 | 0 | 6 | 7 | 26 | 0 | 0 |
| belencito | 2018 | 2.666667 | 1.6696942 | 5 | 5 | 4 | 17 | 0 | 1 | 20 | 1 | 11 | 0 | 0 | 0 | 3 | 7 | 22 | 0 | 0 |
| bello horizonte | 2014 | 6.333333 | 2.2292817 | 14 | 8 | 6 | 48 | 0 | 0 | 47 | 0 | 29 | 0 | 0 | 0 | 17 | 4 | 55 | 0 | 0 |
| bello horizonte | 2015 | 6.583333 | 2.4664414 | 8 | 15 | 10 | 42 | 0 | 4 | 59 | 0 | 20 | 0 | 0 | 0 | 15 | 1 | 63 | 0 | 0 |
| bello horizonte | 2016 | 4.166667 | 1.7494588 | 4 | 9 | 5 | 29 | 0 | 3 | 36 | 1 | 13 | 1 | 0 | 0 | 10 | 3 | 36 | 0 | 0 |
| bello horizonte | 2017 | 5.833333 | 1.9924098 | 7 | 8 | 8 | 44 | 0 | 3 | 45 | 0 | 25 | 0 | 0 | 0 | 25 | 5 | 40 | 0 | 0 |
| bello horizonte | 2018 | 5.000000 | 2.2156468 | 4 | 11 | 12 | 30 | 0 | 3 | 40 | 0 | 20 | 0 | 0 | 0 | 13 | 13 | 34 | 0 | 0 |
| berlin | 2014 | 13.916667 | 3.8954130 | 17 | 46 | 24 | 77 | 0 | 3 | 115 | 3 | 49 | 3 | 2 | 0 | 25 | 4 | 133 | 0 | 0 |
| berlin | 2015 | 14.083333 | 4.1000739 | 18 | 35 | 21 | 88 | 0 | 7 | 131 | 1 | 37 | 1 | 0 | 0 | 37 | 4 | 127 | 0 | 0 |
| berlin | 2016 | 12.833333 | 3.9504507 | 22 | 30 | 17 | 80 | 0 | 5 | 102 | 0 | 52 | 0 | 0 | 0 | 29 | 9 | 116 | 0 | 0 |
| berlin | 2017 | 14.333333 | 4.0526834 | 24 | 31 | 17 | 94 | 0 | 6 | 109 | 1 | 62 | 1 | 0 | 0 | 51 | 15 | 105 | 0 | 0 |
| berlin | 2018 | 12.333333 | 3.3933982 | 19 | 20 | 17 | 88 | 0 | 4 | 86 | 0 | 62 | 0 | 1 | 0 | 42 | 23 | 82 | 0 | 0 |
| bermejal-los alamos | 2014 | 4.000000 | 2.6628761 | 3 | 14 | 3 | 25 | 0 | 3 | 28 | 0 | 20 | 0 | 0 | 0 | 3 | 1 | 44 | 0 | 0 |
| bermejal-los alamos | 2015 | 5.000000 | 2.4899799 | 7 | 14 | 8 | 25 | 0 | 1 | 45 | 1 | 9 | 1 | 0 | 0 | 2 | 2 | 50 | 0 | 0 |
| bermejal-los alamos | 2016 | 4.750000 | 1.9128750 | 8 | 16 | 4 | 28 | 0 | 1 | 38 | 1 | 18 | 1 | 0 | 0 | 2 | 1 | 53 | 0 | 0 |
| bermejal-los alamos | 2017 | 3.333333 | 2.0150946 | 5 | 10 | 3 | 20 | 0 | 2 | 26 | 0 | 14 | 0 | 0 | 0 | 5 | 7 | 27 | 0 | 1 |
| bermejal-los alamos | 2018 | 2.666667 | 1.2309149 | 6 | 9 | 4 | 12 | 0 | 1 | 24 | 0 | 8 | 0 | 0 | 0 | 5 | 10 | 17 | 0 | 0 |
| betania | 2014 | 2.363636 | 1.1200649 | 8 | 8 | 7 | 2 | 0 | 1 | 25 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 24 | 0 | 0 |
| betania | 2015 | 1.500000 | 0.8498366 | 2 | 5 | 2 | 6 | 0 | 0 | 13 | 0 | 2 | 0 | 0 | 0 | 1 | 1 | 13 | 0 | 0 |
| betania | 2016 | 2.454546 | 0.9341987 | 2 | 2 | 7 | 14 | 0 | 2 | 16 | 1 | 10 | 1 | 0 | 0 | 3 | 3 | 20 | 0 | 0 |
| betania | 2017 | 2.555556 | 1.6666667 | 5 | 3 | 6 | 7 | 0 | 2 | 18 | 0 | 5 | 0 | 0 | 0 | 3 | 8 | 12 | 0 | 0 |
| betania | 2018 | 1.727273 | 1.1037127 | 1 | 2 | 4 | 11 | 0 | 1 | 9 | 1 | 9 | 1 | 0 | 0 | 3 | 9 | 5 | 0 | 1 |
| blanquizal | 2014 | 1.555556 | 0.7264832 | 5 | 2 | 2 | 4 | 0 | 1 | 10 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 14 | 0 | 0 |
| blanquizal | 2015 | 2.666667 | 1.8618987 | 2 | 4 | 4 | 5 | 0 | 1 | 13 | 1 | 2 | 1 | 0 | 0 | 1 | 0 | 14 | 0 | 0 |
| blanquizal | 2016 | 2.200000 | 1.3984118 | 4 | 3 | 4 | 10 | 0 | 1 | 18 | 0 | 4 | 0 | 1 | 0 | 2 | 0 | 18 | 0 | 1 |
| blanquizal | 2017 | 2.428571 | 0.9759001 | 2 | 3 | 1 | 9 | 0 | 2 | 10 | 0 | 7 | 0 | 0 | 0 | 1 | 3 | 13 | 0 | 0 |
| blanquizal | 2018 | 1.900000 | 0.8755950 | 2 | 4 | 0 | 11 | 0 | 2 | 11 | 0 | 8 | 0 | 0 | 0 | 1 | 2 | 15 | 0 | 1 |
| bolivariana | 2014 | 17.250000 | 6.0771554 | 15 | 9 | 12 | 165 | 0 | 6 | 106 | 0 | 101 | 0 | 1 | 1 | 55 | 7 | 142 | 1 | 0 |
| bolivariana | 2015 | 14.916667 | 4.0104031 | 12 | 12 | 10 | 140 | 0 | 5 | 95 | 1 | 83 | 1 | 0 | 1 | 43 | 4 | 130 | 0 | 0 |
| bolivariana | 2016 | 14.750000 | 5.0654803 | 14 | 7 | 8 | 145 | 0 | 3 | 88 | 0 | 89 | 0 | 0 | 2 | 43 | 8 | 124 | 0 | 0 |
| bolivariana | 2017 | 16.083333 | 2.9682665 | 13 | 10 | 11 | 157 | 0 | 2 | 87 | 0 | 106 | 0 | 1 | 1 | 61 | 22 | 108 | 0 | 0 |
| bolivariana | 2018 | 14.916667 | 4.5218326 | 12 | 11 | 13 | 138 | 0 | 5 | 81 | 0 | 98 | 0 | 1 | 2 | 58 | 28 | 90 | 0 | 0 |
| bombona no. 1 | 2014 | 22.333333 | 7.3772788 | 16 | 18 | 12 | 218 | 0 | 4 | 116 | 2 | 150 | 2 | 0 | 0 | 75 | 0 | 191 | 0 | 0 |
| bombona no. 1 | 2015 | 20.666667 | 3.9157800 | 17 | 22 | 8 | 195 | 0 | 6 | 118 | 1 | 129 | 1 | 0 | 0 | 70 | 4 | 172 | 0 | 1 |
| bombona no. 1 | 2016 | 21.000000 | 3.4902461 | 31 | 13 | 17 | 181 | 0 | 10 | 126 | 1 | 125 | 1 | 2 | 0 | 77 | 1 | 171 | 0 | 0 |
| bombona no. 1 | 2017 | 16.833333 | 3.1285586 | 15 | 8 | 12 | 164 | 0 | 3 | 77 | 1 | 124 | 1 | 0 | 0 | 69 | 9 | 123 | 0 | 0 |
| bombona no. 1 | 2018 | 16.166667 | 4.2175679 | 9 | 18 | 8 | 154 | 0 | 5 | 84 | 2 | 108 | 1 | 1 | 0 | 68 | 23 | 101 | 0 | 0 |
| bombona no. 2 | 2014 | 5.083333 | 1.0836247 | 6 | 5 | 6 | 40 | 0 | 4 | 37 | 0 | 24 | 0 | 0 | 0 | 5 | 1 | 55 | 0 | 0 |
| bombona no. 2 | 2015 | 6.083333 | 3.1466673 | 13 | 11 | 7 | 37 | 0 | 5 | 46 | 1 | 26 | 1 | 0 | 0 | 7 | 3 | 62 | 0 | 0 |
| bombona no. 2 | 2016 | 6.250000 | 1.9598237 | 13 | 4 | 12 | 40 | 0 | 6 | 45 | 1 | 29 | 1 | 0 | 0 | 7 | 6 | 61 | 0 | 0 |
| bombona no. 2 | 2017 | 5.000000 | 2.5226249 | 8 | 10 | 3 | 33 | 0 | 6 | 40 | 0 | 20 | 0 | 0 | 0 | 7 | 9 | 44 | 0 | 0 |
| bombona no. 2 | 2018 | 5.333333 | 1.9694639 | 7 | 6 | 6 | 41 | 0 | 4 | 34 | 0 | 30 | 0 | 0 | 0 | 14 | 14 | 36 | 0 | 0 |
| bombona no.1 | 2014 | 2.000000 | 1.0444659 | 2 | 2 | 0 | 20 | 0 | 0 | 13 | 0 | 11 | 0 | 1 | 0 | 7 | 0 | 16 | 0 | 0 |
| bombona no.1 | 2015 | 1.777778 | 0.6666667 | 1 | 1 | 0 | 14 | 0 | 0 | 8 | 0 | 8 | 0 | 0 | 0 | 8 | 0 | 8 | 0 | 0 |
| bombona no.1 | 2016 | 2.250000 | 1.1649647 | 2 | 0 | 2 | 14 | 0 | 0 | 14 | 0 | 4 | 0 | 0 | 0 | 3 | 1 | 14 | 0 | 0 |
| bombona no.1 | 2017 | 1.000000 | NA | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| bombona no.1 | 2018 | 1.428571 | 0.5345225 | 0 | 2 | 1 | 7 | 0 | 0 | 3 | 0 | 7 | 0 | 0 | 0 | 2 | 0 | 8 | 0 | 0 |
| bosques de san pablo | 2014 | 5.500000 | 1.8829377 | 5 | 6 | 16 | 39 | 0 | 0 | 34 | 0 | 32 | 0 | 1 | 0 | 3 | 3 | 59 | 0 | 0 |
| bosques de san pablo | 2015 | 7.000000 | 4.4107307 | 12 | 7 | 11 | 51 | 0 | 3 | 46 | 0 | 38 | 0 | 0 | 0 | 7 | 7 | 70 | 0 | 0 |
| bosques de san pablo | 2016 | 6.666667 | 1.9227506 | 12 | 4 | 7 | 55 | 0 | 2 | 44 | 0 | 36 | 0 | 0 | 0 | 8 | 8 | 64 | 0 | 0 |
| bosques de san pablo | 2017 | 6.416667 | 3.5280263 | 8 | 3 | 7 | 57 | 0 | 2 | 40 | 1 | 36 | 1 | 0 | 0 | 17 | 10 | 49 | 0 | 0 |
| bosques de san pablo | 2018 | 5.083333 | 2.2746961 | 3 | 4 | 6 | 47 | 0 | 1 | 25 | 0 | 36 | 0 | 0 | 0 | 11 | 14 | 36 | 0 | 0 |
| boston | 2014 | 37.333333 | 6.0653012 | 39 | 48 | 26 | 326 | 0 | 9 | 239 | 2 | 207 | 2 | 3 | 3 | 123 | 6 | 310 | 1 | 0 |
| boston | 2015 | 38.583333 | 7.4401654 | 26 | 43 | 23 | 360 | 0 | 11 | 244 | 3 | 216 | 3 | 1 | 3 | 133 | 5 | 317 | 0 | 1 |
| boston | 2016 | 44.416667 | 5.3505876 | 40 | 49 | 23 | 402 | 0 | 19 | 283 | 3 | 247 | 3 | 0 | 10 | 167 | 16 | 336 | 1 | 0 |
| boston | 2017 | 35.333333 | 4.1194292 | 25 | 36 | 25 | 327 | 0 | 11 | 205 | 1 | 218 | 1 | 1 | 7 | 167 | 32 | 215 | 0 | 1 |
| boston | 2018 | 35.500000 | 6.6674242 | 25 | 44 | 23 | 322 | 0 | 12 | 215 | 1 | 210 | 1 | 2 | 8 | 175 | 41 | 199 | 0 | 0 |
| boyaca | 2014 | 8.083333 | 2.6784776 | 12 | 14 | 22 | 47 | 0 | 2 | 62 | 1 | 34 | 1 | 1 | 0 | 11 | 4 | 80 | 0 | 0 |
| boyaca | 2015 | 8.583333 | 2.8109634 | 16 | 9 | 14 | 57 | 0 | 7 | 71 | 0 | 32 | 0 | 1 | 0 | 22 | 4 | 76 | 0 | 0 |
| boyaca | 2016 | 9.916667 | 2.9063671 | 17 | 13 | 19 | 65 | 0 | 5 | 79 | 0 | 40 | 0 | 0 | 0 | 26 | 4 | 89 | 0 | 0 |
| boyaca | 2017 | 9.833333 | 2.6911753 | 14 | 12 | 6 | 83 | 0 | 3 | 71 | 1 | 46 | 1 | 0 | 1 | 37 | 11 | 68 | 0 | 0 |
| boyaca | 2018 | 12.333333 | 3.2003788 | 17 | 10 | 27 | 84 | 0 | 10 | 95 | 0 | 53 | 0 | 0 | 2 | 41 | 47 | 58 | 0 | 0 |
| brasilia | 2014 | 8.500000 | 2.1532217 | 8 | 24 | 11 | 57 | 0 | 2 | 78 | 1 | 23 | 1 | 0 | 0 | 27 | 2 | 72 | 0 | 0 |
| brasilia | 2015 | 9.333333 | 3.2844906 | 12 | 18 | 9 | 70 | 0 | 3 | 82 | 0 | 30 | 0 | 0 | 0 | 41 | 1 | 70 | 0 | 0 |
| brasilia | 2016 | 6.833333 | 2.4802248 | 12 | 14 | 5 | 47 | 0 | 4 | 66 | 1 | 15 | 1 | 1 | 0 | 21 | 5 | 54 | 0 | 0 |
| brasilia | 2017 | 8.666667 | 2.7743413 | 12 | 18 | 9 | 62 | 0 | 3 | 69 | 3 | 32 | 3 | 3 | 1 | 34 | 15 | 48 | 0 | 0 |
| brasilia | 2018 | 8.333333 | 1.8748737 | 11 | 5 | 16 | 61 | 0 | 7 | 64 | 0 | 36 | 0 | 0 | 1 | 28 | 19 | 52 | 0 | 0 |
| buenos aires | 2014 | 17.916667 | 6.8285275 | 27 | 26 | 16 | 143 | 0 | 3 | 147 | 0 | 68 | 0 | 1 | 0 | 67 | 5 | 142 | 0 | 0 |
| buenos aires | 2015 | 19.916667 | 2.2746961 | 30 | 21 | 16 | 165 | 0 | 7 | 159 | 0 | 80 | 0 | 0 | 1 | 74 | 7 | 157 | 0 | 0 |
| buenos aires | 2016 | 16.250000 | 3.2787193 | 17 | 13 | 18 | 136 | 0 | 11 | 114 | 0 | 81 | 0 | 1 | 0 | 60 | 5 | 129 | 0 | 0 |
| buenos aires | 2017 | 15.083333 | 3.1754265 | 23 | 13 | 10 | 128 | 0 | 7 | 99 | 1 | 81 | 1 | 1 | 0 | 68 | 20 | 91 | 0 | 0 |
| buenos aires | 2018 | 13.583333 | 3.6296339 | 12 | 11 | 14 | 124 | 0 | 2 | 89 | 0 | 74 | 0 | 0 | 0 | 78 | 22 | 63 | 0 | 0 |
| buga patio bonito | 2014 | 1.400000 | 0.8944272 | 0 | 0 | 0 | 6 | 0 | 1 | 2 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 |
| buga patio bonito | 2015 | 1.500000 | 0.7071068 | 1 | 2 | 1 | 10 | 0 | 1 | 9 | 0 | 6 | 0 | 0 | 0 | 1 | 0 | 14 | 0 | 0 |
| buga patio bonito | 2016 | 1.500000 | 0.7559289 | 3 | 2 | 0 | 6 | 0 | 1 | 10 | 0 | 2 | 0 | 0 | 0 | 1 | 1 | 10 | 0 | 0 |
| buga patio bonito | 2017 | 1.400000 | 0.5477226 | 2 | 1 | 0 | 3 | 0 | 1 | 5 | 0 | 2 | 0 | 0 | 0 | 0 | 3 | 4 | 0 | 0 |
| buga patio bonito | 2018 | 1.500000 | 0.5773503 | 0 | 0 | 1 | 5 | 0 | 0 | 2 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 |
| cabecera san antonio de prado | 2014 | 12.583333 | 3.9876704 | 12 | 35 | 20 | 83 | 0 | 1 | 100 | 6 | 45 | 6 | 0 | 0 | 10 | 5 | 129 | 0 | 1 |
| cabecera san antonio de prado | 2015 | 19.000000 | 3.0451153 | 29 | 45 | 29 | 117 | 0 | 8 | 167 | 4 | 57 | 4 | 1 | 0 | 29 | 9 | 185 | 0 | 0 |
| cabecera san antonio de prado | 2016 | 18.333333 | 3.1718458 | 18 | 40 | 26 | 133 | 0 | 3 | 139 | 0 | 81 | 0 | 0 | 0 | 35 | 8 | 175 | 1 | 1 |
| cabecera san antonio de prado | 2017 | 46.083333 | 15.7448885 | 55 | 64 | 38 | 367 | 0 | 29 | 328 | 2 | 223 | 2 | 2 | 1 | 54 | 49 | 440 | 0 | 5 |
| cabecera san antonio de prado | 2018 | 49.666667 | 10.4475602 | 43 | 68 | 41 | 421 | 1 | 22 | 309 | 12 | 275 | 9 | 3 | 4 | 69 | 65 | 434 | 0 | 12 |
| cabecera urbana san cristobal | 2014 | 10.083333 | 3.4234043 | 29 | 20 | 22 | 45 | 0 | 5 | 91 | 0 | 30 | 0 | 0 | 0 | 14 | 5 | 102 | 0 | 0 |
| cabecera urbana san cristobal | 2015 | 10.416667 | 2.9682665 | 19 | 28 | 16 | 58 | 0 | 4 | 93 | 1 | 31 | 1 | 0 | 0 | 7 | 7 | 109 | 0 | 1 |
| cabecera urbana san cristobal | 2016 | 11.166667 | 2.2495791 | 23 | 24 | 22 | 58 | 0 | 7 | 93 | 1 | 40 | 1 | 0 | 0 | 6 | 5 | 122 | 0 | 0 |
| cabecera urbana san cristobal | 2017 | 8.500000 | 3.9657626 | 18 | 13 | 23 | 43 | 0 | 5 | 77 | 2 | 23 | 2 | 0 | 0 | 4 | 21 | 74 | 0 | 1 |
| cabecera urbana san cristobal | 2018 | 9.000000 | 1.7056057 | 9 | 23 | 13 | 58 | 0 | 5 | 70 | 2 | 36 | 1 | 1 | 0 | 8 | 20 | 78 | 0 | 0 |
| calasanz | 2014 | 13.916667 | 4.6408920 | 19 | 11 | 9 | 127 | 0 | 1 | 70 | 1 | 96 | 1 | 0 | 7 | 41 | 2 | 116 | 0 | 0 |
| calasanz | 2015 | 14.166667 | 4.8586069 | 18 | 8 | 18 | 122 | 0 | 4 | 95 | 0 | 75 | 0 | 0 | 6 | 45 | 6 | 113 | 0 | 0 |
| calasanz | 2016 | 13.583333 | 3.4498573 | 21 | 8 | 10 | 122 | 0 | 2 | 79 | 0 | 84 | 0 | 0 | 12 | 52 | 4 | 94 | 0 | 1 |
| calasanz | 2017 | 13.166667 | 3.5887028 | 11 | 7 | 13 | 123 | 0 | 4 | 71 | 0 | 87 | 0 | 0 | 20 | 51 | 10 | 77 | 0 | 0 |
| calasanz | 2018 | 12.666667 | 4.7736651 | 9 | 13 | 12 | 118 | 0 | 0 | 67 | 2 | 83 | 1 | 0 | 10 | 60 | 15 | 64 | 1 | 1 |
| calasanz parte alta | 2014 | 6.250000 | 1.9598237 | 10 | 4 | 13 | 45 | 0 | 3 | 49 | 0 | 26 | 0 | 0 | 0 | 14 | 3 | 58 | 0 | 0 |
| calasanz parte alta | 2015 | 5.250000 | 2.0504988 | 9 | 3 | 7 | 42 | 0 | 2 | 37 | 0 | 26 | 0 | 0 | 0 | 8 | 1 | 54 | 0 | 0 |
| calasanz parte alta | 2016 | 8.833333 | 2.5878504 | 10 | 8 | 10 | 77 | 0 | 1 | 51 | 0 | 55 | 0 | 0 | 0 | 22 | 5 | 79 | 0 | 0 |
| calasanz parte alta | 2017 | 9.166667 | 3.3257489 | 14 | 6 | 7 | 80 | 0 | 3 | 56 | 1 | 53 | 1 | 0 | 0 | 25 | 12 | 72 | 0 | 0 |
| calasanz parte alta | 2018 | 6.666667 | 2.6400184 | 9 | 2 | 10 | 57 | 0 | 2 | 44 | 0 | 36 | 0 | 0 | 0 | 19 | 19 | 42 | 0 | 0 |
| calle nueva | 2014 | 25.833333 | 5.4076265 | 13 | 30 | 17 | 242 | 0 | 8 | 114 | 1 | 195 | 1 | 1 | 26 | 44 | 2 | 231 | 0 | 5 |
| calle nueva | 2015 | 25.916667 | 5.1249538 | 15 | 25 | 19 | 247 | 0 | 5 | 138 | 0 | 173 | 0 | 1 | 26 | 35 | 10 | 236 | 0 | 3 |
| calle nueva | 2016 | 27.583333 | 5.0893531 | 15 | 25 | 17 | 266 | 0 | 8 | 122 | 2 | 207 | 2 | 1 | 39 | 49 | 10 | 224 | 1 | 5 |
| calle nueva | 2017 | 28.666667 | 7.8778554 | 15 | 22 | 19 | 283 | 0 | 5 | 121 | 0 | 223 | 0 | 1 | 74 | 47 | 14 | 192 | 0 | 16 |
| calle nueva | 2018 | 26.833333 | 5.7340028 | 20 | 22 | 14 | 261 | 0 | 5 | 115 | 0 | 207 | 0 | 2 | 79 | 57 | 23 | 136 | 1 | 24 |
| campo alegre | 2014 | 8.750000 | 2.7010099 | 10 | 10 | 16 | 65 | 0 | 4 | 67 | 0 | 38 | 0 | 2 | 3 | 11 | 8 | 81 | 0 | 0 |
| campo alegre | 2015 | 8.583333 | 3.3427896 | 14 | 11 | 14 | 60 | 0 | 4 | 77 | 1 | 25 | 1 | 0 | 1 | 16 | 4 | 80 | 0 | 1 |
| campo alegre | 2016 | 8.916667 | 3.4761089 | 17 | 16 | 8 | 60 | 0 | 6 | 75 | 0 | 32 | 0 | 0 | 2 | 15 | 5 | 85 | 0 | 0 |
| campo alegre | 2017 | 9.916667 | 3.3427896 | 18 | 8 | 15 | 77 | 0 | 1 | 78 | 0 | 41 | 0 | 0 | 11 | 24 | 19 | 65 | 0 | 0 |
| campo alegre | 2018 | 9.083333 | 3.5791907 | 11 | 11 | 12 | 73 | 0 | 2 | 68 | 2 | 39 | 1 | 0 | 11 | 20 | 13 | 64 | 0 | 0 |
| campo amor | 2014 | 65.500000 | 13.2287566 | 77 | 50 | 67 | 567 | 0 | 25 | 379 | 4 | 403 | 4 | 4 | 92 | 31 | 20 | 626 | 0 | 9 |
| campo amor | 2015 | 62.000000 | 10.1623190 | 59 | 33 | 52 | 579 | 0 | 21 | 341 | 5 | 398 | 5 | 1 | 98 | 54 | 8 | 572 | 0 | 6 |
| campo amor | 2016 | 70.416667 | 11.6732665 | 102 | 38 | 55 | 621 | 0 | 29 | 427 | 9 | 409 | 9 | 2 | 118 | 49 | 32 | 618 | 0 | 17 |
| campo amor | 2017 | 64.500000 | 5.9006933 | 67 | 38 | 43 | 597 | 0 | 29 | 361 | 4 | 409 | 4 | 5 | 153 | 63 | 58 | 472 | 1 | 18 |
| campo amor | 2018 | 83.166667 | 11.6215578 | 74 | 46 | 59 | 796 | 0 | 23 | 436 | 1 | 561 | 1 | 2 | 126 | 119 | 71 | 639 | 1 | 39 |
| campo valdes no. 1 | 2014 | 21.166667 | 3.9733964 | 29 | 34 | 38 | 146 | 0 | 7 | 187 | 2 | 65 | 2 | 1 | 0 | 63 | 6 | 182 | 0 | 0 |
| campo valdes no. 1 | 2015 | 20.916667 | 4.8328108 | 31 | 44 | 30 | 130 | 0 | 16 | 196 | 2 | 53 | 2 | 0 | 0 | 64 | 11 | 174 | 0 | 0 |
| campo valdes no. 1 | 2016 | 20.916667 | 3.3154825 | 32 | 41 | 13 | 154 | 0 | 11 | 189 | 2 | 60 | 2 | 0 | 0 | 66 | 7 | 176 | 0 | 0 |
| campo valdes no. 1 | 2017 | 18.333333 | 3.9389277 | 32 | 31 | 16 | 133 | 0 | 8 | 156 | 0 | 64 | 0 | 0 | 0 | 94 | 17 | 109 | 0 | 0 |
| campo valdes no. 1 | 2018 | 19.500000 | 4.5427265 | 33 | 34 | 28 | 134 | 0 | 5 | 173 | 0 | 61 | 0 | 0 | 0 | 79 | 48 | 107 | 0 | 0 |
| campo valdes no. 2 | 2014 | 16.500000 | 3.5547663 | 25 | 54 | 24 | 89 | 0 | 6 | 174 | 0 | 24 | 0 | 1 | 0 | 41 | 6 | 150 | 0 | 0 |
| campo valdes no. 2 | 2015 | 17.000000 | 4.4312937 | 27 | 46 | 23 | 98 | 0 | 10 | 165 | 3 | 36 | 3 | 0 | 0 | 48 | 4 | 149 | 0 | 0 |
| campo valdes no. 2 | 2016 | 14.583333 | 2.9682665 | 22 | 44 | 20 | 79 | 0 | 10 | 149 | 0 | 26 | 0 | 1 | 0 | 32 | 6 | 136 | 0 | 0 |
| campo valdes no. 2 | 2017 | 11.583333 | 3.6296339 | 19 | 21 | 13 | 80 | 0 | 6 | 102 | 0 | 37 | 0 | 1 | 1 | 52 | 21 | 64 | 0 | 0 |
| campo valdes no. 2 | 2018 | 12.833333 | 4.0861926 | 19 | 31 | 27 | 74 | 0 | 3 | 121 | 3 | 30 | 2 | 1 | 0 | 40 | 48 | 62 | 0 | 1 |
| campo valdes no.2 | 2014 | 1.900000 | 0.7378648 | 2 | 4 | 4 | 9 | 0 | 0 | 15 | 0 | 4 | 0 | 0 | 0 | 4 | 2 | 13 | 0 | 0 |
| campo valdes no.2 | 2015 | 1.777778 | 0.8333333 | 2 | 4 | 2 | 8 | 0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 | 6 | 1 | 9 | 0 | 0 |
| campo valdes no.2 | 2016 | 1.700000 | 0.9486833 | 4 | 5 | 0 | 8 | 0 | 0 | 11 | 0 | 6 | 0 | 0 | 0 | 3 | 1 | 13 | 0 | 0 |
| campo valdes no.2 | 2017 | 2.666667 | 2.0816660 | 1 | 2 | 2 | 3 | 0 | 0 | 6 | 0 | 2 | 0 | 0 | 0 | 3 | 2 | 3 | 0 | 0 |
| campo valdes no.2 | 2018 | 1.571429 | 0.9759001 | 1 | 1 | 4 | 5 | 0 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 6 | 1 | 4 | 0 | 0 |
| caribe | 2014 | 81.666667 | 9.9483515 | 88 | 49 | 90 | 739 | 0 | 14 | 465 | 6 | 509 | 6 | 2 | 2 | 58 | 38 | 851 | 0 | 23 |
| caribe | 2015 | 74.916667 | 10.2199300 | 90 | 36 | 56 | 684 | 0 | 33 | 436 | 5 | 458 | 5 | 4 | 2 | 38 | 35 | 796 | 0 | 19 |
| caribe | 2016 | 71.750000 | 10.4805014 | 94 | 35 | 40 | 668 | 0 | 24 | 406 | 1 | 454 | 1 | 2 | 3 | 75 | 32 | 730 | 0 | 18 |
| caribe | 2017 | 73.333333 | 12.1380943 | 113 | 42 | 74 | 600 | 0 | 51 | 511 | 4 | 365 | 4 | 2 | 1 | 76 | 105 | 664 | 0 | 28 |
| caribe | 2018 | 68.000000 | 10.0543975 | 83 | 31 | 67 | 611 | 0 | 24 | 439 | 6 | 371 | 4 | 2 | 4 | 68 | 128 | 581 | 0 | 29 |
| carlos e. restrepo | 2014 | 49.666667 | 7.7146064 | 52 | 31 | 52 | 453 | 0 | 8 | 274 | 0 | 322 | 0 | 1 | 1 | 82 | 9 | 498 | 0 | 5 |
| carlos e. restrepo | 2015 | 49.416667 | 12.5586503 | 54 | 28 | 42 | 455 | 0 | 14 | 262 | 6 | 325 | 6 | 0 | 0 | 89 | 16 | 472 | 0 | 10 |
| carlos e. restrepo | 2016 | 51.583333 | 9.1100178 | 73 | 27 | 37 | 462 | 0 | 20 | 280 | 1 | 338 | 1 | 1 | 1 | 83 | 19 | 507 | 0 | 7 |
| carlos e. restrepo | 2017 | 52.750000 | 8.9556990 | 58 | 26 | 48 | 480 | 0 | 21 | 303 | 0 | 330 | 0 | 5 | 1 | 144 | 50 | 416 | 0 | 17 |
| carlos e. restrepo | 2018 | 45.500000 | 7.0000000 | 38 | 27 | 54 | 415 | 0 | 12 | 242 | 0 | 304 | 0 | 3 | 0 | 123 | 64 | 338 | 0 | 18 |
| carpinelo | 2014 | 2.000000 | 0.7071068 | 5 | 7 | 2 | 4 | 0 | 0 | 15 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 18 | 0 | 0 |
| carpinelo | 2015 | 2.636364 | 1.4333686 | 2 | 10 | 4 | 9 | 0 | 4 | 22 | 1 | 6 | 1 | 0 | 0 | 0 | 1 | 27 | 0 | 0 |
| carpinelo | 2016 | 2.400000 | 1.5776213 | 4 | 11 | 2 | 7 | 0 | 0 | 20 | 0 | 4 | 0 | 0 | 0 | 2 | 0 | 22 | 0 | 0 |
| carpinelo | 2017 | 1.666667 | 0.7071068 | 1 | 7 | 2 | 4 | 0 | 1 | 11 | 0 | 4 | 0 | 0 | 0 | 1 | 5 | 9 | 0 | 0 |
| carpinelo | 2018 | 1.583333 | 0.6685579 | 3 | 4 | 4 | 6 | 0 | 2 | 15 | 0 | 4 | 0 | 0 | 0 | 1 | 6 | 12 | 0 | 0 |
| castilla | 2014 | 37.916667 | 6.2879153 | 82 | 67 | 58 | 239 | 0 | 9 | 323 | 1 | 131 | 1 | 5 | 0 | 49 | 11 | 388 | 0 | 1 |
| castilla | 2015 | 37.083333 | 5.1603089 | 71 | 66 | 67 | 209 | 0 | 32 | 334 | 5 | 106 | 5 | 0 | 0 | 65 | 10 | 365 | 0 | 0 |
| castilla | 2016 | 50.083333 | 8.3932693 | 111 | 60 | 81 | 326 | 0 | 23 | 437 | 4 | 160 | 4 | 2 | 0 | 83 | 21 | 489 | 0 | 2 |
| castilla | 2017 | 47.833333 | 8.1333582 | 106 | 67 | 74 | 297 | 0 | 30 | 416 | 11 | 147 | 11 | 1 | 0 | 131 | 95 | 331 | 0 | 5 |
| castilla | 2018 | 43.666667 | 4.5593726 | 89 | 66 | 83 | 259 | 0 | 27 | 398 | 4 | 122 | 3 | 2 | 0 | 124 | 145 | 246 | 0 | 4 |
| castropol | 2014 | 15.083333 | 2.9063671 | 10 | 10 | 10 | 149 | 0 | 2 | 75 | 0 | 106 | 0 | 0 | 1 | 15 | 7 | 158 | 0 | 0 |
| castropol | 2015 | 17.500000 | 5.5185637 | 13 | 6 | 11 | 172 | 0 | 8 | 90 | 0 | 120 | 0 | 1 | 1 | 15 | 13 | 180 | 0 | 0 |
| castropol | 2016 | 15.333333 | 2.9336088 | 17 | 16 | 10 | 136 | 0 | 5 | 86 | 2 | 96 | 2 | 0 | 0 | 24 | 9 | 149 | 0 | 0 |
| castropol | 2017 | 18.833333 | 3.7376058 | 20 | 8 | 17 | 174 | 0 | 7 | 110 | 0 | 116 | 0 | 1 | 0 | 33 | 21 | 170 | 0 | 1 |
| castropol | 2018 | 20.833333 | 4.9512778 | 19 | 10 | 13 | 202 | 0 | 6 | 94 | 0 | 156 | 0 | 2 | 1 | 35 | 16 | 196 | 0 | 0 |
| cataluna | 2014 | 5.083333 | 2.3532698 | 12 | 9 | 8 | 31 | 0 | 1 | 44 | 1 | 16 | 1 | 1 | 0 | 4 | 2 | 53 | 0 | 0 |
| cataluna | 2015 | 5.333333 | 2.9949452 | 8 | 6 | 6 | 38 | 0 | 6 | 32 | 0 | 32 | 0 | 0 | 0 | 5 | 1 | 58 | 0 | 0 |
| cataluna | 2016 | 4.750000 | 2.1794495 | 8 | 10 | 7 | 29 | 0 | 3 | 37 | 0 | 20 | 0 | 0 | 0 | 3 | 6 | 48 | 0 | 0 |
| cataluna | 2017 | 3.909091 | 1.9725387 | 9 | 2 | 3 | 23 | 0 | 6 | 23 | 0 | 20 | 0 | 2 | 0 | 4 | 18 | 19 | 0 | 0 |
| cataluna | 2018 | 4.250000 | 2.0504988 | 13 | 3 | 1 | 32 | 0 | 2 | 22 | 0 | 29 | 0 | 0 | 0 | 8 | 12 | 31 | 0 | 0 |
| cementerio universal | 2014 | 3.416667 | 2.5746433 | 7 | 1 | 4 | 29 | 0 | 0 | 19 | 0 | 22 | 0 | 0 | 0 | 5 | 1 | 35 | 0 | 0 |
| cementerio universal | 2015 | 3.454546 | 1.7529196 | 7 | 1 | 2 | 27 | 0 | 1 | 22 | 0 | 16 | 0 | 0 | 0 | 7 | 2 | 29 | 0 | 0 |
| cementerio universal | 2016 | 4.090909 | 1.6403991 | 5 | 1 | 4 | 34 | 0 | 1 | 21 | 0 | 24 | 0 | 0 | 1 | 4 | 0 | 40 | 0 | 0 |
| cementerio universal | 2017 | 2.250000 | 1.2154311 | 4 | 2 | 0 | 20 | 0 | 1 | 13 | 0 | 14 | 0 | 0 | 1 | 7 | 3 | 16 | 0 | 0 |
| cementerio universal | 2018 | 5.000000 | 2.0449494 | 7 | 1 | 9 | 42 | 0 | 1 | 31 | 0 | 29 | 0 | 0 | 0 | 12 | 9 | 39 | 0 | 0 |
| centro administrativo | 2014 | 4.916667 | 3.0289012 | 7 | 5 | 5 | 40 | 0 | 2 | 27 | 2 | 30 | 2 | 0 | 0 | 10 | 2 | 45 | 0 | 0 |
| centro administrativo | 2015 | 5.083333 | 2.4293034 | 7 | 7 | 7 | 37 | 0 | 3 | 32 | 0 | 29 | 0 | 0 | 0 | 6 | 2 | 53 | 0 | 0 |
| centro administrativo | 2016 | 5.166667 | 2.6227443 | 8 | 5 | 2 | 45 | 0 | 2 | 27 | 0 | 35 | 0 | 0 | 0 | 8 | 6 | 48 | 0 | 0 |
| centro administrativo | 2017 | 5.416667 | 2.0652243 | 6 | 1 | 4 | 51 | 0 | 3 | 31 | 0 | 34 | 0 | 0 | 0 | 10 | 4 | 50 | 0 | 1 |
| centro administrativo | 2018 | 4.250000 | 1.6583124 | 4 | 3 | 5 | 37 | 0 | 2 | 27 | 0 | 24 | 0 | 0 | 0 | 13 | 7 | 29 | 0 | 2 |
| cerro nutibara | 2014 | 11.500000 | 2.8123106 | 13 | 9 | 15 | 98 | 0 | 3 | 70 | 0 | 68 | 0 | 0 | 0 | 11 | 2 | 111 | 0 | 14 |
| cerro nutibara | 2015 | 9.000000 | 2.7633971 | 8 | 4 | 3 | 88 | 0 | 5 | 64 | 0 | 44 | 0 | 0 | 0 | 12 | 3 | 83 | 0 | 10 |
| cerro nutibara | 2016 | 10.583333 | 2.9987371 | 21 | 9 | 11 | 80 | 0 | 6 | 80 | 1 | 46 | 1 | 0 | 0 | 11 | 5 | 98 | 0 | 12 |
| cerro nutibara | 2017 | 16.416667 | 4.7185964 | 20 | 9 | 7 | 150 | 0 | 11 | 103 | 2 | 92 | 2 | 2 | 0 | 21 | 19 | 131 | 0 | 22 |
| cerro nutibara | 2018 | 20.833333 | 5.7656244 | 26 | 10 | 11 | 190 | 0 | 13 | 117 | 4 | 129 | 4 | 2 | 3 | 29 | 19 | 161 | 0 | 32 |
| corazon de jesus | 2014 | 39.916667 | 8.1848900 | 49 | 28 | 31 | 361 | 0 | 10 | 205 | 4 | 270 | 4 | 2 | 24 | 54 | 5 | 379 | 0 | 11 |
| corazon de jesus | 2015 | 47.166667 | 8.8506120 | 36 | 50 | 44 | 420 | 0 | 16 | 249 | 10 | 307 | 10 | 2 | 34 | 47 | 4 | 461 | 0 | 8 |
| corazon de jesus | 2016 | 45.333333 | 9.9574854 | 34 | 39 | 33 | 429 | 0 | 9 | 215 | 4 | 325 | 4 | 1 | 32 | 63 | 9 | 421 | 0 | 14 |
| corazon de jesus | 2017 | 35.083333 | 7.3169583 | 29 | 31 | 21 | 332 | 0 | 8 | 152 | 1 | 268 | 1 | 1 | 16 | 75 | 25 | 295 | 0 | 8 |
| corazon de jesus | 2018 | 36.750000 | 8.6563167 | 21 | 34 | 15 | 363 | 0 | 8 | 150 | 6 | 285 | 4 | 1 | 0 | 61 | 22 | 344 | 0 | 9 |
| cordoba | 2014 | 8.583333 | 3.1754265 | 21 | 11 | 21 | 48 | 0 | 2 | 70 | 0 | 33 | 0 | 0 | 11 | 11 | 2 | 79 | 0 | 0 |
| cordoba | 2015 | 8.833333 | 4.1742355 | 21 | 10 | 16 | 57 | 0 | 2 | 71 | 0 | 35 | 0 | 0 | 15 | 12 | 2 | 77 | 0 | 0 |
| cordoba | 2016 | 6.833333 | 2.8550858 | 15 | 9 | 11 | 43 | 0 | 4 | 63 | 1 | 18 | 1 | 0 | 5 | 15 | 4 | 57 | 0 | 0 |
| cordoba | 2017 | 8.833333 | 2.9797295 | 20 | 11 | 18 | 52 | 0 | 5 | 69 | 0 | 37 | 0 | 0 | 11 | 16 | 13 | 66 | 0 | 0 |
| cordoba | 2018 | 9.416667 | 3.2321772 | 16 | 9 | 28 | 56 | 0 | 4 | 78 | 1 | 34 | 1 | 1 | 8 | 21 | 41 | 41 | 0 | 0 |
| corregimiento de san antonio de prado | 2017 | 1.333333 | 0.5773503 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| corregimiento de santa elena | 2017 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| cristo rey | 2014 | 33.666667 | 5.4827553 | 26 | 32 | 25 | 306 | 0 | 15 | 199 | 4 | 201 | 4 | 3 | 0 | 53 | 14 | 319 | 0 | 11 |
| cristo rey | 2015 | 28.666667 | 6.4713822 | 33 | 34 | 23 | 236 | 0 | 18 | 208 | 5 | 131 | 5 | 0 | 0 | 38 | 9 | 287 | 0 | 5 |
| cristo rey | 2016 | 37.666667 | 6.7464918 | 45 | 35 | 21 | 339 | 0 | 12 | 232 | 1 | 219 | 1 | 1 | 0 | 55 | 8 | 369 | 0 | 18 |
| cristo rey | 2017 | 35.750000 | 3.9109404 | 41 | 27 | 22 | 327 | 0 | 12 | 218 | 1 | 210 | 1 | 2 | 0 | 74 | 41 | 293 | 0 | 18 |
| cristo rey | 2018 | 24.500000 | 7.2801099 | 18 | 19 | 10 | 242 | 0 | 5 | 118 | 6 | 170 | 4 | 2 | 0 | 54 | 19 | 200 | 0 | 15 |
| cuarta brigada | 2014 | 18.250000 | 4.1805828 | 24 | 17 | 21 | 153 | 1 | 3 | 124 | 0 | 95 | 0 | 1 | 0 | 57 | 10 | 151 | 0 | 0 |
| cuarta brigada | 2015 | 18.583333 | 4.3371196 | 15 | 22 | 16 | 165 | 0 | 5 | 108 | 0 | 115 | 0 | 1 | 0 | 59 | 9 | 154 | 0 | 0 |
| cuarta brigada | 2016 | 20.416667 | 5.6802422 | 20 | 22 | 15 | 182 | 0 | 6 | 136 | 1 | 108 | 1 | 0 | 0 | 58 | 14 | 172 | 0 | 0 |
| cuarta brigada | 2017 | 23.000000 | 4.7863442 | 19 | 21 | 23 | 205 | 0 | 8 | 141 | 1 | 134 | 1 | 3 | 0 | 91 | 25 | 156 | 0 | 0 |
| cuarta brigada | 2018 | 18.250000 | 4.0254870 | 16 | 19 | 24 | 156 | 0 | 4 | 105 | 3 | 111 | 2 | 0 | 0 | 67 | 32 | 118 | 0 | 0 |
| cucaracho | 2014 | 20.500000 | 3.8494392 | 46 | 18 | 57 | 120 | 0 | 5 | 189 | 0 | 57 | 0 | 2 | 0 | 10 | 6 | 226 | 0 | 2 |
| cucaracho | 2015 | 19.083333 | 4.5016832 | 48 | 14 | 37 | 118 | 0 | 12 | 174 | 0 | 55 | 0 | 1 | 0 | 20 | 11 | 197 | 0 | 0 |
| cucaracho | 2016 | 16.333333 | 5.0512525 | 32 | 11 | 37 | 106 | 0 | 10 | 147 | 1 | 48 | 1 | 0 | 0 | 17 | 10 | 168 | 0 | 0 |
| cucaracho | 2017 | 13.583333 | 5.0535016 | 31 | 12 | 36 | 81 | 0 | 3 | 115 | 0 | 48 | 0 | 1 | 0 | 11 | 23 | 127 | 0 | 1 |
| cucaracho | 2018 | 14.166667 | 3.2145503 | 28 | 8 | 30 | 96 | 0 | 8 | 114 | 0 | 56 | 0 | 3 | 0 | 22 | 52 | 93 | 0 | 0 |
| diego echavarria | 2014 | 7.583333 | 2.9374799 | 7 | 3 | 9 | 69 | 0 | 3 | 37 | 0 | 54 | 0 | 0 | 3 | 11 | 5 | 72 | 0 | 0 |
| diego echavarria | 2015 | 6.000000 | 3.0748245 | 5 | 5 | 3 | 56 | 0 | 3 | 31 | 1 | 40 | 1 | 0 | 3 | 6 | 3 | 58 | 1 | 0 |
| diego echavarria | 2016 | 6.333333 | 4.0301891 | 8 | 4 | 5 | 58 | 0 | 1 | 41 | 0 | 35 | 0 | 1 | 1 | 4 | 4 | 66 | 0 | 0 |
| diego echavarria | 2017 | 8.583333 | 3.5537006 | 12 | 3 | 8 | 71 | 0 | 9 | 55 | 0 | 48 | 0 | 1 | 10 | 13 | 20 | 59 | 0 | 0 |
| diego echavarria | 2018 | 5.916667 | 1.7816404 | 9 | 3 | 7 | 50 | 0 | 2 | 32 | 0 | 39 | 0 | 1 | 7 | 10 | 12 | 41 | 0 | 0 |
| doce de octubre no.1 | 2014 | 10.000000 | 2.6967994 | 22 | 22 | 37 | 38 | 0 | 1 | 99 | 1 | 20 | 1 | 1 | 0 | 3 | 4 | 111 | 0 | 0 |
| doce de octubre no.1 | 2015 | 7.583333 | 3.2321772 | 12 | 21 | 21 | 33 | 0 | 4 | 80 | 0 | 11 | 0 | 0 | 0 | 6 | 5 | 80 | 0 | 0 |
| doce de octubre no.1 | 2016 | 8.666667 | 2.0597146 | 19 | 27 | 13 | 42 | 0 | 3 | 83 | 2 | 19 | 2 | 2 | 1 | 7 | 6 | 86 | 0 | 0 |
| doce de octubre no.1 | 2017 | 7.916667 | 2.6443192 | 17 | 24 | 12 | 36 | 0 | 6 | 72 | 1 | 22 | 1 | 0 | 0 | 7 | 19 | 68 | 0 | 0 |
| doce de octubre no.1 | 2018 | 9.750000 | 3.5451632 | 18 | 17 | 27 | 53 | 0 | 2 | 84 | 1 | 32 | 0 | 0 | 0 | 15 | 38 | 64 | 0 | 0 |
| doce de octubre no.2 | 2014 | 11.083333 | 2.2343733 | 28 | 27 | 16 | 56 | 0 | 6 | 107 | 2 | 24 | 2 | 0 | 1 | 14 | 4 | 112 | 0 | 0 |
| doce de octubre no.2 | 2015 | 12.000000 | 4.6514905 | 26 | 22 | 25 | 64 | 0 | 7 | 110 | 2 | 32 | 2 | 1 | 2 | 12 | 5 | 121 | 1 | 0 |
| doce de octubre no.2 | 2016 | 10.083333 | 2.3532698 | 24 | 24 | 20 | 50 | 0 | 3 | 97 | 0 | 24 | 0 | 1 | 4 | 12 | 7 | 97 | 0 | 0 |
| doce de octubre no.2 | 2017 | 9.166667 | 3.4597250 | 16 | 18 | 20 | 51 | 0 | 5 | 83 | 1 | 26 | 1 | 1 | 2 | 16 | 27 | 63 | 0 | 0 |
| doce de octubre no.2 | 2018 | 9.666667 | 4.0075686 | 15 | 18 | 27 | 52 | 0 | 4 | 95 | 0 | 21 | 0 | 0 | 1 | 16 | 37 | 62 | 0 | 0 |
| eduardo santos | 2014 | 1.428571 | 0.5345225 | 2 | 1 | 2 | 5 | 0 | 0 | 6 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 10 | 0 | 0 |
| eduardo santos | 2015 | 1.571429 | 0.7867958 | 3 | 1 | 2 | 5 | 0 | 0 | 10 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 11 | 0 | 0 |
| eduardo santos | 2016 | 1.125000 | 0.3535534 | 3 | 1 | 2 | 2 | 0 | 1 | 7 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 8 | 0 | 0 |
| eduardo santos | 2017 | 1.200000 | 0.4472136 | 1 | 0 | 0 | 3 | 0 | 2 | 4 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 5 | 0 | 0 |
| eduardo santos | 2018 | 1.200000 | 0.4472136 | 0 | 1 | 1 | 4 | 0 | 0 | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 3 | 3 | 0 | 0 |
| el castillo | 2014 | 3.750000 | 1.9128750 | 1 | 1 | 0 | 41 | 0 | 2 | 14 | 0 | 31 | 0 | 0 | 0 | 6 | 0 | 39 | 0 | 0 |
| el castillo | 2015 | 4.916667 | 2.0207259 | 1 | 2 | 1 | 54 | 0 | 1 | 19 | 0 | 40 | 0 | 0 | 1 | 9 | 2 | 47 | 0 | 0 |
| el castillo | 2016 | 5.916667 | 1.9752253 | 6 | 2 | 0 | 62 | 0 | 1 | 20 | 1 | 50 | 1 | 0 | 1 | 11 | 3 | 55 | 0 | 0 |
| el castillo | 2017 | 4.333333 | 2.2292817 | 1 | 1 | 1 | 47 | 0 | 2 | 10 | 0 | 42 | 0 | 0 | 0 | 9 | 2 | 40 | 0 | 1 |
| el castillo | 2018 | 4.583333 | 3.4234043 | 1 | 4 | 3 | 46 | 0 | 1 | 23 | 0 | 32 | 0 | 1 | 1 | 9 | 2 | 41 | 0 | 1 |
| el chagualo | 2014 | 38.750000 | 10.1186147 | 48 | 58 | 41 | 315 | 0 | 3 | 219 | 2 | 244 | 2 | 2 | 31 | 37 | 10 | 371 | 0 | 12 |
| el chagualo | 2015 | 40.083333 | 7.3788190 | 42 | 55 | 33 | 340 | 0 | 11 | 239 | 5 | 237 | 5 | 0 | 30 | 56 | 12 | 368 | 1 | 9 |
| el chagualo | 2016 | 34.666667 | 7.2026931 | 47 | 44 | 23 | 292 | 0 | 10 | 226 | 7 | 183 | 7 | 0 | 35 | 60 | 12 | 293 | 0 | 9 |
| el chagualo | 2017 | 31.000000 | 5.0990195 | 28 | 30 | 24 | 277 | 0 | 13 | 194 | 2 | 176 | 2 | 1 | 38 | 73 | 21 | 218 | 0 | 19 |
| el chagualo | 2018 | 26.916667 | 8.0617879 | 35 | 28 | 34 | 215 | 0 | 11 | 176 | 2 | 145 | 1 | 0 | 20 | 44 | 43 | 193 | 0 | 22 |
| el compromiso | 2014 | 2.000000 | 1.0540926 | 0 | 9 | 2 | 9 | 0 | 0 | 16 | 0 | 4 | 0 | 0 | 0 | 1 | 0 | 19 | 0 | 0 |
| el compromiso | 2015 | 2.000000 | 0.8944272 | 2 | 6 | 1 | 3 | 0 | 0 | 9 | 0 | 3 | 0 | 0 | 0 | 1 | 0 | 11 | 0 | 0 |
| el compromiso | 2016 | 1.900000 | 0.9944289 | 1 | 5 | 1 | 11 | 0 | 1 | 12 | 0 | 7 | 0 | 0 | 0 | 0 | 1 | 18 | 0 | 0 |
| el compromiso | 2017 | 2.200000 | 1.6865481 | 2 | 5 | 2 | 11 | 0 | 2 | 15 | 0 | 7 | 0 | 0 | 0 | 5 | 2 | 15 | 0 | 0 |
| el compromiso | 2018 | 3.181818 | 1.4012981 | 1 | 11 | 1 | 21 | 0 | 1 | 26 | 0 | 9 | 0 | 0 | 0 | 3 | 8 | 24 | 0 | 0 |
| el corazon | 2014 | 1.818182 | 0.8738629 | 3 | 3 | 4 | 10 | 0 | 0 | 17 | 0 | 3 | 0 | 0 | 0 | 1 | 0 | 19 | 0 | 0 |
| el corazon | 2015 | 2.545454 | 1.1281521 | 3 | 4 | 4 | 16 | 0 | 1 | 20 | 0 | 8 | 0 | 0 | 0 | 3 | 0 | 25 | 0 | 0 |
| el corazon | 2016 | 2.100000 | 1.4491377 | 1 | 6 | 1 | 11 | 0 | 2 | 14 | 0 | 7 | 0 | 0 | 0 | 1 | 0 | 20 | 0 | 0 |
| el corazon | 2017 | 2.090909 | 0.8312094 | 5 | 2 | 3 | 12 | 0 | 1 | 19 | 0 | 4 | 0 | 0 | 0 | 2 | 3 | 18 | 0 | 0 |
| el corazon | 2018 | 2.111111 | 1.1666667 | 1 | 4 | 5 | 9 | 0 | 0 | 13 | 2 | 4 | 2 | 0 | 0 | 1 | 3 | 13 | 0 | 0 |
| el corazon el morro | 2014 | 1.000000 | 0.0000000 | 1 | 2 | 0 | 0 | 0 | 1 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
| el corazon el morro | 2015 | 1.000000 | 0.0000000 | 0 | 3 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 |
| el corazon el morro | 2016 | 1.000000 | 0.0000000 | 1 | 2 | 0 | 0 | 0 | 1 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
| el corazon el morro | 2017 | 1.000000 | 0.0000000 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| el corazon el morro | 2018 | 1.000000 | 0.0000000 | 0 | 1 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| el danubio | 2014 | 6.666667 | 1.7232809 | 4 | 11 | 7 | 57 | 0 | 1 | 46 | 1 | 33 | 1 | 0 | 0 | 22 | 1 | 56 | 0 | 0 |
| el danubio | 2015 | 4.666667 | 1.8748737 | 2 | 4 | 7 | 40 | 0 | 3 | 33 | 0 | 23 | 0 | 0 | 0 | 18 | 1 | 37 | 0 | 0 |
| el danubio | 2016 | 7.166667 | 2.4058011 | 12 | 4 | 10 | 56 | 0 | 4 | 60 | 1 | 25 | 1 | 1 | 0 | 23 | 6 | 55 | 0 | 0 |
| el danubio | 2017 | 9.181818 | 2.0889319 | 15 | 6 | 11 | 66 | 0 | 3 | 71 | 1 | 29 | 1 | 2 | 0 | 38 | 13 | 47 | 0 | 0 |
| el danubio | 2018 | 5.500000 | 2.6111648 | 8 | 4 | 5 | 47 | 0 | 2 | 40 | 0 | 26 | 0 | 0 | 0 | 30 | 10 | 26 | 0 | 0 |
| el diamante | 2014 | 17.750000 | 4.2022721 | 52 | 35 | 44 | 79 | 0 | 3 | 168 | 0 | 45 | 0 | 0 | 1 | 21 | 8 | 183 | 0 | 0 |
| el diamante | 2015 | 16.916667 | 4.9443877 | 39 | 30 | 38 | 88 | 0 | 8 | 159 | 1 | 43 | 1 | 1 | 3 | 24 | 7 | 167 | 0 | 0 |
| el diamante | 2016 | 16.833333 | 3.8098755 | 59 | 23 | 43 | 72 | 0 | 5 | 160 | 0 | 42 | 0 | 0 | 4 | 17 | 8 | 173 | 0 | 0 |
| el diamante | 2017 | 17.250000 | 4.4133063 | 43 | 18 | 43 | 93 | 0 | 10 | 153 | 0 | 54 | 0 | 1 | 5 | 31 | 40 | 130 | 0 | 0 |
| el diamante | 2018 | 14.833333 | 4.7831776 | 25 | 20 | 40 | 91 | 0 | 2 | 120 | 0 | 58 | 0 | 2 | 9 | 33 | 52 | 82 | 0 | 0 |
| el diamante no. 2 | 2014 | 4.333333 | 2.0150946 | 2 | 6 | 1 | 41 | 0 | 2 | 15 | 1 | 36 | 1 | 0 | 0 | 5 | 2 | 44 | 0 | 0 |
| el diamante no. 2 | 2015 | 5.333333 | 2.3868326 | 3 | 1 | 1 | 56 | 0 | 3 | 23 | 0 | 41 | 0 | 0 | 0 | 5 | 1 | 58 | 0 | 0 |
| el diamante no. 2 | 2016 | 5.636364 | 1.9632996 | 5 | 0 | 6 | 50 | 0 | 1 | 21 | 0 | 41 | 0 | 0 | 0 | 6 | 2 | 54 | 0 | 0 |
| el diamante no. 2 | 2017 | 4.166667 | 2.1248886 | 6 | 3 | 2 | 36 | 0 | 3 | 25 | 0 | 25 | 0 | 0 | 0 | 13 | 6 | 31 | 0 | 0 |
| el diamante no. 2 | 2018 | 3.100000 | 1.5238839 | 1 | 1 | 0 | 29 | 0 | 0 | 9 | 0 | 22 | 0 | 0 | 0 | 5 | 4 | 22 | 0 | 0 |
| el estadio | 2014 | 25.416667 | 7.3045233 | 39 | 22 | 31 | 211 | 0 | 2 | 147 | 2 | 156 | 2 | 1 | 33 | 28 | 1 | 240 | 0 | 0 |
| el estadio | 2015 | 27.166667 | 4.6871843 | 36 | 27 | 17 | 240 | 0 | 6 | 157 | 1 | 168 | 1 | 0 | 44 | 34 | 7 | 240 | 0 | 0 |
| el estadio | 2016 | 26.000000 | 6.8357350 | 34 | 26 | 30 | 210 | 0 | 12 | 168 | 0 | 144 | 0 | 1 | 41 | 29 | 6 | 235 | 0 | 0 |
| el estadio | 2017 | 20.000000 | 8.6339710 | 36 | 26 | 14 | 160 | 0 | 4 | 145 | 0 | 95 | 0 | 1 | 10 | 49 | 24 | 156 | 0 | 0 |
| el estadio | 2018 | 16.583333 | 2.3532698 | 13 | 24 | 19 | 133 | 0 | 10 | 110 | 0 | 89 | 0 | 0 | 1 | 51 | 27 | 119 | 0 | 1 |
| el nogal-los almendros | 2014 | 6.500000 | 2.6457513 | 3 | 7 | 0 | 68 | 0 | 0 | 33 | 1 | 44 | 1 | 1 | 0 | 11 | 2 | 63 | 0 | 0 |
| el nogal-los almendros | 2015 | 7.666667 | 3.0846639 | 7 | 3 | 5 | 76 | 0 | 1 | 48 | 2 | 42 | 2 | 0 | 0 | 20 | 1 | 68 | 0 | 1 |
| el nogal-los almendros | 2016 | 7.250000 | 3.6212755 | 5 | 3 | 2 | 72 | 0 | 5 | 43 | 0 | 44 | 0 | 0 | 0 | 25 | 1 | 60 | 0 | 1 |
| el nogal-los almendros | 2017 | 8.166667 | 4.3658454 | 6 | 6 | 5 | 79 | 0 | 2 | 41 | 0 | 57 | 0 | 0 | 6 | 30 | 2 | 58 | 0 | 2 |
| el nogal-los almendros | 2018 | 6.500000 | 2.8123106 | 6 | 4 | 6 | 62 | 0 | 0 | 32 | 1 | 45 | 1 | 0 | 6 | 26 | 6 | 38 | 0 | 1 |
| el pesebre | 2014 | 2.400000 | 1.7763883 | 3 | 7 | 6 | 8 | 0 | 0 | 19 | 0 | 5 | 0 | 0 | 0 | 4 | 2 | 18 | 0 | 0 |
| el pesebre | 2015 | 2.363636 | 1.1200649 | 7 | 3 | 3 | 13 | 0 | 0 | 17 | 0 | 9 | 0 | 0 | 0 | 2 | 2 | 22 | 0 | 0 |
| el pesebre | 2016 | 3.916667 | 1.2401124 | 8 | 8 | 9 | 21 | 0 | 1 | 36 | 0 | 11 | 0 | 0 | 0 | 5 | 2 | 37 | 0 | 3 |
| el pesebre | 2017 | 3.666667 | 1.7232809 | 6 | 5 | 5 | 26 | 0 | 2 | 24 | 0 | 20 | 0 | 0 | 0 | 4 | 6 | 34 | 0 | 0 |
| el pesebre | 2018 | 3.916667 | 1.8319554 | 4 | 7 | 9 | 25 | 0 | 2 | 32 | 0 | 15 | 0 | 0 | 0 | 1 | 11 | 31 | 0 | 4 |
| el picacho | 2014 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| el picacho | 2015 | 1.166667 | 0.4082483 | 2 | 1 | 2 | 2 | 0 | 0 | 6 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 |
| el picacho | 2016 | 1.333333 | 0.5773503 | 1 | 2 | 0 | 1 | 0 | 0 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 3 | 0 | 0 |
| el picacho | 2017 | 1.250000 | 0.5000000 | 2 | 0 | 2 | 1 | 0 | 0 | 4 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 3 | 0 | 0 |
| el picacho | 2018 | 1.000000 | 0.0000000 | 0 | 1 | 2 | 1 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 0 | 0 |
| el pinal | 2014 | 9.583333 | 3.2039275 | 17 | 33 | 15 | 46 | 0 | 4 | 82 | 2 | 31 | 2 | 0 | 0 | 8 | 3 | 102 | 0 | 0 |
| el pinal | 2015 | 9.666667 | 4.3969687 | 20 | 27 | 14 | 50 | 0 | 5 | 79 | 0 | 37 | 0 | 0 | 0 | 7 | 2 | 107 | 0 | 0 |
| el pinal | 2016 | 8.666667 | 2.1881222 | 13 | 15 | 11 | 57 | 0 | 8 | 71 | 1 | 32 | 1 | 0 | 0 | 10 | 2 | 91 | 0 | 0 |
| el pinal | 2017 | 8.916667 | 2.8109634 | 11 | 21 | 9 | 62 | 0 | 4 | 55 | 1 | 51 | 1 | 1 | 0 | 12 | 13 | 80 | 0 | 0 |
| el pinal | 2018 | 7.500000 | 1.8340219 | 13 | 12 | 13 | 49 | 0 | 3 | 53 | 0 | 37 | 0 | 0 | 0 | 8 | 17 | 65 | 0 | 0 |
| el plan | 2018 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| el poblado | 2014 | 19.000000 | 3.1622777 | 14 | 12 | 7 | 190 | 0 | 5 | 61 | 1 | 166 | 1 | 0 | 0 | 32 | 6 | 187 | 1 | 1 |
| el poblado | 2015 | 21.166667 | 4.4072942 | 19 | 14 | 9 | 209 | 0 | 3 | 82 | 1 | 171 | 1 | 1 | 0 | 40 | 0 | 211 | 1 | 0 |
| el poblado | 2016 | 20.000000 | 3.5929223 | 16 | 13 | 11 | 192 | 0 | 8 | 81 | 0 | 159 | 0 | 0 | 0 | 50 | 5 | 183 | 1 | 1 |
| el poblado | 2017 | 25.166667 | 2.6571801 | 24 | 15 | 12 | 245 | 0 | 6 | 105 | 4 | 193 | 4 | 1 | 0 | 71 | 16 | 210 | 0 | 0 |
| el poblado | 2018 | 26.333333 | 4.9051612 | 23 | 12 | 12 | 262 | 0 | 7 | 94 | 1 | 221 | 1 | 2 | 0 | 62 | 29 | 221 | 0 | 1 |
| el pomar | 2014 | 5.583333 | 2.1514618 | 5 | 16 | 10 | 33 | 1 | 2 | 58 | 1 | 8 | 1 | 0 | 0 | 10 | 1 | 55 | 0 | 0 |
| el pomar | 2015 | 6.750000 | 2.7344602 | 12 | 16 | 11 | 37 | 0 | 5 | 70 | 0 | 11 | 0 | 0 | 0 | 13 | 1 | 67 | 0 | 0 |
| el pomar | 2016 | 4.833333 | 2.2896341 | 9 | 11 | 6 | 31 | 0 | 1 | 42 | 0 | 16 | 0 | 0 | 0 | 10 | 4 | 44 | 0 | 0 |
| el pomar | 2017 | 5.333333 | 1.8748737 | 7 | 8 | 6 | 41 | 0 | 2 | 44 | 0 | 20 | 0 | 0 | 0 | 15 | 9 | 40 | 0 | 0 |
| el pomar | 2018 | 6.000000 | 1.9069252 | 9 | 12 | 7 | 42 | 0 | 2 | 49 | 0 | 23 | 0 | 0 | 0 | 20 | 10 | 41 | 0 | 1 |
| el progreso | 2014 | 28.166667 | 7.3464071 | 34 | 19 | 41 | 239 | 0 | 5 | 180 | 0 | 158 | 0 | 4 | 3 | 35 | 16 | 280 | 0 | 0 |
| el progreso | 2015 | 25.750000 | 6.0471631 | 25 | 18 | 27 | 231 | 0 | 8 | 151 | 0 | 158 | 0 | 0 | 3 | 42 | 10 | 254 | 0 | 0 |
| el progreso | 2016 | 28.750000 | 4.0926764 | 41 | 27 | 32 | 239 | 0 | 6 | 190 | 0 | 155 | 0 | 1 | 0 | 50 | 18 | 276 | 0 | 0 |
| el progreso | 2017 | 31.500000 | 6.5017480 | 36 | 18 | 37 | 275 | 0 | 12 | 197 | 1 | 180 | 1 | 1 | 5 | 71 | 46 | 254 | 0 | 0 |
| el progreso | 2018 | 34.166667 | 5.3399580 | 28 | 22 | 50 | 299 | 0 | 11 | 209 | 1 | 200 | 1 | 1 | 8 | 79 | 77 | 241 | 0 | 3 |
| el progreso no.2 | 2014 | 2.545454 | 0.9341987 | 2 | 4 | 4 | 18 | 0 | 0 | 20 | 0 | 8 | 0 | 0 | 0 | 3 | 0 | 25 | 0 | 0 |
| el progreso no.2 | 2015 | 2.454546 | 1.2933396 | 2 | 7 | 7 | 11 | 0 | 0 | 20 | 1 | 6 | 1 | 0 | 0 | 0 | 1 | 25 | 0 | 0 |
| el progreso no.2 | 2016 | 2.272727 | 1.4893562 | 6 | 5 | 4 | 10 | 0 | 0 | 20 | 1 | 4 | 1 | 0 | 0 | 4 | 2 | 18 | 0 | 0 |
| el progreso no.2 | 2017 | 3.909091 | 1.8683975 | 10 | 6 | 5 | 21 | 0 | 1 | 28 | 1 | 14 | 1 | 0 | 0 | 5 | 9 | 28 | 0 | 0 |
| el progreso no.2 | 2018 | 1.833333 | 1.0298573 | 2 | 3 | 7 | 10 | 0 | 0 | 15 | 0 | 7 | 0 | 0 | 0 | 1 | 7 | 14 | 0 | 0 |
| el raizal | 2014 | 8.416667 | 4.5418925 | 12 | 21 | 19 | 46 | 0 | 3 | 74 | 0 | 27 | 0 | 1 | 0 | 10 | 0 | 90 | 0 | 0 |
| el raizal | 2015 | 7.083333 | 2.7455198 | 16 | 17 | 9 | 38 | 0 | 5 | 61 | 1 | 23 | 1 | 0 | 0 | 8 | 1 | 75 | 0 | 0 |
| el raizal | 2016 | 8.916667 | 2.9063671 | 20 | 14 | 19 | 47 | 0 | 7 | 83 | 1 | 23 | 1 | 0 | 0 | 14 | 5 | 87 | 0 | 0 |
| el raizal | 2017 | 7.166667 | 2.6227443 | 5 | 21 | 14 | 40 | 0 | 6 | 61 | 0 | 25 | 0 | 0 | 0 | 14 | 14 | 58 | 0 | 0 |
| el raizal | 2018 | 8.250000 | 2.8001623 | 17 | 13 | 15 | 48 | 0 | 6 | 73 | 0 | 26 | 0 | 0 | 0 | 17 | 31 | 51 | 0 | 0 |
| el rincon | 2014 | 13.166667 | 3.9504507 | 25 | 25 | 19 | 80 | 1 | 8 | 104 | 0 | 54 | 0 | 1 | 6 | 8 | 7 | 136 | 0 | 0 |
| el rincon | 2015 | 13.250000 | 4.0480074 | 25 | 20 | 18 | 89 | 0 | 7 | 96 | 0 | 63 | 0 | 0 | 3 | 16 | 5 | 135 | 0 | 0 |
| el rincon | 2016 | 14.833333 | 3.9733964 | 38 | 15 | 27 | 87 | 0 | 11 | 111 | 0 | 67 | 0 | 1 | 10 | 7 | 14 | 146 | 0 | 0 |
| el rincon | 2017 | 16.666667 | 3.6762959 | 48 | 13 | 19 | 104 | 0 | 16 | 128 | 0 | 72 | 0 | 2 | 15 | 17 | 46 | 120 | 0 | 0 |
| el rincon | 2018 | 12.583333 | 3.7284736 | 15 | 13 | 14 | 99 | 0 | 10 | 75 | 1 | 75 | 1 | 1 | 15 | 11 | 23 | 99 | 0 | 1 |
| el rodeo | 2014 | 2.500000 | 1.4459976 | 3 | 5 | 3 | 17 | 0 | 2 | 17 | 0 | 13 | 0 | 0 | 0 | 1 | 1 | 28 | 0 | 0 |
| el rodeo | 2015 | 2.727273 | 1.4893562 | 1 | 3 | 5 | 19 | 0 | 2 | 19 | 0 | 11 | 0 | 0 | 0 | 3 | 1 | 26 | 0 | 0 |
| el rodeo | 2016 | 2.600000 | 1.8378732 | 3 | 4 | 5 | 13 | 0 | 1 | 18 | 0 | 8 | 0 | 0 | 3 | 2 | 1 | 20 | 0 | 0 |
| el rodeo | 2017 | 3.500000 | 1.2431631 | 5 | 6 | 1 | 26 | 0 | 4 | 24 | 1 | 17 | 1 | 0 | 2 | 3 | 3 | 33 | 0 | 0 |
| el rodeo | 2018 | 2.750000 | 1.7122553 | 4 | 2 | 2 | 24 | 0 | 1 | 18 | 0 | 15 | 0 | 0 | 0 | 5 | 0 | 28 | 0 | 0 |
| el salado | 2014 | 2.909091 | 1.5135749 | 0 | 8 | 8 | 12 | 0 | 4 | 25 | 0 | 7 | 0 | 0 | 1 | 3 | 1 | 27 | 0 | 0 |
| el salado | 2015 | 3.916667 | 1.9752253 | 11 | 11 | 5 | 17 | 0 | 3 | 36 | 0 | 11 | 0 | 0 | 1 | 4 | 1 | 41 | 0 | 0 |
| el salado | 2016 | 3.333333 | 1.8748737 | 8 | 7 | 4 | 19 | 0 | 2 | 29 | 0 | 11 | 0 | 0 | 0 | 2 | 3 | 35 | 0 | 0 |
| el salado | 2017 | 2.750000 | 1.0552897 | 5 | 3 | 6 | 16 | 0 | 3 | 23 | 0 | 10 | 0 | 0 | 1 | 7 | 10 | 15 | 0 | 0 |
| el salado | 2018 | 3.000000 | 1.8257419 | 5 | 10 | 2 | 11 | 0 | 2 | 22 | 0 | 8 | 0 | 0 | 1 | 0 | 7 | 22 | 0 | 0 |
| el salvador | 2014 | 8.750000 | 3.6958207 | 21 | 17 | 20 | 42 | 0 | 5 | 79 | 1 | 25 | 1 | 2 | 2 | 19 | 5 | 76 | 0 | 0 |
| el salvador | 2015 | 9.500000 | 3.1478709 | 18 | 14 | 13 | 64 | 0 | 5 | 68 | 1 | 45 | 1 | 0 | 1 | 14 | 4 | 94 | 0 | 0 |
| el salvador | 2016 | 11.083333 | 3.8009170 | 17 | 13 | 11 | 84 | 0 | 8 | 81 | 0 | 52 | 0 | 0 | 2 | 25 | 4 | 102 | 0 | 0 |
| el salvador | 2017 | 9.500000 | 2.7468991 | 24 | 16 | 7 | 63 | 0 | 4 | 70 | 0 | 44 | 0 | 0 | 1 | 19 | 25 | 69 | 0 | 0 |
| el salvador | 2018 | 8.500000 | 2.8762349 | 16 | 9 | 9 | 65 | 0 | 3 | 57 | 1 | 44 | 1 | 0 | 1 | 20 | 20 | 60 | 0 | 0 |
| el socorro | 2014 | 2.571429 | 2.0701967 | 2 | 5 | 3 | 8 | 0 | 0 | 12 | 1 | 5 | 1 | 0 | 0 | 3 | 0 | 14 | 0 | 0 |
| el socorro | 2015 | 1.714286 | 0.9511897 | 1 | 3 | 3 | 4 | 0 | 1 | 10 | 0 | 2 | 0 | 0 | 0 | 1 | 1 | 10 | 0 | 0 |
| el socorro | 2016 | 1.777778 | 0.8333333 | 3 | 5 | 3 | 4 | 0 | 1 | 14 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
| el socorro | 2017 | 2.000000 | 1.0000000 | 2 | 3 | 0 | 5 | 0 | 0 | 8 | 0 | 2 | 0 | 0 | 0 | 6 | 1 | 3 | 0 | 0 |
| el socorro | 2018 | 1.500000 | 0.8366600 | 0 | 5 | 0 | 4 | 0 | 0 | 5 | 0 | 4 | 0 | 0 | 0 | 2 | 1 | 6 | 0 | 0 |
| el tesoro | 2014 | 9.416667 | 3.3698755 | 4 | 3 | 11 | 90 | 0 | 5 | 40 | 0 | 73 | 0 | 0 | 0 | 8 | 9 | 96 | 0 | 0 |
| el tesoro | 2015 | 7.916667 | 3.2879486 | 5 | 2 | 7 | 77 | 0 | 4 | 35 | 0 | 60 | 0 | 0 | 1 | 15 | 4 | 75 | 0 | 0 |
| el tesoro | 2016 | 11.666667 | 3.8690693 | 5 | 2 | 6 | 121 | 0 | 6 | 51 | 1 | 88 | 1 | 0 | 0 | 21 | 9 | 108 | 0 | 1 |
| el tesoro | 2017 | 10.666667 | 4.5193188 | 11 | 4 | 6 | 103 | 0 | 4 | 43 | 0 | 85 | 0 | 0 | 3 | 16 | 20 | 87 | 0 | 2 |
| el tesoro | 2018 | 11.583333 | 2.9374799 | 8 | 2 | 5 | 119 | 0 | 5 | 43 | 0 | 96 | 0 | 0 | 1 | 19 | 26 | 92 | 0 | 1 |
| el triunfo | 2014 | 1.428571 | 0.7867958 | 5 | 2 | 3 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 8 | 0 | 0 |
| el triunfo | 2015 | 1.000000 | 0.0000000 | 1 | 2 | 2 | 1 | 0 | 1 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 6 | 0 | 0 |
| el triunfo | 2016 | 1.285714 | 0.4879500 | 3 | 4 | 0 | 1 | 0 | 1 | 8 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 0 |
| el triunfo | 2017 | 1.500000 | 0.8366600 | 3 | 1 | 2 | 3 | 0 | 0 | 7 | 0 | 2 | 0 | 0 | 0 | 0 | 4 | 5 | 0 | 0 |
| el triunfo | 2018 | 1.400000 | 0.5163978 | 4 | 3 | 1 | 6 | 0 | 0 | 9 | 0 | 5 | 0 | 0 | 0 | 1 | 4 | 9 | 0 | 0 |
| el uvito | 2018 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| el velodromo | 2014 | 10.583333 | 4.8328108 | 13 | 9 | 17 | 88 | 0 | 0 | 71 | 0 | 56 | 0 | 1 | 1 | 20 | 0 | 105 | 0 | 0 |
| el velodromo | 2015 | 11.500000 | 4.7958315 | 9 | 7 | 11 | 109 | 0 | 2 | 82 | 0 | 56 | 0 | 0 | 0 | 23 | 2 | 113 | 0 | 0 |
| el velodromo | 2016 | 11.500000 | 3.2613438 | 12 | 11 | 11 | 102 | 0 | 2 | 75 | 2 | 61 | 2 | 1 | 0 | 20 | 0 | 115 | 0 | 0 |
| el velodromo | 2017 | 12.166667 | 3.4333480 | 12 | 6 | 15 | 110 | 0 | 3 | 69 | 0 | 77 | 0 | 0 | 0 | 38 | 16 | 91 | 0 | 1 |
| el velodromo | 2018 | 10.916667 | 2.6097138 | 11 | 8 | 8 | 100 | 0 | 4 | 69 | 0 | 62 | 0 | 0 | 2 | 41 | 5 | 83 | 0 | 0 |
| el vergel | 2015 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| el vergel | 2017 | 1.000000 | 0.0000000 | 1 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
| enciso | 2014 | 11.916667 | 2.6443192 | 18 | 22 | 13 | 85 | 0 | 5 | 107 | 2 | 34 | 2 | 0 | 1 | 17 | 3 | 120 | 0 | 0 |
| enciso | 2015 | 11.416667 | 2.1933094 | 11 | 24 | 15 | 80 | 0 | 7 | 94 | 3 | 40 | 3 | 0 | 0 | 17 | 4 | 113 | 0 | 0 |
| enciso | 2016 | 11.083333 | 2.9063671 | 8 | 18 | 10 | 89 | 0 | 8 | 89 | 2 | 42 | 2 | 0 | 0 | 31 | 2 | 97 | 0 | 1 |
| enciso | 2017 | 9.916667 | 2.6443192 | 14 | 20 | 14 | 63 | 0 | 8 | 91 | 0 | 28 | 0 | 0 | 2 | 28 | 16 | 73 | 0 | 0 |
| enciso | 2018 | 10.333333 | 2.5702258 | 16 | 13 | 15 | 74 | 0 | 6 | 87 | 3 | 34 | 1 | 0 | 2 | 36 | 22 | 63 | 0 | 0 |
| estacion villa | 2014 | 19.583333 | 4.1878251 | 11 | 52 | 22 | 142 | 0 | 8 | 125 | 2 | 108 | 2 | 0 | 4 | 38 | 4 | 186 | 0 | 1 |
| estacion villa | 2015 | 18.083333 | 3.4761089 | 21 | 36 | 20 | 137 | 0 | 3 | 115 | 0 | 102 | 0 | 1 | 1 | 34 | 3 | 178 | 0 | 0 |
| estacion villa | 2016 | 19.250000 | 4.8453352 | 24 | 33 | 11 | 159 | 0 | 4 | 108 | 2 | 121 | 2 | 0 | 3 | 48 | 5 | 172 | 0 | 1 |
| estacion villa | 2017 | 21.416667 | 5.0173940 | 30 | 29 | 13 | 177 | 0 | 8 | 126 | 4 | 127 | 4 | 0 | 20 | 49 | 27 | 154 | 0 | 3 |
| estacion villa | 2018 | 22.083333 | 4.1000739 | 19 | 53 | 24 | 161 | 0 | 8 | 143 | 4 | 118 | 4 | 0 | 28 | 59 | 40 | 132 | 0 | 2 |
| facultad de minas u. nacional | 2014 | 19.000000 | 5.2742944 | 36 | 12 | 40 | 137 | 0 | 3 | 128 | 1 | 99 | 1 | 0 | 0 | 11 | 11 | 205 | 0 | 0 |
| facultad de minas u. nacional | 2015 | 20.833333 | 3.9504507 | 43 | 11 | 37 | 151 | 0 | 8 | 148 | 1 | 101 | 1 | 0 | 0 | 27 | 13 | 209 | 0 | 0 |
| facultad de minas u. nacional | 2016 | 19.833333 | 7.2842711 | 55 | 10 | 33 | 127 | 0 | 13 | 147 | 0 | 91 | 0 | 1 | 0 | 23 | 14 | 198 | 1 | 1 |
| facultad de minas u. nacional | 2017 | 18.500000 | 6.3746658 | 47 | 3 | 35 | 130 | 0 | 7 | 134 | 1 | 87 | 1 | 1 | 0 | 33 | 40 | 147 | 0 | 0 |
| facultad de minas u. nacional | 2018 | 18.916667 | 5.6158596 | 43 | 8 | 32 | 137 | 0 | 7 | 134 | 0 | 93 | 0 | 0 | 0 | 37 | 58 | 132 | 0 | 0 |
| facultad veterinaria y zootecnia u.de.a. | 2014 | 5.333333 | 1.6143298 | 7 | 3 | 1 | 53 | 0 | 0 | 32 | 0 | 32 | 0 | 1 | 0 | 10 | 0 | 53 | 0 | 0 |
| facultad veterinaria y zootecnia u.de.a. | 2015 | 5.545454 | 2.6594600 | 4 | 6 | 7 | 42 | 0 | 2 | 36 | 0 | 25 | 0 | 0 | 0 | 10 | 1 | 50 | 0 | 0 |
| facultad veterinaria y zootecnia u.de.a. | 2016 | 4.416667 | 2.2343733 | 2 | 3 | 3 | 44 | 0 | 1 | 28 | 0 | 25 | 0 | 0 | 0 | 14 | 0 | 39 | 0 | 0 |
| facultad veterinaria y zootecnia u.de.a. | 2017 | 2.333333 | 1.1547005 | 3 | 1 | 4 | 20 | 0 | 0 | 16 | 0 | 12 | 0 | 0 | 0 | 6 | 1 | 21 | 0 | 0 |
| facultad veterinaria y zootecnia u.de.a. | 2018 | 2.600000 | 1.7126977 | 7 | 2 | 4 | 12 | 0 | 1 | 22 | 0 | 4 | 0 | 0 | 0 | 5 | 3 | 18 | 0 | 0 |
| fatima | 2014 | 18.666667 | 3.4465617 | 18 | 20 | 14 | 167 | 0 | 5 | 127 | 1 | 96 | 1 | 2 | 0 | 48 | 8 | 163 | 0 | 2 |
| fatima | 2015 | 19.083333 | 5.2476546 | 13 | 12 | 8 | 189 | 0 | 7 | 114 | 0 | 115 | 0 | 0 | 0 | 67 | 3 | 158 | 0 | 1 |
| fatima | 2016 | 19.000000 | 4.8617243 | 22 | 9 | 8 | 184 | 0 | 5 | 120 | 0 | 108 | 0 | 1 | 0 | 56 | 7 | 164 | 0 | 0 |
| fatima | 2017 | 18.500000 | 4.0113475 | 14 | 7 | 13 | 182 | 0 | 6 | 112 | 1 | 109 | 1 | 1 | 0 | 76 | 21 | 122 | 0 | 1 |
| fatima | 2018 | 18.083333 | 4.6015478 | 13 | 9 | 15 | 175 | 0 | 5 | 116 | 0 | 101 | 0 | 0 | 1 | 79 | 21 | 113 | 0 | 3 |
| ferrini | 2014 | 5.000000 | 2.2563043 | 10 | 5 | 3 | 39 | 0 | 3 | 31 | 0 | 29 | 0 | 0 | 0 | 14 | 1 | 45 | 0 | 0 |
| ferrini | 2015 | 4.416667 | 1.8319554 | 4 | 5 | 6 | 36 | 0 | 2 | 31 | 0 | 22 | 0 | 0 | 0 | 12 | 4 | 36 | 0 | 1 |
| ferrini | 2016 | 4.750000 | 1.1381804 | 8 | 3 | 6 | 39 | 0 | 1 | 29 | 0 | 28 | 0 | 1 | 0 | 16 | 5 | 35 | 0 | 0 |
| ferrini | 2017 | 3.818182 | 1.7786614 | 4 | 7 | 5 | 26 | 0 | 0 | 21 | 0 | 21 | 0 | 0 | 0 | 10 | 6 | 26 | 0 | 0 |
| ferrini | 2018 | 3.916667 | 1.6764862 | 3 | 4 | 4 | 33 | 0 | 3 | 24 | 0 | 23 | 0 | 0 | 0 | 14 | 7 | 26 | 0 | 0 |
| florencia | 2014 | 6.583333 | 2.2746961 | 15 | 8 | 17 | 37 | 0 | 2 | 60 | 0 | 19 | 0 | 1 | 0 | 18 | 1 | 59 | 0 | 0 |
| florencia | 2015 | 5.833333 | 2.4432963 | 6 | 9 | 14 | 35 | 0 | 6 | 48 | 1 | 21 | 1 | 0 | 0 | 14 | 1 | 54 | 0 | 0 |
| florencia | 2016 | 5.250000 | 2.3788844 | 10 | 8 | 10 | 35 | 0 | 0 | 47 | 0 | 16 | 0 | 0 | 0 | 10 | 3 | 50 | 0 | 0 |
| florencia | 2017 | 6.666667 | 2.8391206 | 10 | 10 | 6 | 51 | 0 | 3 | 47 | 0 | 33 | 0 | 0 | 0 | 26 | 15 | 39 | 0 | 0 |
| florencia | 2018 | 5.416667 | 2.1933094 | 6 | 7 | 17 | 33 | 0 | 2 | 44 | 0 | 21 | 0 | 0 | 0 | 17 | 15 | 33 | 0 | 0 |
| florida nueva | 2014 | 13.083333 | 4.1660606 | 13 | 13 | 8 | 121 | 0 | 2 | 81 | 1 | 75 | 1 | 0 | 0 | 16 | 1 | 139 | 0 | 0 |
| florida nueva | 2015 | 11.416667 | 3.1466673 | 14 | 14 | 12 | 95 | 0 | 2 | 71 | 0 | 66 | 0 | 1 | 0 | 20 | 2 | 113 | 0 | 1 |
| florida nueva | 2016 | 14.750000 | 4.0028399 | 10 | 29 | 6 | 128 | 0 | 4 | 90 | 0 | 87 | 0 | 0 | 1 | 27 | 4 | 145 | 0 | 0 |
| florida nueva | 2017 | 14.333333 | 3.9389277 | 18 | 16 | 10 | 121 | 0 | 7 | 86 | 1 | 85 | 1 | 2 | 0 | 48 | 15 | 106 | 0 | 0 |
| florida nueva | 2018 | 12.833333 | 1.9924098 | 17 | 16 | 8 | 112 | 0 | 1 | 73 | 4 | 77 | 2 | 1 | 0 | 42 | 11 | 98 | 0 | 0 |
| francisco antonio zea | 2014 | 10.416667 | 3.8484550 | 14 | 13 | 14 | 82 | 0 | 2 | 78 | 0 | 47 | 0 | 1 | 0 | 11 | 2 | 111 | 0 | 0 |
| francisco antonio zea | 2015 | 10.500000 | 3.0600059 | 11 | 15 | 15 | 76 | 0 | 9 | 82 | 0 | 44 | 0 | 0 | 0 | 15 | 2 | 109 | 0 | 0 |
| francisco antonio zea | 2016 | 10.250000 | 3.3337121 | 19 | 19 | 9 | 71 | 0 | 5 | 95 | 0 | 28 | 0 | 0 | 0 | 15 | 5 | 103 | 0 | 0 |
| francisco antonio zea | 2017 | 10.250000 | 2.8324419 | 27 | 18 | 17 | 55 | 0 | 6 | 91 | 0 | 32 | 0 | 0 | 0 | 23 | 17 | 83 | 0 | 0 |
| francisco antonio zea | 2018 | 7.916667 | 2.6097138 | 20 | 11 | 10 | 54 | 0 | 0 | 57 | 0 | 38 | 0 | 0 | 0 | 20 | 15 | 59 | 0 | 1 |
| fuente clara | 2014 | 1.600000 | 0.8944272 | 1 | 2 | 2 | 3 | 0 | 0 | 8 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 5 | 0 | 0 |
| fuente clara | 2015 | 2.333333 | 1.0327956 | 1 | 4 | 1 | 8 | 0 | 0 | 8 | 2 | 4 | 2 | 0 | 0 | 2 | 1 | 9 | 0 | 0 |
| fuente clara | 2016 | 3.250000 | 1.3887301 | 6 | 2 | 5 | 13 | 0 | 0 | 22 | 0 | 4 | 0 | 0 | 0 | 1 | 2 | 23 | 0 | 0 |
| fuente clara | 2017 | 3.000000 | 2.4494897 | 5 | 1 | 1 | 11 | 0 | 3 | 18 | 0 | 3 | 0 | 0 | 0 | 4 | 4 | 13 | 0 | 0 |
| fuente clara | 2018 | 3.100000 | 1.9692074 | 3 | 3 | 2 | 20 | 0 | 3 | 26 | 0 | 5 | 0 | 0 | 0 | 1 | 10 | 18 | 0 | 2 |
| gerona | 2014 | 6.916667 | 3.2879486 | 16 | 15 | 6 | 45 | 0 | 1 | 60 | 0 | 23 | 0 | 1 | 0 | 21 | 2 | 58 | 1 | 0 |
| gerona | 2015 | 7.916667 | 3.6045006 | 15 | 15 | 16 | 46 | 0 | 3 | 71 | 0 | 24 | 0 | 0 | 0 | 24 | 3 | 68 | 0 | 0 |
| gerona | 2016 | 8.833333 | 3.7859389 | 20 | 12 | 10 | 60 | 0 | 4 | 71 | 0 | 35 | 0 | 0 | 0 | 26 | 5 | 75 | 0 | 0 |
| gerona | 2017 | 6.583333 | 2.5030285 | 14 | 14 | 6 | 38 | 0 | 7 | 56 | 0 | 23 | 0 | 1 | 0 | 26 | 15 | 37 | 0 | 0 |
| gerona | 2018 | 6.916667 | 3.5791907 | 8 | 9 | 7 | 53 | 0 | 6 | 53 | 0 | 30 | 0 | 0 | 1 | 29 | 13 | 40 | 0 | 0 |
| girardot | 2014 | 17.750000 | 3.8641711 | 36 | 15 | 31 | 126 | 0 | 5 | 133 | 0 | 80 | 0 | 1 | 0 | 21 | 6 | 185 | 0 | 0 |
| girardot | 2015 | 19.083333 | 5.0714591 | 39 | 26 | 29 | 125 | 0 | 10 | 157 | 0 | 72 | 0 | 2 | 0 | 32 | 5 | 190 | 0 | 0 |
| girardot | 2016 | 18.916667 | 4.1878251 | 40 | 20 | 28 | 132 | 0 | 7 | 157 | 2 | 68 | 2 | 0 | 0 | 17 | 15 | 193 | 0 | 0 |
| girardot | 2017 | 16.583333 | 2.6097138 | 30 | 15 | 36 | 104 | 0 | 14 | 140 | 0 | 59 | 0 | 1 | 0 | 23 | 43 | 132 | 0 | 0 |
| girardot | 2018 | 13.166667 | 4.3658454 | 15 | 16 | 27 | 90 | 0 | 10 | 103 | 4 | 51 | 2 | 0 | 2 | 27 | 31 | 95 | 0 | 1 |
| granada | 2014 | 6.750000 | 3.4410622 | 8 | 4 | 6 | 62 | 0 | 1 | 40 | 0 | 41 | 0 | 2 | 0 | 17 | 1 | 61 | 0 | 0 |
| granada | 2015 | 8.750000 | 3.3337121 | 8 | 8 | 1 | 83 | 0 | 5 | 54 | 2 | 49 | 2 | 0 | 0 | 31 | 1 | 71 | 0 | 0 |
| granada | 2016 | 8.583333 | 2.6443192 | 9 | 7 | 10 | 74 | 0 | 3 | 54 | 0 | 49 | 0 | 1 | 0 | 28 | 2 | 72 | 0 | 0 |
| granada | 2017 | 7.750000 | 3.3878124 | 5 | 12 | 0 | 71 | 0 | 5 | 41 | 0 | 52 | 0 | 0 | 0 | 27 | 4 | 62 | 0 | 0 |
| granada | 2018 | 6.833333 | 2.6571801 | 4 | 9 | 2 | 64 | 0 | 3 | 38 | 0 | 44 | 0 | 0 | 0 | 27 | 6 | 49 | 0 | 0 |
| granizal | 2014 | 6.583333 | 2.6784776 | 7 | 21 | 6 | 42 | 0 | 3 | 43 | 1 | 35 | 1 | 0 | 0 | 7 | 1 | 70 | 0 | 0 |
| granizal | 2015 | 5.416667 | 2.3143164 | 8 | 17 | 7 | 30 | 0 | 3 | 41 | 1 | 23 | 1 | 0 | 0 | 3 | 2 | 59 | 0 | 0 |
| granizal | 2016 | 6.000000 | 2.4120908 | 14 | 17 | 9 | 30 | 0 | 2 | 48 | 2 | 22 | 2 | 0 | 0 | 3 | 2 | 65 | 0 | 0 |
| granizal | 2017 | 5.166667 | 2.0375267 | 10 | 14 | 2 | 34 | 0 | 2 | 34 | 1 | 27 | 1 | 0 | 0 | 7 | 11 | 43 | 0 | 0 |
| granizal | 2018 | 5.166667 | 3.0100841 | 1 | 20 | 5 | 35 | 0 | 1 | 32 | 2 | 28 | 2 | 0 | 0 | 8 | 10 | 41 | 0 | 1 |
| guayabal | 2014 | 35.500000 | 8.9898933 | 30 | 25 | 39 | 318 | 0 | 14 | 182 | 1 | 243 | 1 | 1 | 0 | 65 | 9 | 350 | 0 | 0 |
| guayabal | 2015 | 37.666667 | 8.3810754 | 40 | 20 | 39 | 331 | 0 | 22 | 217 | 0 | 235 | 0 | 0 | 0 | 62 | 15 | 374 | 0 | 1 |
| guayabal | 2016 | 44.000000 | 8.9137279 | 52 | 28 | 35 | 396 | 0 | 17 | 255 | 0 | 273 | 0 | 3 | 0 | 63 | 17 | 442 | 0 | 3 |
| guayabal | 2017 | 47.750000 | 8.4544233 | 70 | 50 | 33 | 396 | 0 | 24 | 298 | 12 | 263 | 12 | 4 | 1 | 90 | 51 | 408 | 1 | 6 |
| guayabal | 2018 | 28.833333 | 4.2817442 | 22 | 16 | 11 | 291 | 0 | 6 | 133 | 1 | 212 | 1 | 1 | 0 | 78 | 31 | 235 | 0 | 0 |
| guayaquil | 2014 | 61.083333 | 11.5872840 | 37 | 91 | 40 | 557 | 0 | 8 | 302 | 9 | 422 | 9 | 3 | 50 | 71 | 12 | 571 | 0 | 17 |
| guayaquil | 2015 | 73.583333 | 14.1064675 | 51 | 75 | 57 | 687 | 0 | 13 | 377 | 2 | 504 | 2 | 2 | 49 | 90 | 12 | 695 | 1 | 32 |
| guayaquil | 2016 | 63.750000 | 5.0113508 | 44 | 76 | 43 | 591 | 1 | 10 | 311 | 8 | 446 | 8 | 4 | 68 | 92 | 9 | 565 | 2 | 17 |
| guayaquil | 2017 | 49.750000 | 4.9931772 | 38 | 46 | 25 | 475 | 0 | 13 | 229 | 5 | 363 | 5 | 2 | 30 | 105 | 31 | 386 | 0 | 38 |
| guayaquil | 2018 | 44.583333 | 9.2092674 | 33 | 59 | 19 | 416 | 0 | 8 | 196 | 8 | 331 | 4 | 1 | 6 | 104 | 40 | 360 | 0 | 20 |
| hector abad gomez | 2014 | 14.083333 | 2.9987371 | 21 | 13 | 16 | 116 | 0 | 3 | 98 | 2 | 69 | 2 | 3 | 0 | 10 | 3 | 151 | 0 | 0 |
| hector abad gomez | 2015 | 12.166667 | 3.0100841 | 33 | 2 | 9 | 97 | 0 | 5 | 88 | 1 | 57 | 1 | 0 | 0 | 8 | 2 | 135 | 0 | 0 |
| hector abad gomez | 2016 | 14.500000 | 3.8494392 | 14 | 6 | 17 | 129 | 0 | 8 | 97 | 3 | 74 | 3 | 0 | 0 | 17 | 3 | 150 | 0 | 1 |
| hector abad gomez | 2017 | 16.916667 | 4.2737749 | 21 | 8 | 17 | 149 | 0 | 8 | 117 | 1 | 85 | 1 | 3 | 0 | 5 | 13 | 181 | 0 | 0 |
| hector abad gomez | 2018 | 18.166667 | 5.8749597 | 32 | 14 | 17 | 140 | 0 | 15 | 130 | 3 | 85 | 2 | 0 | 0 | 13 | 26 | 177 | 0 | 0 |
| hospital san vicente de paul | 2014 | 1.818182 | 0.9816498 | 1 | 4 | 1 | 14 | 0 | 0 | 12 | 0 | 8 | 0 | 0 | 0 | 1 | 1 | 18 | 0 | 0 |
| hospital san vicente de paul | 2015 | 2.333333 | 1.1547005 | 0 | 4 | 3 | 20 | 0 | 1 | 13 | 0 | 15 | 0 | 0 | 0 | 5 | 2 | 21 | 0 | 0 |
| hospital san vicente de paul | 2016 | 2.909091 | 2.0714510 | 5 | 2 | 3 | 21 | 0 | 1 | 17 | 0 | 15 | 0 | 1 | 0 | 2 | 2 | 27 | 0 | 0 |
| hospital san vicente de paul | 2017 | 1.909091 | 0.9438798 | 1 | 0 | 0 | 18 | 0 | 2 | 6 | 0 | 15 | 0 | 1 | 0 | 5 | 1 | 14 | 0 | 0 |
| hospital san vicente de paul | 2018 | 2.833333 | 1.1146409 | 0 | 5 | 3 | 25 | 0 | 1 | 16 | 0 | 18 | 0 | 1 | 1 | 7 | 7 | 18 | 0 | 0 |
| inst | 2014 | 2.636364 | 1.3618170 | 3 | 4 | 1 | 20 | 0 | 1 | 15 | 1 | 13 | 1 | 0 | 0 | 1 | 1 | 26 | 0 | 0 |
| inst | 2015 | 3.250000 | 1.6025548 | 8 | 6 | 4 | 21 | 0 | 0 | 21 | 0 | 18 | 0 | 0 | 0 | 1 | 0 | 38 | 0 | 0 |
| inst | 2016 | 3.666667 | 1.2309149 | 4 | 7 | 2 | 30 | 0 | 1 | 23 | 1 | 20 | 1 | 0 | 0 | 1 | 3 | 38 | 0 | 1 |
| inst | 2017 | 2.600000 | 1.2649111 | 2 | 2 | 2 | 20 | 0 | 0 | 9 | 2 | 15 | 2 | 0 | 0 | 3 | 0 | 20 | 0 | 1 |
| inst | 2018 | 3.333333 | 1.8027756 | 2 | 0 | 5 | 23 | 0 | 0 | 14 | 1 | 15 | 1 | 0 | 0 | 2 | 5 | 20 | 0 | 2 |
| jardin botanico | 2014 | 4.000000 | 1.7888544 | 5 | 6 | 3 | 29 | 0 | 1 | 22 | 0 | 22 | 0 | 0 | 0 | 5 | 0 | 39 | 0 | 0 |
| jardin botanico | 2015 | 3.727273 | 1.7939292 | 6 | 4 | 2 | 27 | 0 | 2 | 17 | 1 | 23 | 1 | 0 | 0 | 4 | 5 | 31 | 0 | 0 |
| jardin botanico | 2016 | 3.600000 | 1.7126977 | 2 | 4 | 5 | 24 | 0 | 1 | 21 | 0 | 15 | 0 | 1 | 0 | 5 | 2 | 28 | 0 | 0 |
| jardin botanico | 2017 | 3.666667 | 1.8748737 | 10 | 4 | 5 | 25 | 0 | 0 | 26 | 0 | 18 | 0 | 0 | 0 | 6 | 7 | 31 | 0 | 0 |
| jardin botanico | 2018 | 3.166667 | 1.5859229 | 3 | 4 | 3 | 27 | 0 | 1 | 19 | 2 | 17 | 1 | 0 | 0 | 11 | 3 | 23 | 0 | 0 |
| jesus nazareno | 2014 | 34.333333 | 5.7419245 | 39 | 45 | 28 | 291 | 0 | 9 | 210 | 5 | 197 | 5 | 0 | 19 | 56 | 9 | 306 | 0 | 17 |
| jesus nazareno | 2015 | 35.000000 | 6.0603030 | 40 | 42 | 27 | 294 | 0 | 17 | 203 | 3 | 214 | 3 | 1 | 18 | 58 | 8 | 322 | 1 | 9 |
| jesus nazareno | 2016 | 32.166667 | 3.7376058 | 38 | 40 | 39 | 258 | 0 | 11 | 239 | 7 | 140 | 7 | 2 | 16 | 62 | 8 | 275 | 0 | 16 |
| jesus nazareno | 2017 | 33.250000 | 5.6266412 | 49 | 23 | 26 | 287 | 0 | 14 | 222 | 4 | 173 | 4 | 2 | 20 | 92 | 23 | 226 | 0 | 32 |
| jesus nazareno | 2018 | 31.083333 | 7.1408980 | 44 | 28 | 42 | 240 | 1 | 18 | 222 | 6 | 145 | 4 | 2 | 25 | 96 | 42 | 170 | 0 | 34 |
| juan pablo ii | 2014 | 1.666667 | 1.1547005 | 0 | 3 | 1 | 1 | 0 | 0 | 4 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 |
| juan pablo ii | 2015 | 1.142857 | 0.3779645 | 1 | 2 | 1 | 2 | 0 | 2 | 7 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 7 | 0 | 0 |
| juan pablo ii | 2016 | 1.285714 | 0.4879500 | 1 | 3 | 2 | 2 | 0 | 1 | 8 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 7 | 0 | 0 |
| juan pablo ii | 2017 | 1.166667 | 0.4082483 | 0 | 2 | 2 | 2 | 0 | 1 | 5 | 0 | 2 | 0 | 0 | 0 | 1 | 2 | 4 | 0 | 0 |
| juan pablo ii | 2018 | 1.200000 | 0.4472136 | 1 | 1 | 0 | 3 | 0 | 1 | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 5 | 0 | 0 |
| juan xxiii la quiebra | 2014 | 3.363636 | 1.9632996 | 7 | 7 | 5 | 16 | 0 | 2 | 27 | 0 | 10 | 0 | 0 | 0 | 1 | 0 | 36 | 0 | 0 |
| juan xxiii la quiebra | 2015 | 3.363636 | 1.5666989 | 4 | 11 | 4 | 17 | 0 | 1 | 24 | 0 | 13 | 0 | 0 | 0 | 0 | 2 | 35 | 0 | 0 |
| juan xxiii la quiebra | 2016 | 2.181818 | 0.8738629 | 2 | 7 | 4 | 8 | 0 | 3 | 18 | 0 | 6 | 0 | 0 | 0 | 2 | 1 | 21 | 0 | 0 |
| juan xxiii la quiebra | 2017 | 3.636364 | 2.0626550 | 10 | 6 | 8 | 15 | 0 | 1 | 28 | 0 | 12 | 0 | 0 | 1 | 1 | 9 | 29 | 0 | 0 |
| juan xxiii la quiebra | 2018 | 2.875000 | 2.2320714 | 3 | 5 | 3 | 12 | 0 | 0 | 13 | 2 | 8 | 1 | 0 | 0 | 2 | 1 | 19 | 0 | 0 |
| kennedy | 2014 | 16.083333 | 4.7950416 | 39 | 50 | 30 | 70 | 0 | 4 | 149 | 2 | 42 | 2 | 2 | 0 | 17 | 5 | 167 | 0 | 0 |
| kennedy | 2015 | 15.250000 | 5.4626833 | 28 | 41 | 24 | 85 | 0 | 5 | 131 | 0 | 52 | 0 | 1 | 0 | 19 | 1 | 162 | 0 | 0 |
| kennedy | 2016 | 14.500000 | 4.8335946 | 32 | 30 | 22 | 85 | 0 | 5 | 124 | 0 | 50 | 0 | 0 | 0 | 21 | 14 | 139 | 0 | 0 |
| kennedy | 2017 | 15.416667 | 4.3161080 | 26 | 39 | 32 | 82 | 0 | 6 | 134 | 0 | 51 | 0 | 0 | 0 | 28 | 35 | 122 | 0 | 0 |
| kennedy | 2018 | 15.666667 | 4.8304589 | 21 | 32 | 40 | 88 | 0 | 7 | 130 | 0 | 58 | 0 | 0 | 0 | 41 | 48 | 99 | 0 | 0 |
| la aguacatala | 2014 | 26.416667 | 4.5016832 | 23 | 10 | 24 | 253 | 0 | 7 | 125 | 2 | 190 | 2 | 1 | 36 | 23 | 3 | 248 | 0 | 4 |
| la aguacatala | 2015 | 29.000000 | 7.6633722 | 29 | 9 | 24 | 276 | 0 | 10 | 146 | 1 | 201 | 1 | 0 | 28 | 21 | 11 | 280 | 0 | 7 |
| la aguacatala | 2016 | 30.000000 | 5.1873973 | 34 | 7 | 22 | 290 | 0 | 7 | 151 | 0 | 209 | 0 | 3 | 41 | 28 | 6 | 272 | 1 | 9 |
| la aguacatala | 2017 | 41.083333 | 7.3169583 | 45 | 12 | 26 | 390 | 0 | 20 | 205 | 1 | 287 | 1 | 2 | 75 | 56 | 38 | 299 | 0 | 22 |
| la aguacatala | 2018 | 26.666667 | 7.5598621 | 21 | 5 | 15 | 273 | 0 | 6 | 114 | 5 | 201 | 4 | 5 | 51 | 37 | 16 | 183 | 0 | 24 |
| la alpujarra | 2014 | 8.916667 | 2.1514618 | 3 | 11 | 11 | 78 | 0 | 4 | 49 | 1 | 57 | 1 | 1 | 5 | 4 | 3 | 88 | 0 | 5 |
| la alpujarra | 2015 | 15.833333 | 6.5064071 | 14 | 6 | 14 | 149 | 0 | 7 | 72 | 1 | 117 | 1 | 1 | 2 | 18 | 3 | 160 | 0 | 5 |
| la alpujarra | 2016 | 10.750000 | 3.1944554 | 10 | 9 | 7 | 101 | 0 | 2 | 56 | 1 | 72 | 1 | 0 | 8 | 10 | 5 | 98 | 0 | 7 |
| la alpujarra | 2017 | 33.583333 | 14.0871207 | 35 | 10 | 15 | 333 | 0 | 10 | 166 | 0 | 237 | 0 | 1 | 92 | 31 | 25 | 181 | 0 | 73 |
| la alpujarra | 2018 | 41.083333 | 7.0641004 | 31 | 19 | 16 | 417 | 0 | 10 | 169 | 0 | 324 | 0 | 4 | 159 | 33 | 30 | 193 | 0 | 74 |
| la america | 2014 | 19.666667 | 3.9157800 | 26 | 22 | 20 | 164 | 0 | 4 | 125 | 1 | 110 | 1 | 1 | 11 | 27 | 4 | 191 | 0 | 1 |
| la america | 2015 | 17.916667 | 4.6992907 | 20 | 29 | 17 | 139 | 0 | 10 | 107 | 1 | 107 | 1 | 0 | 16 | 32 | 3 | 163 | 0 | 0 |
| la america | 2016 | 17.666667 | 3.9157800 | 29 | 20 | 16 | 141 | 0 | 6 | 122 | 1 | 89 | 1 | 0 | 10 | 37 | 5 | 157 | 0 | 2 |
| la america | 2017 | 20.416667 | 4.4814432 | 26 | 31 | 22 | 152 | 0 | 14 | 134 | 4 | 107 | 4 | 0 | 24 | 51 | 30 | 135 | 0 | 1 |
| la america | 2018 | 16.500000 | 3.0000000 | 7 | 19 | 11 | 156 | 0 | 5 | 90 | 4 | 104 | 3 | 0 | 17 | 52 | 14 | 111 | 0 | 1 |
| la avanzada | 2014 | 1.875000 | 1.7268882 | 2 | 2 | 2 | 9 | 0 | 0 | 11 | 0 | 4 | 0 | 1 | 0 | 0 | 0 | 14 | 0 | 0 |
| la avanzada | 2015 | 1.750000 | 0.8864053 | 1 | 3 | 1 | 9 | 0 | 0 | 11 | 0 | 3 | 0 | 0 | 0 | 1 | 0 | 13 | 0 | 0 |
| la avanzada | 2016 | 2.500000 | 1.2692955 | 3 | 4 | 3 | 13 | 0 | 2 | 19 | 0 | 6 | 0 | 0 | 0 | 1 | 3 | 21 | 0 | 0 |
| la avanzada | 2017 | 2.181818 | 1.5374122 | 2 | 9 | 1 | 11 | 0 | 1 | 17 | 0 | 7 | 0 | 0 | 0 | 0 | 3 | 21 | 0 | 0 |
| la avanzada | 2018 | 3.090909 | 2.1191765 | 2 | 13 | 5 | 14 | 0 | 0 | 28 | 0 | 6 | 0 | 1 | 0 | 2 | 13 | 18 | 0 | 0 |
| la candelaria | 2014 | 95.916667 | 14.1450816 | 71 | 245 | 75 | 750 | 0 | 10 | 508 | 7 | 636 | 7 | 9 | 0 | 162 | 11 | 960 | 0 | 2 |
| la candelaria | 2015 | 89.083333 | 11.6810517 | 47 | 200 | 62 | 743 | 0 | 17 | 465 | 7 | 597 | 7 | 4 | 1 | 171 | 17 | 867 | 1 | 1 |
| la candelaria | 2016 | 79.000000 | 11.6619038 | 52 | 163 | 65 | 652 | 0 | 16 | 415 | 2 | 531 | 2 | 1 | 0 | 181 | 23 | 739 | 1 | 1 |
| la candelaria | 2017 | 78.666667 | 11.5784544 | 44 | 173 | 48 | 664 | 0 | 15 | 383 | 18 | 543 | 18 | 4 | 1 | 213 | 57 | 645 | 1 | 5 |
| la candelaria | 2018 | 82.416667 | 9.1100178 | 46 | 148 | 44 | 738 | 0 | 13 | 352 | 9 | 628 | 6 | 6 | 0 | 252 | 69 | 655 | 0 | 1 |
| la castellana | 2014 | 11.500000 | 3.2613438 | 9 | 9 | 7 | 113 | 0 | 0 | 62 | 0 | 76 | 0 | 0 | 2 | 39 | 5 | 92 | 0 | 0 |
| la castellana | 2015 | 16.166667 | 4.3029236 | 9 | 11 | 13 | 156 | 0 | 5 | 97 | 0 | 97 | 0 | 0 | 6 | 54 | 2 | 132 | 0 | 0 |
| la castellana | 2016 | 10.833333 | 4.2390679 | 7 | 5 | 8 | 107 | 0 | 3 | 72 | 0 | 58 | 0 | 0 | 4 | 54 | 1 | 71 | 0 | 0 |
| la castellana | 2017 | 11.916667 | 1.9286516 | 9 | 7 | 5 | 119 | 0 | 3 | 65 | 1 | 77 | 1 | 0 | 6 | 65 | 8 | 63 | 0 | 0 |
| la castellana | 2018 | 9.166667 | 4.3658454 | 4 | 10 | 4 | 90 | 0 | 2 | 52 | 1 | 57 | 1 | 0 | 11 | 41 | 7 | 50 | 0 | 0 |
| la colina | 2014 | 8.000000 | 2.6628761 | 14 | 11 | 13 | 51 | 0 | 7 | 57 | 1 | 38 | 1 | 0 | 0 | 7 | 2 | 86 | 0 | 0 |
| la colina | 2015 | 8.666667 | 3.9848197 | 11 | 8 | 16 | 61 | 0 | 8 | 57 | 0 | 47 | 0 | 0 | 0 | 12 | 4 | 88 | 0 | 0 |
| la colina | 2016 | 9.666667 | 4.0750534 | 23 | 16 | 19 | 58 | 0 | 0 | 80 | 1 | 35 | 1 | 0 | 0 | 17 | 6 | 92 | 0 | 0 |
| la colina | 2017 | 9.750000 | 5.2245052 | 22 | 9 | 11 | 70 | 0 | 5 | 68 | 0 | 49 | 0 | 0 | 0 | 28 | 19 | 70 | 0 | 0 |
| la colina | 2018 | 6.333333 | 2.1461735 | 6 | 6 | 9 | 53 | 0 | 2 | 36 | 1 | 39 | 1 | 0 | 0 | 21 | 5 | 49 | 0 | 0 |
| la cruz | 2014 | 3.375000 | 1.6850180 | 2 | 11 | 1 | 13 | 0 | 0 | 22 | 0 | 5 | 0 | 0 | 0 | 2 | 2 | 23 | 0 | 0 |
| la cruz | 2015 | 1.600000 | 0.8432740 | 0 | 8 | 2 | 5 | 0 | 1 | 12 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
| la cruz | 2016 | 2.000000 | 1.0000000 | 3 | 4 | 2 | 7 | 0 | 2 | 13 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 18 | 0 | 0 |
| la cruz | 2017 | 2.200000 | 1.1352924 | 2 | 4 | 1 | 13 | 0 | 2 | 14 | 1 | 7 | 1 | 0 | 0 | 3 | 2 | 16 | 0 | 0 |
| la cruz | 2018 | 1.750000 | 1.0350983 | 0 | 6 | 2 | 5 | 0 | 1 | 10 | 0 | 4 | 0 | 0 | 0 | 1 | 2 | 11 | 0 | 0 |
| la esperanza | 2014 | 10.583333 | 2.6784776 | 23 | 33 | 27 | 41 | 0 | 3 | 108 | 1 | 18 | 1 | 0 | 0 | 19 | 3 | 104 | 0 | 0 |
| la esperanza | 2015 | 11.750000 | 3.7688918 | 22 | 34 | 21 | 60 | 0 | 4 | 117 | 1 | 23 | 1 | 0 | 0 | 27 | 5 | 108 | 0 | 0 |
| la esperanza | 2016 | 12.750000 | 3.8641711 | 22 | 42 | 30 | 51 | 0 | 8 | 130 | 0 | 23 | 0 | 1 | 0 | 30 | 6 | 116 | 0 | 0 |
| la esperanza | 2017 | 11.083333 | 3.2601822 | 30 | 19 | 23 | 58 | 0 | 3 | 104 | 1 | 28 | 1 | 2 | 0 | 40 | 19 | 71 | 0 | 0 |
| la esperanza | 2018 | 10.166667 | 3.0993645 | 18 | 24 | 26 | 47 | 0 | 7 | 96 | 2 | 24 | 1 | 0 | 0 | 28 | 40 | 53 | 0 | 0 |
| la esperanza no. 2 | 2014 | 2.181818 | 1.1677484 | 1 | 10 | 2 | 11 | 0 | 0 | 19 | 0 | 5 | 0 | 0 | 0 | 1 | 1 | 22 | 0 | 0 |
| la esperanza no. 2 | 2015 | 1.900000 | 0.7378648 | 4 | 6 | 3 | 6 | 0 | 0 | 17 | 0 | 2 | 0 | 1 | 0 | 1 | 1 | 16 | 0 | 0 |
| la esperanza no. 2 | 2016 | 1.916667 | 0.9962049 | 3 | 6 | 2 | 9 | 0 | 3 | 16 | 0 | 7 | 0 | 0 | 0 | 2 | 2 | 19 | 0 | 0 |
| la esperanza no. 2 | 2017 | 2.400000 | 1.5055453 | 2 | 6 | 3 | 11 | 0 | 2 | 17 | 0 | 7 | 0 | 0 | 0 | 1 | 4 | 19 | 0 | 0 |
| la esperanza no. 2 | 2018 | 2.800000 | 1.5491933 | 4 | 8 | 4 | 11 | 0 | 1 | 25 | 0 | 3 | 0 | 0 | 0 | 1 | 6 | 21 | 0 | 0 |
| la floresta | 2014 | 13.083333 | 2.8431204 | 17 | 20 | 13 | 106 | 0 | 1 | 83 | 0 | 74 | 0 | 0 | 0 | 37 | 3 | 117 | 0 | 0 |
| la floresta | 2015 | 10.583333 | 5.1954234 | 13 | 19 | 12 | 79 | 0 | 4 | 78 | 1 | 48 | 1 | 0 | 1 | 36 | 1 | 87 | 0 | 1 |
| la floresta | 2016 | 13.083333 | 4.6408920 | 22 | 9 | 20 | 101 | 0 | 5 | 92 | 1 | 64 | 1 | 0 | 0 | 36 | 8 | 112 | 0 | 0 |
| la floresta | 2017 | 12.333333 | 4.7161875 | 13 | 10 | 11 | 110 | 0 | 4 | 76 | 0 | 72 | 0 | 0 | 3 | 57 | 14 | 74 | 0 | 0 |
| la floresta | 2018 | 11.250000 | 2.5628464 | 13 | 12 | 8 | 100 | 0 | 2 | 76 | 1 | 58 | 1 | 0 | 3 | 56 | 19 | 56 | 0 | 0 |
| la florida | 2014 | 13.583333 | 4.1221868 | 9 | 10 | 8 | 134 | 0 | 2 | 54 | 1 | 108 | 1 | 2 | 0 | 20 | 6 | 134 | 0 | 0 |
| la florida | 2015 | 13.083333 | 5.5833899 | 7 | 7 | 1 | 138 | 0 | 4 | 59 | 0 | 98 | 0 | 0 | 0 | 21 | 4 | 132 | 0 | 0 |
| la florida | 2016 | 13.250000 | 4.0028399 | 3 | 6 | 3 | 143 | 0 | 4 | 36 | 0 | 123 | 0 | 1 | 0 | 17 | 10 | 131 | 0 | 0 |
| la florida | 2017 | 15.500000 | 2.9076701 | 7 | 10 | 5 | 161 | 0 | 3 | 50 | 0 | 136 | 0 | 1 | 0 | 37 | 17 | 130 | 0 | 1 |
| la florida | 2018 | 15.333333 | 4.9051612 | 10 | 5 | 13 | 151 | 0 | 5 | 75 | 0 | 109 | 0 | 0 | 0 | 34 | 16 | 132 | 0 | 2 |
| la francia | 2014 | 5.000000 | 2.4120908 | 4 | 20 | 9 | 27 | 0 | 0 | 44 | 0 | 16 | 0 | 1 | 0 | 3 | 2 | 54 | 0 | 0 |
| la francia | 2015 | 4.500000 | 2.1950357 | 7 | 7 | 7 | 29 | 0 | 4 | 33 | 0 | 21 | 0 | 0 | 1 | 9 | 3 | 41 | 0 | 0 |
| la francia | 2016 | 3.833333 | 1.9924098 | 6 | 10 | 3 | 24 | 0 | 3 | 33 | 0 | 13 | 0 | 0 | 0 | 6 | 3 | 37 | 0 | 0 |
| la francia | 2017 | 4.250000 | 2.1373305 | 3 | 17 | 5 | 25 | 0 | 1 | 38 | 0 | 13 | 0 | 1 | 0 | 3 | 9 | 38 | 0 | 0 |
| la francia | 2018 | 3.833333 | 2.1248886 | 4 | 7 | 8 | 25 | 0 | 2 | 26 | 0 | 20 | 0 | 1 | 0 | 6 | 7 | 32 | 0 | 0 |
| la frontera | 2014 | 5.416667 | 2.3143164 | 4 | 18 | 5 | 34 | 0 | 4 | 44 | 0 | 21 | 0 | 0 | 0 | 3 | 2 | 60 | 0 | 0 |
| la frontera | 2015 | 4.600000 | 2.2705848 | 9 | 12 | 4 | 20 | 0 | 1 | 31 | 0 | 15 | 0 | 1 | 0 | 3 | 1 | 41 | 0 | 0 |
| la frontera | 2016 | 3.818182 | 2.6764970 | 3 | 12 | 3 | 19 | 0 | 5 | 30 | 0 | 12 | 0 | 1 | 0 | 2 | 3 | 36 | 0 | 0 |
| la frontera | 2017 | 3.333333 | 1.9227506 | 6 | 5 | 6 | 22 | 0 | 1 | 26 | 0 | 14 | 0 | 0 | 0 | 2 | 9 | 29 | 0 | 0 |
| la frontera | 2018 | 3.545454 | 1.8635255 | 6 | 7 | 6 | 19 | 0 | 1 | 27 | 0 | 12 | 0 | 0 | 0 | 6 | 7 | 26 | 0 | 0 |
| la gloria | 2014 | 13.000000 | 4.0898989 | 28 | 11 | 12 | 101 | 0 | 4 | 87 | 0 | 69 | 0 | 2 | 0 | 24 | 2 | 127 | 0 | 1 |
| la gloria | 2015 | 15.500000 | 6.3746658 | 26 | 9 | 12 | 129 | 0 | 10 | 104 | 0 | 82 | 0 | 0 | 1 | 37 | 4 | 144 | 0 | 0 |
| la gloria | 2016 | 18.583333 | 4.8515852 | 31 | 10 | 22 | 148 | 0 | 12 | 140 | 0 | 83 | 0 | 0 | 0 | 28 | 9 | 185 | 0 | 1 |
| la gloria | 2017 | 18.166667 | 4.2175679 | 36 | 12 | 26 | 134 | 0 | 10 | 128 | 1 | 89 | 1 | 1 | 8 | 43 | 26 | 139 | 0 | 0 |
| la gloria | 2018 | 14.166667 | 5.0241839 | 21 | 8 | 15 | 123 | 0 | 3 | 84 | 0 | 86 | 0 | 2 | 4 | 39 | 17 | 107 | 0 | 1 |
| la hondonada | 2014 | 3.250000 | 1.3887301 | 1 | 2 | 3 | 20 | 0 | 0 | 15 | 0 | 11 | 0 | 0 | 0 | 2 | 1 | 23 | 0 | 0 |
| la hondonada | 2015 | 2.888889 | 1.2692955 | 3 | 2 | 3 | 18 | 0 | 0 | 15 | 0 | 11 | 0 | 0 | 0 | 4 | 3 | 19 | 0 | 0 |
| la hondonada | 2016 | 2.818182 | 0.9816498 | 7 | 0 | 5 | 19 | 0 | 0 | 21 | 0 | 10 | 0 | 1 | 0 | 1 | 3 | 25 | 0 | 1 |
| la hondonada | 2017 | 4.181818 | 1.9908883 | 7 | 3 | 5 | 28 | 0 | 3 | 26 | 0 | 20 | 0 | 0 | 0 | 4 | 11 | 31 | 0 | 0 |
| la hondonada | 2018 | 4.272727 | 1.8488326 | 6 | 2 | 4 | 35 | 0 | 0 | 22 | 0 | 25 | 0 | 0 | 0 | 6 | 4 | 37 | 0 | 0 |
| la isla | 2014 | 3.750000 | 2.2207697 | 5 | 17 | 3 | 18 | 0 | 2 | 31 | 1 | 13 | 1 | 0 | 0 | 4 | 3 | 37 | 0 | 0 |
| la isla | 2015 | 3.500000 | 1.4459976 | 4 | 21 | 5 | 12 | 0 | 0 | 33 | 0 | 9 | 0 | 1 | 0 | 2 | 0 | 39 | 0 | 0 |
| la isla | 2016 | 3.583333 | 1.7816404 | 3 | 15 | 5 | 18 | 0 | 2 | 29 | 1 | 13 | 1 | 0 | 0 | 3 | 0 | 39 | 0 | 0 |
| la isla | 2017 | 2.500000 | 1.4337209 | 4 | 10 | 1 | 9 | 0 | 1 | 20 | 0 | 5 | 0 | 0 | 0 | 3 | 4 | 18 | 0 | 0 |
| la isla | 2018 | 3.166667 | 1.5275252 | 8 | 7 | 3 | 20 | 0 | 0 | 25 | 0 | 13 | 0 | 0 | 0 | 4 | 8 | 26 | 0 | 0 |
| la ladera | 2014 | 1.500000 | 0.7071068 | 4 | 1 | 1 | 9 | 0 | 0 | 10 | 0 | 5 | 0 | 0 | 0 | 2 | 1 | 11 | 0 | 1 |
| la ladera | 2015 | 1.555556 | 1.1303883 | 0 | 1 | 1 | 12 | 0 | 0 | 7 | 0 | 7 | 0 | 0 | 0 | 1 | 0 | 13 | 0 | 0 |
| la ladera | 2016 | 1.800000 | 0.7888106 | 3 | 2 | 2 | 10 | 0 | 1 | 11 | 0 | 7 | 0 | 0 | 0 | 1 | 0 | 17 | 0 | 0 |
| la ladera | 2017 | 2.000000 | 0.7559289 | 1 | 2 | 2 | 10 | 0 | 1 | 10 | 0 | 6 | 0 | 0 | 0 | 1 | 2 | 13 | 0 | 0 |
| la ladera | 2018 | 2.250000 | 1.1649647 | 3 | 2 | 6 | 7 | 0 | 0 | 13 | 0 | 5 | 0 | 0 | 0 | 1 | 6 | 11 | 0 | 0 |
| la libertad | 2014 | 5.916667 | 1.8809250 | 12 | 18 | 10 | 29 | 0 | 2 | 54 | 1 | 16 | 1 | 0 | 0 | 4 | 3 | 63 | 0 | 0 |
| la libertad | 2015 | 6.250000 | 2.5271256 | 15 | 7 | 12 | 33 | 0 | 8 | 49 | 0 | 26 | 0 | 1 | 0 | 4 | 4 | 66 | 0 | 0 |
| la libertad | 2016 | 5.000000 | 2.2962420 | 8 | 9 | 12 | 30 | 0 | 1 | 41 | 0 | 19 | 0 | 0 | 0 | 3 | 3 | 54 | 0 | 0 |
| la libertad | 2017 | 4.333333 | 2.0150946 | 10 | 10 | 5 | 26 | 0 | 1 | 28 | 0 | 24 | 0 | 0 | 0 | 5 | 11 | 36 | 0 | 0 |
| la libertad | 2018 | 5.166667 | 2.6911753 | 14 | 10 | 8 | 29 | 0 | 1 | 42 | 0 | 20 | 0 | 0 | 0 | 6 | 13 | 43 | 0 | 0 |
| la loma de los bernal | 2014 | 1.000000 | 0.0000000 | 0 | 0 | 1 | 5 | 0 | 0 | 2 | 0 | 4 | 0 | 0 | 0 | 1 | 0 | 5 | 0 | 0 |
| la loma de los bernal | 2015 | 1.000000 | 0.0000000 | 1 | 0 | 0 | 4 | 0 | 0 | 2 | 0 | 3 | 0 | 0 | 0 | 1 | 0 | 4 | 0 | 0 |
| la loma de los bernal | 2016 | 1.142857 | 0.3779645 | 2 | 0 | 0 | 6 | 0 | 0 | 3 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 |
| la loma de los bernal | 2017 | 1.142857 | 0.3779645 | 1 | 1 | 0 | 6 | 0 | 0 | 3 | 0 | 5 | 0 | 0 | 0 | 2 | 1 | 5 | 0 | 0 |
| la loma de los bernal | 2018 | 1.250000 | 0.5000000 | 0 | 0 | 1 | 4 | 0 | 0 | 1 | 0 | 4 | 0 | 0 | 0 | 1 | 0 | 4 | 0 | 0 |
| la loma oriental | 2014 | 1.000000 | NA | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| la loma oriental | 2015 | 1.250000 | 0.5000000 | 0 | 0 | 2 | 3 | 0 | 0 | 3 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 4 | 0 | 0 |
| la loma oriental | 2016 | 1.333333 | 0.5773503 | 1 | 0 | 0 | 2 | 0 | 1 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
| la loma oriental | 2017 | 1.333333 | 0.5773503 | 2 | 0 | 0 | 2 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 1 |
| la loma oriental | 2018 | 1.571429 | 0.5345225 | 1 | 1 | 3 | 4 | 0 | 2 | 9 | 0 | 2 | 0 | 0 | 0 | 1 | 3 | 7 | 0 | 0 |
| la mansion | 2014 | 4.166667 | 1.9924098 | 6 | 3 | 7 | 32 | 0 | 2 | 35 | 0 | 15 | 0 | 0 | 0 | 13 | 0 | 37 | 0 | 0 |
| la mansion | 2015 | 4.909091 | 2.3001976 | 5 | 9 | 7 | 31 | 0 | 2 | 42 | 0 | 12 | 0 | 0 | 0 | 9 | 2 | 43 | 0 | 0 |
| la mansion | 2016 | 5.333333 | 1.6143298 | 12 | 3 | 1 | 46 | 0 | 2 | 44 | 0 | 20 | 0 | 0 | 0 | 18 | 2 | 44 | 0 | 0 |
| la mansion | 2017 | 5.500000 | 2.6457513 | 3 | 8 | 6 | 49 | 0 | 0 | 41 | 0 | 25 | 0 | 1 | 0 | 28 | 2 | 35 | 0 | 0 |
| la mansion | 2018 | 4.416667 | 1.8319554 | 4 | 7 | 4 | 34 | 0 | 4 | 35 | 0 | 18 | 0 | 0 | 0 | 18 | 9 | 26 | 0 | 0 |
| la milagrosa | 2014 | 8.750000 | 4.2879323 | 9 | 13 | 9 | 72 | 0 | 2 | 70 | 2 | 33 | 2 | 0 | 0 | 17 | 2 | 84 | 0 | 0 |
| la milagrosa | 2015 | 7.750000 | 3.3337121 | 9 | 9 | 6 | 63 | 0 | 6 | 58 | 2 | 33 | 2 | 0 | 0 | 34 | 2 | 55 | 0 | 0 |
| la milagrosa | 2016 | 8.666667 | 3.2286595 | 10 | 13 | 11 | 66 | 0 | 4 | 65 | 1 | 38 | 1 | 0 | 0 | 29 | 6 | 68 | 0 | 0 |
| la milagrosa | 2017 | 8.250000 | 3.1370223 | 9 | 9 | 12 | 66 | 0 | 3 | 58 | 1 | 40 | 1 | 0 | 0 | 38 | 15 | 44 | 0 | 1 |
| la milagrosa | 2018 | 7.833333 | 2.6571801 | 5 | 14 | 15 | 59 | 0 | 1 | 59 | 1 | 34 | 1 | 0 | 0 | 35 | 11 | 47 | 0 | 0 |
| la mota | 2014 | 5.416667 | 1.9286516 | 6 | 3 | 5 | 45 | 0 | 6 | 34 | 1 | 30 | 1 | 0 | 1 | 13 | 5 | 45 | 0 | 0 |
| la mota | 2015 | 6.333333 | 2.0150946 | 4 | 2 | 7 | 59 | 0 | 4 | 38 | 0 | 38 | 0 | 0 | 2 | 15 | 4 | 55 | 0 | 0 |
| la mota | 2016 | 7.416667 | 2.3532698 | 15 | 6 | 3 | 63 | 0 | 2 | 51 | 2 | 36 | 2 | 0 | 4 | 22 | 5 | 56 | 0 | 0 |
| la mota | 2017 | 7.666667 | 2.8709623 | 11 | 7 | 10 | 60 | 0 | 4 | 52 | 0 | 40 | 0 | 0 | 3 | 16 | 14 | 58 | 0 | 1 |
| la mota | 2018 | 5.166667 | 1.8504709 | 5 | 4 | 5 | 45 | 0 | 3 | 39 | 0 | 23 | 0 | 0 | 5 | 13 | 7 | 37 | 0 | 0 |
| la oculta | 2014 | 1.000000 | 0.0000000 | 0 | 1 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| la oculta | 2015 | 1.000000 | NA | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| la oculta | 2016 | 1.000000 | NA | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| la oculta | 2017 | 1.000000 | 0.0000000 | 0 | 0 | 1 | 3 | 0 | 1 | 3 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 4 | 0 | 0 |
| la oculta | 2018 | 1.000000 | 0.0000000 | 0 | 1 | 0 | 2 | 0 | 1 | 2 | 0 | 2 | 0 | 0 | 0 | 1 | 1 | 2 | 0 | 0 |
| la palma | 2014 | 11.666667 | 3.9389277 | 18 | 19 | 17 | 80 | 0 | 6 | 88 | 1 | 51 | 1 | 1 | 0 | 14 | 4 | 119 | 1 | 0 |
| la palma | 2015 | 10.833333 | 2.7579087 | 18 | 12 | 11 | 81 | 0 | 8 | 74 | 0 | 56 | 0 | 0 | 1 | 20 | 4 | 105 | 0 | 0 |
| la palma | 2016 | 12.750000 | 3.4673805 | 19 | 15 | 11 | 103 | 0 | 5 | 91 | 1 | 61 | 1 | 1 | 1 | 25 | 4 | 121 | 0 | 0 |
| la palma | 2017 | 9.083333 | 2.7455198 | 10 | 7 | 10 | 79 | 0 | 3 | 55 | 0 | 54 | 0 | 2 | 0 | 21 | 11 | 75 | 0 | 0 |
| la palma | 2018 | 8.166667 | 4.1742355 | 4 | 10 | 8 | 76 | 0 | 0 | 45 | 0 | 53 | 0 | 1 | 1 | 25 | 17 | 54 | 0 | 0 |
| la pilarica | 2014 | 7.500000 | 3.3709993 | 10 | 7 | 12 | 59 | 0 | 2 | 49 | 0 | 41 | 0 | 0 | 0 | 11 | 3 | 76 | 0 | 0 |
| la pilarica | 2015 | 7.500000 | 3.0301515 | 16 | 2 | 5 | 63 | 0 | 4 | 51 | 0 | 39 | 0 | 0 | 0 | 16 | 3 | 71 | 0 | 0 |
| la pilarica | 2016 | 6.083333 | 3.1754265 | 8 | 7 | 3 | 54 | 0 | 1 | 40 | 0 | 33 | 0 | 0 | 0 | 12 | 2 | 59 | 0 | 0 |
| la pilarica | 2017 | 8.000000 | 4.5527215 | 14 | 6 | 6 | 65 | 0 | 5 | 52 | 1 | 43 | 1 | 0 | 0 | 20 | 11 | 64 | 0 | 0 |
| la pilarica | 2018 | 9.916667 | 2.7122059 | 11 | 6 | 21 | 80 | 0 | 1 | 72 | 0 | 47 | 0 | 1 | 0 | 25 | 20 | 73 | 0 | 0 |
| la pinuela | 2014 | 4.666667 | 1.3026779 | 6 | 11 | 5 | 31 | 0 | 3 | 40 | 1 | 15 | 1 | 0 | 0 | 8 | 1 | 45 | 0 | 1 |
| la pinuela | 2015 | 7.083333 | 2.5030285 | 8 | 15 | 14 | 43 | 0 | 5 | 62 | 1 | 22 | 1 | 2 | 0 | 9 | 4 | 69 | 0 | 0 |
| la pinuela | 2016 | 5.500000 | 1.8829377 | 6 | 13 | 15 | 31 | 0 | 1 | 51 | 1 | 14 | 1 | 0 | 0 | 11 | 1 | 53 | 0 | 0 |
| la pinuela | 2017 | 5.083333 | 2.2746961 | 9 | 5 | 10 | 34 | 0 | 3 | 46 | 0 | 15 | 0 | 0 | 0 | 12 | 7 | 42 | 0 | 0 |
| la pinuela | 2018 | 5.500000 | 2.5405797 | 8 | 7 | 10 | 37 | 0 | 4 | 46 | 0 | 20 | 0 | 0 | 0 | 19 | 11 | 36 | 0 | 0 |
| la pradera | 2014 | 7.250000 | 2.8001623 | 16 | 10 | 16 | 38 | 0 | 7 | 60 | 0 | 27 | 0 | 0 | 0 | 13 | 3 | 71 | 0 | 0 |
| la pradera | 2015 | 5.833333 | 1.6966991 | 13 | 9 | 9 | 33 | 0 | 6 | 51 | 0 | 19 | 0 | 0 | 0 | 12 | 3 | 55 | 0 | 0 |
| la pradera | 2016 | 8.083333 | 2.6097138 | 17 | 18 | 12 | 45 | 0 | 5 | 70 | 1 | 26 | 1 | 0 | 0 | 8 | 5 | 83 | 0 | 0 |
| la pradera | 2017 | 6.500000 | 2.7468991 | 11 | 19 | 10 | 34 | 0 | 4 | 61 | 1 | 16 | 1 | 0 | 0 | 13 | 15 | 49 | 0 | 0 |
| la pradera | 2018 | 4.750000 | 1.8647447 | 8 | 5 | 16 | 27 | 0 | 1 | 44 | 0 | 13 | 0 | 0 | 0 | 12 | 22 | 22 | 0 | 1 |
| la rosa | 2014 | 4.166667 | 1.8989630 | 8 | 14 | 3 | 24 | 0 | 1 | 40 | 2 | 8 | 2 | 0 | 0 | 5 | 3 | 40 | 0 | 0 |
| la rosa | 2015 | 4.083333 | 1.6213537 | 11 | 8 | 4 | 23 | 0 | 3 | 40 | 0 | 9 | 0 | 0 | 0 | 4 | 3 | 42 | 0 | 0 |
| la rosa | 2016 | 4.090909 | 1.9211739 | 6 | 8 | 7 | 21 | 0 | 3 | 38 | 0 | 7 | 0 | 0 | 0 | 2 | 4 | 39 | 0 | 0 |
| la rosa | 2017 | 3.090909 | 1.5135749 | 8 | 6 | 3 | 17 | 0 | 0 | 22 | 0 | 12 | 0 | 0 | 0 | 6 | 4 | 24 | 0 | 0 |
| la rosa | 2018 | 4.416667 | 2.6443192 | 5 | 11 | 7 | 29 | 0 | 1 | 34 | 0 | 19 | 0 | 0 | 0 | 14 | 11 | 28 | 0 | 0 |
| la salle | 2014 | 9.000000 | 2.5226249 | 13 | 37 | 17 | 38 | 0 | 3 | 90 | 0 | 18 | 0 | 1 | 0 | 7 | 4 | 96 | 0 | 0 |
| la salle | 2015 | 9.916667 | 2.9374799 | 13 | 43 | 13 | 46 | 0 | 4 | 92 | 1 | 26 | 1 | 1 | 0 | 9 | 4 | 104 | 0 | 0 |
| la salle | 2016 | 10.250000 | 2.5980762 | 12 | 31 | 10 | 59 | 0 | 11 | 84 | 1 | 38 | 1 | 2 | 0 | 16 | 3 | 101 | 0 | 0 |
| la salle | 2017 | 8.833333 | 1.7494588 | 13 | 17 | 18 | 56 | 0 | 2 | 75 | 0 | 31 | 0 | 0 | 0 | 14 | 15 | 77 | 0 | 0 |
| la salle | 2018 | 8.666667 | 2.4984844 | 12 | 28 | 11 | 47 | 0 | 6 | 79 | 1 | 24 | 1 | 1 | 0 | 8 | 22 | 72 | 0 | 0 |
| la sierra | 2014 | 1.000000 | 0.0000000 | 1 | 1 | 1 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 |
| la sierra | 2015 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| la sierra | 2016 | 1.200000 | 0.4472136 | 1 | 1 | 2 | 1 | 0 | 1 | 5 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 5 | 0 | 0 |
| la sierra | 2017 | 1.000000 | 0.0000000 | 2 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 |
| la sierra | 2018 | 1.333333 | 0.5773503 | 1 | 0 | 2 | 0 | 0 | 1 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
| la verde | 2014 | 1.500000 | 0.7071068 | 0 | 0 | 1 | 2 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 |
| la verde | 2015 | 1.500000 | 0.7071068 | 0 | 0 | 2 | 1 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 |
| la verde | 2016 | 1.000000 | 0.0000000 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| la verde | 2017 | 2.428571 | 1.3972763 | 2 | 1 | 2 | 11 | 0 | 1 | 9 | 0 | 8 | 0 | 0 | 9 | 3 | 3 | 2 | 0 | 0 |
| la verde | 2018 | 1.777778 | 1.3017083 | 2 | 0 | 1 | 12 | 0 | 1 | 6 | 0 | 10 | 0 | 0 | 9 | 1 | 4 | 2 | 0 | 0 |
| lalinde | 2014 | 2.777778 | 1.4813657 | 0 | 0 | 2 | 22 | 0 | 1 | 11 | 0 | 14 | 0 | 0 | 0 | 4 | 2 | 18 | 0 | 1 |
| lalinde | 2015 | 2.600000 | 1.1737878 | 0 | 0 | 3 | 23 | 0 | 0 | 14 | 0 | 12 | 0 | 0 | 0 | 6 | 0 | 20 | 0 | 0 |
| lalinde | 2016 | 2.666667 | 1.3026779 | 0 | 2 | 1 | 29 | 0 | 0 | 8 | 0 | 24 | 0 | 0 | 0 | 4 | 1 | 27 | 0 | 0 |
| lalinde | 2017 | 3.416667 | 1.9286516 | 1 | 0 | 0 | 40 | 0 | 0 | 15 | 0 | 26 | 0 | 0 | 0 | 11 | 1 | 29 | 0 | 0 |
| lalinde | 2018 | 2.363636 | 1.2060454 | 0 | 1 | 1 | 24 | 0 | 0 | 7 | 0 | 19 | 0 | 0 | 1 | 5 | 1 | 19 | 0 | 0 |
| las acacias | 2014 | 27.166667 | 6.3365223 | 21 | 15 | 22 | 264 | 0 | 4 | 130 | 2 | 194 | 2 | 1 | 40 | 36 | 2 | 244 | 1 | 0 |
| las acacias | 2015 | 26.083333 | 4.9443877 | 24 | 21 | 23 | 238 | 0 | 7 | 134 | 2 | 177 | 2 | 1 | 40 | 31 | 7 | 232 | 0 | 0 |
| las acacias | 2016 | 28.000000 | 6.7554692 | 31 | 13 | 21 | 257 | 0 | 14 | 148 | 0 | 188 | 0 | 0 | 44 | 38 | 2 | 251 | 1 | 0 |
| las acacias | 2017 | 23.916667 | 3.2879486 | 29 | 18 | 18 | 213 | 0 | 9 | 137 | 0 | 150 | 0 | 0 | 61 | 61 | 31 | 131 | 1 | 2 |
| las acacias | 2018 | 22.416667 | 7.3664884 | 14 | 9 | 16 | 228 | 0 | 2 | 105 | 2 | 162 | 1 | 2 | 63 | 49 | 25 | 129 | 0 | 0 |
| las brisas | 2014 | 16.666667 | 3.4200833 | 31 | 19 | 23 | 121 | 0 | 6 | 124 | 3 | 73 | 3 | 0 | 0 | 16 | 2 | 179 | 0 | 0 |
| las brisas | 2015 | 15.750000 | 4.7887178 | 29 | 7 | 23 | 120 | 0 | 10 | 115 | 1 | 73 | 1 | 2 | 0 | 14 | 7 | 165 | 0 | 0 |
| las brisas | 2016 | 17.916667 | 2.7784343 | 33 | 16 | 15 | 145 | 0 | 6 | 139 | 3 | 73 | 3 | 1 | 0 | 18 | 10 | 182 | 0 | 1 |
| las brisas | 2017 | 17.583333 | 5.0893531 | 29 | 7 | 20 | 145 | 0 | 10 | 122 | 0 | 89 | 0 | 1 | 0 | 30 | 32 | 147 | 0 | 1 |
| las brisas | 2018 | 15.000000 | 3.1622777 | 29 | 14 | 19 | 114 | 0 | 4 | 103 | 1 | 76 | 1 | 2 | 0 | 23 | 29 | 124 | 0 | 1 |
| las esmeraldas | 2014 | 9.083333 | 3.8720052 | 15 | 22 | 15 | 57 | 0 | 0 | 67 | 1 | 41 | 1 | 0 | 0 | 16 | 1 | 90 | 1 | 0 |
| las esmeraldas | 2015 | 8.916667 | 3.1754265 | 8 | 21 | 8 | 62 | 0 | 8 | 63 | 1 | 43 | 1 | 0 | 0 | 10 | 3 | 93 | 0 | 0 |
| las esmeraldas | 2016 | 7.583333 | 2.1933094 | 10 | 15 | 9 | 55 | 0 | 2 | 54 | 1 | 36 | 1 | 0 | 0 | 12 | 5 | 72 | 1 | 0 |
| las esmeraldas | 2017 | 4.000000 | 1.3333333 | 4 | 6 | 3 | 26 | 0 | 1 | 29 | 1 | 10 | 1 | 0 | 0 | 12 | 3 | 24 | 0 | 0 |
| las esmeraldas | 2018 | 3.416667 | 1.5050420 | 7 | 5 | 8 | 21 | 0 | 0 | 28 | 1 | 12 | 1 | 0 | 0 | 6 | 9 | 25 | 0 | 0 |
| las estancias | 2014 | 4.333333 | 1.6696942 | 7 | 20 | 8 | 16 | 0 | 1 | 42 | 0 | 10 | 0 | 0 | 0 | 4 | 2 | 46 | 0 | 0 |
| las estancias | 2015 | 4.416667 | 1.5642793 | 5 | 13 | 11 | 23 | 0 | 1 | 43 | 0 | 10 | 0 | 0 | 0 | 3 | 5 | 45 | 0 | 0 |
| las estancias | 2016 | 4.583333 | 1.8809250 | 11 | 12 | 11 | 19 | 0 | 2 | 43 | 0 | 12 | 0 | 0 | 0 | 4 | 4 | 47 | 0 | 0 |
| las estancias | 2017 | 4.454546 | 2.2522716 | 7 | 15 | 7 | 17 | 0 | 3 | 40 | 0 | 9 | 0 | 1 | 0 | 4 | 10 | 34 | 0 | 0 |
| las estancias | 2018 | 4.000000 | 2.4494897 | 8 | 8 | 7 | 20 | 0 | 5 | 37 | 0 | 11 | 0 | 0 | 0 | 4 | 16 | 28 | 0 | 0 |
| las granjas | 2014 | 21.416667 | 6.4731380 | 29 | 74 | 41 | 102 | 0 | 11 | 198 | 3 | 56 | 3 | 0 | 0 | 28 | 8 | 218 | 0 | 0 |
| las granjas | 2015 | 19.083333 | 5.8380933 | 33 | 48 | 34 | 100 | 0 | 14 | 181 | 4 | 44 | 4 | 2 | 0 | 22 | 8 | 193 | 0 | 0 |
| las granjas | 2016 | 21.500000 | 4.6612523 | 27 | 65 | 26 | 126 | 0 | 14 | 193 | 1 | 64 | 1 | 0 | 0 | 38 | 9 | 209 | 0 | 1 |
| las granjas | 2017 | 15.916667 | 4.1000739 | 27 | 41 | 13 | 102 | 0 | 8 | 131 | 2 | 58 | 2 | 2 | 0 | 29 | 19 | 139 | 0 | 0 |
| las granjas | 2018 | 14.916667 | 3.9418116 | 21 | 34 | 26 | 92 | 0 | 6 | 125 | 4 | 50 | 2 | 0 | 0 | 31 | 39 | 107 | 0 | 0 |
| las independencias | 2014 | 2.222222 | 1.2018504 | 4 | 8 | 5 | 3 | 0 | 0 | 19 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 18 | 0 | 0 |
| las independencias | 2015 | 2.250000 | 1.0350983 | 3 | 7 | 1 | 4 | 0 | 3 | 14 | 0 | 4 | 0 | 0 | 0 | 0 | 1 | 17 | 0 | 0 |
| las independencias | 2016 | 1.666667 | 0.8660254 | 3 | 6 | 1 | 3 | 0 | 2 | 13 | 0 | 2 | 0 | 0 | 0 | 1 | 1 | 13 | 0 | 0 |
| las independencias | 2017 | 1.142857 | 0.3779645 | 0 | 4 | 2 | 2 | 0 | 0 | 6 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 7 | 0 | 0 |
| las independencias | 2018 | 1.571429 | 0.5345225 | 0 | 5 | 0 | 4 | 0 | 2 | 8 | 0 | 3 | 0 | 0 | 0 | 0 | 5 | 6 | 0 | 0 |
| las lomas no.1 | 2014 | 9.250000 | 2.7010099 | 11 | 4 | 7 | 85 | 0 | 4 | 51 | 0 | 60 | 0 | 0 | 0 | 16 | 2 | 92 | 0 | 1 |
| las lomas no.1 | 2015 | 9.416667 | 2.9374799 | 9 | 3 | 6 | 94 | 0 | 1 | 40 | 0 | 73 | 0 | 0 | 0 | 12 | 3 | 98 | 0 | 0 |
| las lomas no.1 | 2016 | 8.250000 | 2.9580399 | 7 | 1 | 7 | 82 | 0 | 2 | 31 | 0 | 68 | 0 | 0 | 0 | 12 | 5 | 81 | 0 | 1 |
| las lomas no.1 | 2017 | 8.416667 | 2.7455198 | 5 | 2 | 5 | 88 | 0 | 1 | 32 | 0 | 69 | 0 | 0 | 0 | 34 | 7 | 59 | 0 | 1 |
| las lomas no.1 | 2018 | 9.916667 | 2.7784343 | 12 | 2 | 2 | 99 | 0 | 4 | 41 | 0 | 78 | 0 | 0 | 1 | 19 | 17 | 82 | 0 | 0 |
| las lomas no.2 | 2014 | 5.833333 | 2.5524795 | 6 | 2 | 7 | 52 | 0 | 3 | 32 | 0 | 38 | 0 | 0 | 0 | 12 | 2 | 56 | 0 | 0 |
| las lomas no.2 | 2015 | 3.833333 | 2.4802248 | 2 | 0 | 6 | 36 | 0 | 2 | 26 | 0 | 20 | 0 | 0 | 0 | 8 | 1 | 37 | 0 | 0 |
| las lomas no.2 | 2016 | 4.583333 | 1.8809250 | 5 | 1 | 5 | 43 | 0 | 1 | 22 | 0 | 33 | 0 | 0 | 0 | 13 | 2 | 39 | 0 | 1 |
| las lomas no.2 | 2017 | 4.666667 | 2.9336088 | 7 | 0 | 1 | 47 | 0 | 1 | 19 | 0 | 37 | 0 | 1 | 0 | 12 | 8 | 34 | 0 | 1 |
| las lomas no.2 | 2018 | 5.333333 | 2.1881222 | 10 | 2 | 3 | 48 | 0 | 1 | 27 | 0 | 37 | 0 | 0 | 0 | 13 | 8 | 42 | 0 | 1 |
| las mercedes | 2014 | 5.500000 | 2.2360680 | 7 | 6 | 9 | 42 | 0 | 2 | 40 | 0 | 26 | 0 | 0 | 1 | 10 | 2 | 53 | 0 | 0 |
| las mercedes | 2015 | 4.750000 | 2.3403574 | 6 | 8 | 6 | 34 | 0 | 3 | 35 | 0 | 22 | 0 | 0 | 0 | 9 | 5 | 43 | 0 | 0 |
| las mercedes | 2016 | 7.166667 | 3.4333480 | 9 | 8 | 6 | 57 | 0 | 6 | 53 | 0 | 33 | 0 | 0 | 0 | 13 | 4 | 69 | 0 | 0 |
| las mercedes | 2017 | 6.083333 | 1.7298625 | 11 | 10 | 7 | 41 | 0 | 4 | 49 | 0 | 24 | 0 | 0 | 1 | 14 | 19 | 39 | 0 | 0 |
| las mercedes | 2018 | 5.500000 | 3.3166248 | 5 | 6 | 3 | 51 | 0 | 1 | 30 | 0 | 36 | 0 | 0 | 3 | 12 | 10 | 41 | 0 | 0 |
| las palmas | 2014 | 9.000000 | 3.4377583 | 19 | 4 | 15 | 67 | 0 | 3 | 65 | 0 | 43 | 0 | 1 | 0 | 13 | 4 | 90 | 0 | 0 |
| las palmas | 2015 | 9.833333 | 3.4859023 | 10 | 10 | 13 | 78 | 0 | 7 | 72 | 0 | 46 | 0 | 0 | 0 | 11 | 2 | 105 | 0 | 0 |
| las palmas | 2016 | 9.916667 | 2.9987371 | 11 | 10 | 14 | 73 | 0 | 11 | 71 | 3 | 45 | 3 | 0 | 2 | 23 | 2 | 89 | 0 | 0 |
| las palmas | 2017 | 10.083333 | 3.8009170 | 15 | 12 | 8 | 80 | 0 | 6 | 61 | 0 | 60 | 0 | 0 | 0 | 27 | 12 | 79 | 0 | 3 |
| las palmas | 2018 | 10.333333 | 3.6514837 | 15 | 3 | 8 | 93 | 0 | 5 | 53 | 1 | 70 | 1 | 0 | 0 | 37 | 13 | 73 | 0 | 0 |
| las playas | 2014 | 8.250000 | 2.9886148 | 13 | 2 | 9 | 70 | 0 | 5 | 58 | 0 | 41 | 0 | 2 | 0 | 14 | 1 | 82 | 0 | 0 |
| las playas | 2015 | 9.166667 | 3.1574827 | 15 | 8 | 10 | 72 | 0 | 5 | 65 | 0 | 45 | 0 | 0 | 0 | 23 | 1 | 86 | 0 | 0 |
| las playas | 2016 | 11.083333 | 3.0587678 | 11 | 7 | 9 | 100 | 0 | 6 | 72 | 0 | 61 | 0 | 0 | 0 | 20 | 3 | 110 | 0 | 0 |
| las playas | 2017 | 9.583333 | 3.0289012 | 19 | 7 | 7 | 74 | 0 | 8 | 77 | 0 | 38 | 0 | 1 | 0 | 31 | 22 | 60 | 0 | 1 |
| las playas | 2018 | 7.666667 | 2.0597146 | 9 | 5 | 6 | 69 | 0 | 3 | 45 | 1 | 46 | 1 | 0 | 0 | 31 | 6 | 54 | 0 | 0 |
| las violetas | 2014 | 7.750000 | 2.5271256 | 12 | 24 | 14 | 42 | 0 | 1 | 69 | 0 | 24 | 0 | 1 | 0 | 11 | 6 | 75 | 0 | 0 |
| las violetas | 2015 | 5.916667 | 2.5746433 | 8 | 16 | 6 | 39 | 0 | 2 | 45 | 1 | 25 | 1 | 0 | 0 | 6 | 2 | 62 | 0 | 0 |
| las violetas | 2016 | 6.666667 | 1.6696942 | 11 | 11 | 10 | 45 | 0 | 3 | 51 | 2 | 27 | 2 | 0 | 0 | 8 | 9 | 61 | 0 | 0 |
| las violetas | 2017 | 5.833333 | 2.5878504 | 7 | 15 | 9 | 35 | 0 | 4 | 44 | 0 | 26 | 0 | 0 | 0 | 2 | 21 | 47 | 0 | 0 |
| las violetas | 2018 | 5.250000 | 1.6025548 | 5 | 7 | 10 | 40 | 0 | 1 | 30 | 1 | 32 | 1 | 1 | 0 | 13 | 12 | 36 | 0 | 0 |
| laureles | 2014 | 22.833333 | 4.2604595 | 17 | 14 | 8 | 233 | 0 | 2 | 115 | 4 | 155 | 4 | 1 | 12 | 65 | 9 | 183 | 0 | 0 |
| laureles | 2015 | 27.083333 | 6.1268164 | 27 | 16 | 5 | 266 | 0 | 11 | 144 | 0 | 181 | 0 | 0 | 6 | 91 | 8 | 220 | 0 | 0 |
| laureles | 2016 | 28.083333 | 5.9917873 | 23 | 14 | 13 | 283 | 0 | 4 | 149 | 2 | 186 | 2 | 0 | 11 | 86 | 8 | 230 | 0 | 0 |
| laureles | 2017 | 25.250000 | 6.0018936 | 30 | 15 | 12 | 242 | 0 | 4 | 142 | 1 | 160 | 1 | 2 | 13 | 112 | 24 | 151 | 0 | 0 |
| laureles | 2018 | 23.000000 | 5.2742944 | 24 | 12 | 11 | 226 | 0 | 3 | 134 | 3 | 139 | 2 | 1 | 19 | 89 | 29 | 134 | 0 | 2 |
| laureles estadio | 2017 | 1.750000 | 0.9574271 | 0 | 4 | 0 | 3 | 0 | 0 | 0 | 7 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| llanaditas | 2014 | 1.777778 | 0.8333333 | 2 | 3 | 2 | 8 | 0 | 1 | 13 | 0 | 3 | 0 | 1 | 0 | 0 | 0 | 15 | 0 | 0 |
| llanaditas | 2015 | 1.000000 | 0.0000000 | 1 | 4 | 0 | 1 | 0 | 0 | 5 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 5 | 0 | 0 |
| llanaditas | 2016 | 1.714286 | 0.9511897 | 1 | 8 | 0 | 3 | 0 | 0 | 9 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
| llanaditas | 2017 | 1.700000 | 0.8232726 | 4 | 6 | 2 | 5 | 0 | 0 | 14 | 0 | 3 | 0 | 0 | 0 | 0 | 3 | 14 | 0 | 0 |
| llanaditas | 2018 | 1.428571 | 0.7867958 | 2 | 4 | 1 | 3 | 0 | 0 | 7 | 0 | 3 | 0 | 0 | 0 | 0 | 2 | 8 | 0 | 0 |
| loma de los bernal | 2014 | 6.333333 | 2.5702258 | 9 | 5 | 6 | 53 | 0 | 3 | 38 | 0 | 38 | 0 | 0 | 2 | 10 | 4 | 60 | 0 | 0 |
| loma de los bernal | 2015 | 6.000000 | 2.8284271 | 7 | 6 | 6 | 49 | 0 | 4 | 32 | 1 | 39 | 1 | 0 | 2 | 6 | 5 | 58 | 0 | 0 |
| loma de los bernal | 2016 | 8.000000 | 2.5584086 | 7 | 6 | 13 | 68 | 0 | 2 | 46 | 1 | 49 | 1 | 1 | 3 | 12 | 9 | 70 | 0 | 0 |
| loma de los bernal | 2017 | 7.083333 | 2.1514618 | 15 | 1 | 4 | 59 | 0 | 6 | 40 | 0 | 45 | 0 | 1 | 2 | 7 | 20 | 55 | 0 | 0 |
| loma de los bernal | 2018 | 5.333333 | 2.2696949 | 7 | 6 | 3 | 47 | 0 | 1 | 27 | 0 | 37 | 0 | 0 | 0 | 9 | 14 | 40 | 0 | 1 |
| lopez de mesa | 2014 | 15.666667 | 3.0251471 | 45 | 22 | 40 | 75 | 0 | 6 | 147 | 0 | 41 | 0 | 3 | 6 | 21 | 5 | 153 | 0 | 0 |
| lopez de mesa | 2015 | 16.500000 | 5.2829055 | 27 | 24 | 35 | 102 | 0 | 10 | 146 | 1 | 51 | 1 | 1 | 13 | 17 | 5 | 161 | 0 | 0 |
| lopez de mesa | 2016 | 15.833333 | 5.5732043 | 46 | 18 | 35 | 82 | 0 | 9 | 143 | 1 | 46 | 1 | 0 | 15 | 17 | 9 | 148 | 0 | 0 |
| lopez de mesa | 2017 | 13.166667 | 3.6390142 | 35 | 12 | 34 | 74 | 0 | 3 | 121 | 0 | 37 | 0 | 0 | 12 | 30 | 23 | 93 | 0 | 0 |
| lopez de mesa | 2018 | 16.583333 | 4.3580299 | 28 | 18 | 56 | 92 | 0 | 5 | 138 | 1 | 60 | 1 | 0 | 4 | 32 | 67 | 95 | 0 | 0 |
| lorena | 2014 | 15.833333 | 3.2983008 | 22 | 18 | 10 | 139 | 0 | 1 | 100 | 2 | 88 | 2 | 1 | 1 | 35 | 10 | 140 | 0 | 1 |
| lorena | 2015 | 17.416667 | 4.4406865 | 11 | 25 | 14 | 154 | 0 | 5 | 116 | 1 | 92 | 1 | 2 | 2 | 27 | 4 | 172 | 0 | 1 |
| lorena | 2016 | 16.416667 | 3.5280263 | 21 | 19 | 12 | 143 | 1 | 1 | 104 | 3 | 90 | 3 | 1 | 1 | 33 | 8 | 150 | 0 | 1 |
| lorena | 2017 | 13.750000 | 5.0294587 | 13 | 6 | 8 | 136 | 0 | 2 | 63 | 1 | 101 | 1 | 0 | 3 | 44 | 19 | 95 | 0 | 3 |
| lorena | 2018 | 13.916667 | 4.2524503 | 8 | 14 | 13 | 129 | 0 | 3 | 79 | 1 | 87 | 0 | 0 | 2 | 41 | 26 | 96 | 1 | 1 |
| loreto | 2014 | 10.750000 | 2.9580399 | 17 | 33 | 21 | 54 | 0 | 4 | 97 | 1 | 31 | 1 | 0 | 0 | 6 | 1 | 121 | 0 | 0 |
| loreto | 2015 | 11.333333 | 3.4989176 | 29 | 34 | 15 | 51 | 0 | 7 | 103 | 0 | 33 | 0 | 0 | 0 | 12 | 2 | 122 | 0 | 0 |
| loreto | 2016 | 11.750000 | 4.0028399 | 27 | 14 | 16 | 75 | 0 | 9 | 97 | 0 | 44 | 0 | 2 | 0 | 12 | 5 | 122 | 0 | 0 |
| loreto | 2017 | 12.750000 | 4.3510709 | 21 | 21 | 14 | 88 | 0 | 9 | 92 | 0 | 61 | 0 | 0 | 0 | 21 | 23 | 109 | 0 | 0 |
| loreto | 2018 | 10.416667 | 3.0587678 | 14 | 18 | 16 | 71 | 0 | 6 | 75 | 2 | 48 | 1 | 1 | 0 | 9 | 27 | 87 | 0 | 0 |
| los alcazares | 2014 | 7.750000 | 3.0188800 | 14 | 8 | 13 | 55 | 0 | 3 | 61 | 2 | 30 | 2 | 1 | 0 | 23 | 0 | 67 | 0 | 0 |
| los alcazares | 2015 | 7.500000 | 1.8340219 | 8 | 15 | 12 | 51 | 0 | 4 | 61 | 2 | 27 | 2 | 0 | 0 | 16 | 4 | 68 | 0 | 0 |
| los alcazares | 2016 | 7.416667 | 2.8109634 | 7 | 9 | 13 | 55 | 0 | 5 | 59 | 0 | 30 | 0 | 0 | 0 | 23 | 1 | 65 | 0 | 0 |
| los alcazares | 2017 | 8.500000 | 2.3159526 | 8 | 11 | 5 | 74 | 0 | 4 | 55 | 1 | 46 | 1 | 0 | 0 | 43 | 13 | 44 | 0 | 1 |
| los alcazares | 2018 | 6.500000 | 2.2763607 | 7 | 4 | 15 | 51 | 0 | 1 | 51 | 0 | 27 | 0 | 0 | 0 | 16 | 20 | 42 | 0 | 0 |
| los alpes | 2014 | 7.916667 | 2.9987371 | 7 | 7 | 15 | 62 | 0 | 4 | 56 | 0 | 39 | 0 | 0 | 0 | 23 | 3 | 69 | 0 | 0 |
| los alpes | 2015 | 6.916667 | 3.1176429 | 9 | 5 | 10 | 57 | 0 | 2 | 47 | 0 | 36 | 0 | 0 | 0 | 17 | 3 | 63 | 0 | 0 |
| los alpes | 2016 | 8.250000 | 3.1370223 | 18 | 7 | 11 | 59 | 0 | 4 | 69 | 1 | 29 | 1 | 0 | 0 | 18 | 3 | 77 | 0 | 0 |
| los alpes | 2017 | 6.583333 | 3.5537006 | 14 | 7 | 8 | 46 | 0 | 4 | 48 | 0 | 31 | 0 | 0 | 1 | 26 | 17 | 35 | 0 | 0 |
| los alpes | 2018 | 6.583333 | 2.1087839 | 8 | 12 | 3 | 53 | 0 | 3 | 45 | 0 | 34 | 0 | 0 | 0 | 33 | 17 | 29 | 0 | 0 |
| los angeles | 2014 | 18.333333 | 3.7254245 | 27 | 18 | 11 | 158 | 0 | 6 | 136 | 0 | 84 | 0 | 1 | 0 | 57 | 3 | 159 | 0 | 0 |
| los angeles | 2015 | 21.750000 | 4.9749372 | 24 | 28 | 15 | 187 | 0 | 7 | 145 | 2 | 114 | 2 | 0 | 0 | 71 | 6 | 182 | 0 | 0 |
| los angeles | 2016 | 20.750000 | 4.8453352 | 27 | 13 | 19 | 183 | 0 | 7 | 138 | 0 | 111 | 0 | 0 | 0 | 56 | 5 | 188 | 0 | 0 |
| los angeles | 2017 | 19.500000 | 5.1433982 | 23 | 15 | 12 | 178 | 0 | 6 | 130 | 0 | 104 | 0 | 2 | 0 | 97 | 25 | 109 | 0 | 1 |
| los angeles | 2018 | 16.333333 | 4.7354242 | 14 | 22 | 16 | 134 | 0 | 10 | 118 | 0 | 78 | 0 | 0 | 0 | 75 | 23 | 98 | 0 | 0 |
| los balsos no.1 | 2014 | 6.083333 | 3.5537006 | 4 | 2 | 3 | 63 | 0 | 1 | 23 | 0 | 50 | 0 | 0 | 0 | 4 | 4 | 65 | 0 | 0 |
| los balsos no.1 | 2015 | 5.833333 | 2.1248886 | 5 | 2 | 2 | 59 | 0 | 2 | 26 | 1 | 43 | 1 | 0 | 0 | 9 | 6 | 54 | 0 | 0 |
| los balsos no.1 | 2016 | 8.000000 | 3.3303017 | 9 | 1 | 4 | 81 | 0 | 1 | 27 | 0 | 69 | 0 | 0 | 1 | 10 | 4 | 79 | 0 | 2 |
| los balsos no.1 | 2017 | 4.500000 | 3.1478709 | 3 | 0 | 1 | 47 | 0 | 3 | 20 | 1 | 33 | 1 | 0 | 0 | 6 | 7 | 38 | 0 | 2 |
| los balsos no.1 | 2018 | 4.583333 | 3.1176429 | 2 | 0 | 1 | 51 | 0 | 1 | 15 | 1 | 39 | 1 | 0 | 1 | 11 | 2 | 39 | 0 | 1 |
| los balsos no.2 | 2014 | 10.250000 | 2.8959219 | 7 | 1 | 6 | 105 | 0 | 4 | 32 | 0 | 91 | 0 | 0 | 1 | 8 | 11 | 103 | 0 | 0 |
| los balsos no.2 | 2015 | 10.500000 | 3.2333490 | 3 | 3 | 2 | 117 | 0 | 1 | 27 | 0 | 99 | 0 | 0 | 0 | 5 | 7 | 114 | 0 | 0 |
| los balsos no.2 | 2016 | 12.500000 | 4.8147501 | 4 | 3 | 2 | 140 | 0 | 1 | 26 | 0 | 124 | 0 | 0 | 1 | 22 | 13 | 112 | 1 | 1 |
| los balsos no.2 | 2017 | 18.333333 | 5.9135182 | 6 | 10 | 5 | 196 | 0 | 3 | 47 | 0 | 173 | 0 | 2 | 1 | 18 | 38 | 157 | 0 | 4 |
| los balsos no.2 | 2018 | 9.750000 | 3.5707142 | 5 | 2 | 6 | 104 | 0 | 0 | 30 | 0 | 87 | 0 | 0 | 1 | 11 | 26 | 78 | 0 | 1 |
| los cerros el vergel | 2014 | 5.166667 | 3.2706222 | 12 | 8 | 9 | 29 | 0 | 4 | 40 | 1 | 21 | 1 | 0 | 0 | 9 | 4 | 48 | 0 | 0 |
| los cerros el vergel | 2015 | 4.166667 | 1.8989630 | 8 | 10 | 7 | 24 | 0 | 1 | 36 | 0 | 14 | 0 | 0 | 0 | 5 | 3 | 42 | 0 | 0 |
| los cerros el vergel | 2016 | 4.000000 | 2.0889319 | 7 | 5 | 11 | 22 | 0 | 3 | 32 | 0 | 16 | 0 | 0 | 0 | 6 | 1 | 41 | 0 | 0 |
| los cerros el vergel | 2017 | 3.000000 | 2.3354968 | 8 | 5 | 0 | 22 | 0 | 1 | 24 | 0 | 12 | 0 | 0 | 0 | 11 | 5 | 20 | 0 | 0 |
| los cerros el vergel | 2018 | 3.000000 | 1.2792043 | 6 | 3 | 5 | 21 | 0 | 1 | 20 | 2 | 14 | 1 | 1 | 0 | 3 | 6 | 25 | 0 | 0 |
| los colores | 2014 | 26.833333 | 6.2788727 | 43 | 32 | 44 | 194 | 0 | 9 | 199 | 1 | 122 | 1 | 2 | 0 | 43 | 8 | 268 | 0 | 0 |
| los colores | 2015 | 22.750000 | 7.1239034 | 33 | 26 | 26 | 180 | 0 | 8 | 160 | 1 | 112 | 1 | 1 | 1 | 41 | 14 | 214 | 0 | 1 |
| los colores | 2016 | 30.500000 | 5.8852667 | 65 | 23 | 33 | 234 | 0 | 11 | 236 | 1 | 129 | 1 | 1 | 1 | 47 | 11 | 305 | 0 | 0 |
| los colores | 2017 | 45.750000 | 9.4496272 | 85 | 34 | 73 | 326 | 1 | 30 | 347 | 2 | 200 | 2 | 1 | 46 | 65 | 60 | 371 | 0 | 4 |
| los colores | 2018 | 38.000000 | 4.0226631 | 54 | 33 | 70 | 280 | 1 | 18 | 289 | 4 | 163 | 4 | 1 | 61 | 38 | 81 | 269 | 1 | 1 |
| los conquistadores | 2014 | 61.250000 | 9.9098207 | 63 | 29 | 51 | 581 | 0 | 11 | 317 | 4 | 414 | 4 | 5 | 11 | 71 | 11 | 627 | 0 | 6 |
| los conquistadores | 2015 | 65.416667 | 8.8979909 | 63 | 44 | 38 | 622 | 0 | 18 | 329 | 6 | 450 | 6 | 1 | 10 | 88 | 14 | 660 | 0 | 6 |
| los conquistadores | 2016 | 68.250000 | 11.2583302 | 86 | 30 | 45 | 623 | 0 | 35 | 367 | 5 | 447 | 5 | 1 | 10 | 78 | 31 | 671 | 1 | 22 |
| los conquistadores | 2017 | 59.416667 | 9.6338261 | 67 | 29 | 43 | 553 | 0 | 21 | 317 | 2 | 394 | 2 | 2 | 14 | 99 | 49 | 510 | 0 | 37 |
| los conquistadores | 2018 | 58.666667 | 10.5772770 | 56 | 34 | 27 | 571 | 0 | 16 | 309 | 2 | 393 | 2 | 4 | 19 | 93 | 81 | 469 | 0 | 36 |
| los mangos | 2014 | 8.583333 | 2.7455198 | 10 | 20 | 23 | 47 | 0 | 3 | 72 | 0 | 31 | 0 | 1 | 0 | 14 | 1 | 87 | 0 | 0 |
| los mangos | 2015 | 9.250000 | 2.6671401 | 10 | 28 | 18 | 49 | 0 | 6 | 87 | 0 | 24 | 0 | 0 | 0 | 11 | 4 | 96 | 0 | 0 |
| los mangos | 2016 | 8.500000 | 2.1532217 | 15 | 20 | 11 | 44 | 0 | 12 | 76 | 2 | 24 | 2 | 0 | 0 | 13 | 2 | 85 | 0 | 0 |
| los mangos | 2017 | 8.333333 | 3.1430539 | 12 | 16 | 12 | 56 | 0 | 4 | 66 | 1 | 33 | 1 | 0 | 0 | 17 | 22 | 60 | 0 | 0 |
| los mangos | 2018 | 7.750000 | 3.0785179 | 9 | 20 | 6 | 56 | 0 | 2 | 61 | 0 | 32 | 0 | 0 | 0 | 11 | 21 | 61 | 0 | 0 |
| los naranjos | 2014 | 8.000000 | 3.5929223 | 8 | 5 | 8 | 71 | 0 | 4 | 39 | 0 | 57 | 0 | 0 | 2 | 11 | 5 | 78 | 0 | 0 |
| los naranjos | 2015 | 8.000000 | 2.2962420 | 5 | 4 | 7 | 77 | 0 | 3 | 38 | 0 | 58 | 0 | 0 | 1 | 13 | 7 | 75 | 0 | 0 |
| los naranjos | 2016 | 6.083333 | 2.2746961 | 4 | 0 | 4 | 62 | 0 | 3 | 20 | 0 | 53 | 0 | 0 | 0 | 13 | 8 | 52 | 0 | 0 |
| los naranjos | 2017 | 8.416667 | 2.9063671 | 7 | 3 | 4 | 85 | 0 | 2 | 29 | 0 | 72 | 0 | 0 | 1 | 14 | 25 | 61 | 0 | 0 |
| los naranjos | 2018 | 8.250000 | 3.3063300 | 6 | 2 | 2 | 88 | 0 | 1 | 28 | 0 | 71 | 0 | 0 | 1 | 14 | 29 | 55 | 0 | 0 |
| los pinos | 2014 | 19.583333 | 3.7769236 | 41 | 13 | 27 | 151 | 0 | 3 | 128 | 1 | 106 | 1 | 2 | 11 | 19 | 3 | 199 | 0 | 0 |
| los pinos | 2015 | 20.666667 | 4.5990776 | 32 | 25 | 19 | 163 | 1 | 8 | 127 | 0 | 121 | 0 | 2 | 10 | 34 | 10 | 192 | 0 | 0 |
| los pinos | 2016 | 19.750000 | 5.9256760 | 24 | 16 | 15 | 175 | 0 | 7 | 117 | 2 | 118 | 2 | 0 | 12 | 18 | 5 | 198 | 0 | 2 |
| los pinos | 2017 | 18.750000 | 6.4402851 | 28 | 12 | 8 | 170 | 0 | 7 | 108 | 0 | 117 | 0 | 1 | 20 | 38 | 15 | 151 | 0 | 0 |
| los pinos | 2018 | 15.250000 | 2.7675063 | 15 | 20 | 16 | 127 | 0 | 5 | 94 | 2 | 87 | 2 | 3 | 7 | 35 | 14 | 121 | 0 | 1 |
| manila | 2014 | 26.666667 | 5.7419245 | 17 | 10 | 16 | 269 | 0 | 8 | 108 | 0 | 212 | 0 | 1 | 52 | 23 | 8 | 230 | 0 | 6 |
| manila | 2015 | 30.666667 | 6.5412444 | 21 | 10 | 24 | 310 | 0 | 3 | 128 | 2 | 238 | 2 | 1 | 43 | 34 | 13 | 270 | 0 | 5 |
| manila | 2016 | 30.333333 | 5.7892272 | 27 | 9 | 20 | 298 | 0 | 10 | 135 | 1 | 228 | 1 | 1 | 49 | 37 | 14 | 251 | 1 | 10 |
| manila | 2017 | 31.833333 | 7.6732515 | 24 | 13 | 11 | 323 | 0 | 11 | 121 | 0 | 261 | 0 | 1 | 74 | 50 | 32 | 198 | 0 | 27 |
| manila | 2018 | 29.750000 | 6.1809826 | 24 | 10 | 11 | 304 | 0 | 8 | 118 | 0 | 239 | 0 | 2 | 66 | 48 | 37 | 181 | 0 | 23 |
| manrique | 2017 | 3.000000 | 2.8284271 | 0 | 3 | 0 | 3 | 0 | 0 | 0 | 6 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| manrique central no. 1 | 2014 | 19.166667 | 4.2175679 | 38 | 30 | 23 | 130 | 0 | 9 | 167 | 5 | 58 | 5 | 0 | 0 | 54 | 4 | 167 | 0 | 0 |
| manrique central no. 1 | 2015 | 18.083333 | 4.4611114 | 29 | 24 | 20 | 135 | 0 | 9 | 147 | 4 | 66 | 4 | 0 | 0 | 43 | 8 | 162 | 0 | 0 |
| manrique central no. 1 | 2016 | 21.333333 | 5.4661493 | 36 | 22 | 22 | 162 | 0 | 14 | 170 | 2 | 84 | 2 | 1 | 0 | 69 | 6 | 178 | 0 | 0 |
| manrique central no. 1 | 2017 | 15.666667 | 4.0973014 | 28 | 11 | 14 | 132 | 0 | 3 | 113 | 0 | 75 | 0 | 1 | 0 | 58 | 14 | 115 | 0 | 0 |
| manrique central no. 1 | 2018 | 19.083333 | 5.8225008 | 27 | 18 | 23 | 152 | 0 | 9 | 139 | 0 | 90 | 0 | 0 | 0 | 88 | 30 | 111 | 0 | 0 |
| manrique central no. 2 | 2014 | 10.583333 | 3.3698755 | 20 | 22 | 19 | 62 | 0 | 4 | 97 | 1 | 29 | 1 | 0 | 0 | 20 | 5 | 100 | 0 | 1 |
| manrique central no. 2 | 2015 | 13.666667 | 2.9949452 | 23 | 28 | 15 | 88 | 0 | 10 | 122 | 1 | 41 | 1 | 1 | 0 | 30 | 6 | 126 | 0 | 0 |
| manrique central no. 2 | 2016 | 10.416667 | 4.2094770 | 10 | 17 | 27 | 66 | 0 | 5 | 91 | 0 | 34 | 0 | 0 | 0 | 19 | 5 | 101 | 0 | 0 |
| manrique central no. 2 | 2017 | 10.916667 | 3.9876704 | 12 | 18 | 16 | 78 | 0 | 7 | 94 | 0 | 37 | 0 | 0 | 0 | 33 | 21 | 77 | 0 | 0 |
| manrique central no. 2 | 2018 | 8.000000 | 3.1622777 | 10 | 8 | 10 | 68 | 0 | 0 | 60 | 0 | 36 | 0 | 0 | 0 | 27 | 24 | 45 | 0 | 0 |
| manrique central no.1 | 2014 | 1.000000 | 0.0000000 | 0 | 0 | 0 | 5 | 0 | 0 | 4 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 2 | 0 | 0 |
| manrique central no.1 | 2015 | 1.500000 | 0.7071068 | 0 | 0 | 1 | 2 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 0 |
| manrique central no.1 | 2016 | 1.600000 | 0.8944272 | 0 | 1 | 0 | 7 | 0 | 0 | 6 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 7 | 0 | 0 |
| manrique central no.1 | 2017 | 1.400000 | 0.5477226 | 0 | 0 | 0 | 7 | 0 | 0 | 4 | 0 | 3 | 0 | 0 | 0 | 4 | 0 | 3 | 0 | 0 |
| manrique central no.1 | 2018 | 1.166667 | 0.4082483 | 0 | 0 | 0 | 7 | 0 | 0 | 3 | 0 | 4 | 0 | 0 | 0 | 5 | 0 | 2 | 0 | 0 |
| manrique central no.2 | 2014 | 1.200000 | 0.4472136 | 1 | 1 | 0 | 4 | 0 | 0 | 3 | 0 | 3 | 0 | 0 | 0 | 2 | 0 | 4 | 0 | 0 |
| manrique central no.2 | 2015 | 1.200000 | 0.4472136 | 0 | 1 | 1 | 4 | 0 | 0 | 5 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 3 | 0 | 0 |
| manrique central no.2 | 2016 | 1.000000 | 0.0000000 | 1 | 0 | 0 | 3 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 3 | 0 | 0 |
| manrique central no.2 | 2017 | 1.200000 | 0.4472136 | 1 | 0 | 1 | 4 | 0 | 0 | 3 | 0 | 3 | 0 | 0 | 0 | 1 | 1 | 4 | 0 | 0 |
| manrique central no.2 | 2018 | 1.000000 | 0.0000000 | 1 | 1 | 2 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 1 | 0 | 0 |
| manrique oriental | 2014 | 16.416667 | 3.3427896 | 18 | 43 | 33 | 96 | 0 | 7 | 158 | 2 | 37 | 2 | 0 | 0 | 38 | 1 | 156 | 0 | 0 |
| manrique oriental | 2015 | 15.916667 | 6.1564206 | 28 | 32 | 20 | 108 | 0 | 3 | 138 | 1 | 52 | 1 | 2 | 0 | 19 | 3 | 166 | 0 | 0 |
| manrique oriental | 2016 | 13.333333 | 5.4494926 | 14 | 19 | 16 | 106 | 0 | 5 | 109 | 1 | 50 | 1 | 0 | 0 | 34 | 4 | 120 | 0 | 1 |
| manrique oriental | 2017 | 14.000000 | 4.5726459 | 21 | 24 | 10 | 106 | 0 | 7 | 116 | 0 | 52 | 0 | 1 | 0 | 41 | 20 | 106 | 0 | 0 |
| manrique oriental | 2018 | 13.416667 | 3.8009170 | 20 | 26 | 18 | 90 | 0 | 7 | 112 | 3 | 46 | 2 | 0 | 0 | 28 | 31 | 100 | 0 | 0 |
| maria cano carambolas | 2014 | 1.500000 | 0.5345225 | 1 | 6 | 0 | 5 | 0 | 0 | 8 | 0 | 4 | 0 | 0 | 0 | 0 | 1 | 11 | 0 | 0 |
| maria cano carambolas | 2015 | 1.666667 | 0.7071068 | 4 | 7 | 1 | 3 | 0 | 0 | 13 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 14 | 0 | 0 |
| maria cano carambolas | 2016 | 1.454546 | 0.5222330 | 1 | 10 | 0 | 5 | 0 | 0 | 13 | 1 | 2 | 1 | 0 | 0 | 1 | 0 | 14 | 0 | 0 |
| maria cano carambolas | 2017 | 1.555556 | 0.8819171 | 3 | 5 | 0 | 4 | 0 | 2 | 10 | 0 | 4 | 0 | 0 | 0 | 0 | 3 | 11 | 0 | 0 |
| maria cano carambolas | 2018 | 1.000000 | 0.0000000 | 1 | 3 | 0 | 2 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 4 | 0 | 0 |
| media luna | 2014 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| media luna | 2017 | 1.000000 | NA | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| media luna | 2018 | 1.000000 | NA | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| metropolitano | 2014 | 1.333333 | 0.5773503 | 1 | 0 | 0 | 3 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 3 | 0 | 0 |
| metropolitano | 2015 | 2.166667 | 1.1690452 | 0 | 3 | 3 | 6 | 0 | 1 | 10 | 0 | 3 | 0 | 0 | 0 | 3 | 1 | 9 | 0 | 0 |
| metropolitano | 2016 | 1.375000 | 0.5175492 | 2 | 2 | 2 | 4 | 0 | 1 | 7 | 0 | 4 | 0 | 1 | 0 | 1 | 0 | 9 | 0 | 0 |
| metropolitano | 2017 | 1.200000 | 0.4472136 | 2 | 1 | 1 | 2 | 0 | 0 | 5 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 4 | 0 | 0 |
| metropolitano | 2018 | 1.250000 | 0.5000000 | 1 | 0 | 2 | 1 | 0 | 1 | 4 | 0 | 1 | 0 | 0 | 0 | 0 | 3 | 2 | 0 | 0 |
| mirador del doce | 2014 | 1.400000 | 0.5477226 | 4 | 1 | 1 | 1 | 0 | 0 | 6 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 6 | 0 | 0 |
| mirador del doce | 2015 | 1.800000 | 0.4472136 | 1 | 3 | 2 | 3 | 0 | 0 | 7 | 0 | 2 | 0 | 0 | 0 | 1 | 1 | 7 | 0 | 0 |
| mirador del doce | 2016 | 1.333333 | 0.8164966 | 0 | 4 | 2 | 2 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 |
| mirador del doce | 2017 | 1.428571 | 0.7867958 | 4 | 2 | 2 | 2 | 0 | 0 | 8 | 0 | 2 | 0 | 0 | 0 | 1 | 2 | 7 | 0 | 0 |
| mirador del doce | 2018 | 1.000000 | 0.0000000 | 1 | 3 | 3 | 0 | 0 | 0 | 6 | 1 | 0 | 1 | 0 | 0 | 1 | 2 | 3 | 0 | 0 |
| miraflores | 2014 | 12.500000 | 4.5427265 | 21 | 11 | 15 | 99 | 1 | 3 | 97 | 1 | 52 | 1 | 0 | 0 | 42 | 1 | 106 | 0 | 0 |
| miraflores | 2015 | 10.500000 | 2.7797972 | 12 | 13 | 6 | 88 | 0 | 7 | 88 | 1 | 37 | 1 | 0 | 0 | 37 | 7 | 81 | 0 | 0 |
| miraflores | 2016 | 12.250000 | 3.2227882 | 19 | 11 | 15 | 96 | 0 | 6 | 95 | 0 | 52 | 0 | 0 | 0 | 37 | 10 | 100 | 0 | 0 |
| miraflores | 2017 | 7.833333 | 3.0100841 | 10 | 4 | 5 | 72 | 0 | 3 | 56 | 0 | 38 | 0 | 0 | 0 | 37 | 12 | 45 | 0 | 0 |
| miraflores | 2018 | 8.416667 | 3.2039275 | 8 | 9 | 4 | 73 | 0 | 7 | 57 | 0 | 44 | 0 | 0 | 0 | 42 | 13 | 46 | 0 | 0 |
| miranda | 2014 | 18.333333 | 3.9157800 | 23 | 32 | 21 | 141 | 0 | 3 | 126 | 0 | 94 | 0 | 1 | 1 | 40 | 8 | 170 | 0 | 0 |
| miranda | 2015 | 20.083333 | 3.2601822 | 17 | 31 | 15 | 174 | 0 | 4 | 137 | 0 | 104 | 0 | 0 | 0 | 59 | 4 | 178 | 0 | 0 |
| miranda | 2016 | 17.500000 | 3.6556308 | 30 | 29 | 19 | 124 | 0 | 8 | 130 | 2 | 78 | 2 | 1 | 0 | 55 | 11 | 141 | 0 | 0 |
| miranda | 2017 | 17.333333 | 3.8924947 | 17 | 31 | 18 | 135 | 0 | 7 | 133 | 0 | 75 | 0 | 2 | 0 | 65 | 25 | 116 | 0 | 0 |
| miranda | 2018 | 14.166667 | 2.6911753 | 17 | 19 | 14 | 113 | 0 | 7 | 104 | 0 | 66 | 0 | 0 | 0 | 46 | 33 | 89 | 0 | 2 |
| miravalle | 2014 | 1.800000 | 1.0327956 | 1 | 4 | 0 | 10 | 0 | 3 | 10 | 0 | 8 | 0 | 0 | 0 | 3 | 1 | 14 | 0 | 0 |
| miravalle | 2015 | 1.750000 | 0.8864053 | 1 | 2 | 1 | 10 | 0 | 0 | 8 | 0 | 6 | 0 | 0 | 0 | 3 | 0 | 11 | 0 | 0 |
| miravalle | 2016 | 2.777778 | 1.4813657 | 2 | 1 | 0 | 19 | 0 | 3 | 11 | 0 | 14 | 0 | 0 | 0 | 3 | 0 | 22 | 0 | 0 |
| miravalle | 2017 | 1.875000 | 0.9910312 | 0 | 3 | 2 | 10 | 0 | 0 | 9 | 0 | 6 | 0 | 0 | 0 | 6 | 0 | 9 | 0 | 0 |
| miravalle | 2018 | 1.375000 | 0.7440238 | 2 | 0 | 1 | 8 | 0 | 0 | 4 | 0 | 7 | 0 | 0 | 0 | 3 | 2 | 6 | 0 | 0 |
| monteclaro | 2014 | 1.700000 | 0.8232726 | 3 | 2 | 2 | 8 | 0 | 2 | 12 | 0 | 5 | 0 | 0 | 0 | 0 | 2 | 15 | 0 | 0 |
| monteclaro | 2015 | 1.500000 | 0.5270463 | 5 | 2 | 2 | 5 | 0 | 1 | 12 | 0 | 3 | 0 | 0 | 0 | 0 | 2 | 13 | 0 | 0 |
| monteclaro | 2016 | 2.000000 | 1.3228757 | 7 | 1 | 3 | 6 | 0 | 1 | 15 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 17 | 0 | 0 |
| monteclaro | 2017 | 2.272727 | 1.1037127 | 5 | 3 | 5 | 9 | 0 | 3 | 19 | 0 | 6 | 0 | 0 | 0 | 2 | 4 | 19 | 0 | 0 |
| monteclaro | 2018 | 2.555556 | 0.8819171 | 2 | 3 | 8 | 9 | 0 | 1 | 17 | 0 | 6 | 0 | 0 | 0 | 0 | 7 | 16 | 0 | 0 |
| moravia | 2014 | 26.416667 | 5.7597085 | 33 | 72 | 17 | 181 | 0 | 14 | 177 | 5 | 135 | 5 | 1 | 0 | 25 | 4 | 278 | 0 | 4 |
| moravia | 2015 | 25.250000 | 3.1944554 | 28 | 68 | 28 | 167 | 0 | 12 | 186 | 4 | 113 | 4 | 0 | 0 | 27 | 8 | 260 | 0 | 4 |
| moravia | 2016 | 23.000000 | 3.5929223 | 29 | 68 | 22 | 145 | 0 | 12 | 187 | 6 | 83 | 6 | 0 | 0 | 19 | 10 | 239 | 0 | 2 |
| moravia | 2017 | 16.916667 | 3.2039275 | 31 | 28 | 19 | 117 | 0 | 8 | 136 | 3 | 64 | 3 | 1 | 0 | 24 | 16 | 157 | 0 | 2 |
| moravia | 2018 | 20.416667 | 5.4013186 | 25 | 35 | 19 | 154 | 0 | 12 | 147 | 2 | 96 | 2 | 0 | 5 | 25 | 45 | 166 | 0 | 2 |
| moscu no. 1 | 2014 | 6.333333 | 3.0550505 | 7 | 25 | 5 | 38 | 0 | 1 | 55 | 0 | 21 | 0 | 0 | 0 | 10 | 2 | 64 | 0 | 0 |
| moscu no. 1 | 2015 | 5.500000 | 2.5761141 | 3 | 18 | 4 | 39 | 0 | 2 | 37 | 0 | 29 | 0 | 0 | 0 | 9 | 1 | 56 | 0 | 0 |
| moscu no. 1 | 2016 | 6.250000 | 2.7010099 | 8 | 14 | 9 | 38 | 0 | 6 | 49 | 0 | 26 | 0 | 0 | 0 | 10 | 3 | 62 | 0 | 0 |
| moscu no. 1 | 2017 | 4.500000 | 1.9771421 | 7 | 5 | 7 | 31 | 0 | 4 | 36 | 0 | 18 | 0 | 0 | 0 | 10 | 7 | 37 | 0 | 0 |
| moscu no. 1 | 2018 | 5.833333 | 2.4432963 | 7 | 15 | 11 | 37 | 0 | 0 | 49 | 0 | 21 | 0 | 2 | 0 | 10 | 14 | 43 | 0 | 1 |
| moscu no. 2 | 2014 | 4.833333 | 2.3677121 | 10 | 18 | 11 | 18 | 0 | 1 | 51 | 0 | 7 | 0 | 0 | 0 | 5 | 4 | 49 | 0 | 0 |
| moscu no. 2 | 2015 | 6.500000 | 2.4308622 | 12 | 20 | 13 | 29 | 0 | 4 | 65 | 0 | 13 | 0 | 0 | 0 | 10 | 3 | 65 | 0 | 0 |
| moscu no. 2 | 2016 | 4.750000 | 2.3403574 | 5 | 19 | 9 | 20 | 0 | 4 | 43 | 0 | 14 | 0 | 0 | 0 | 5 | 2 | 49 | 0 | 1 |
| moscu no. 2 | 2017 | 5.333333 | 2.3484360 | 8 | 21 | 10 | 25 | 0 | 0 | 47 | 1 | 16 | 1 | 0 | 0 | 9 | 10 | 44 | 0 | 0 |
| moscu no. 2 | 2018 | 4.363636 | 2.0626550 | 8 | 11 | 8 | 19 | 0 | 2 | 34 | 0 | 14 | 0 | 0 | 0 | 1 | 12 | 35 | 0 | 0 |
| moscu no.1 | 2015 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| moscu no.2 | 2014 | 1.000000 | NA | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| moscu no.2 | 2015 | 1.000000 | 0.0000000 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| moscu no.2 | 2016 | 1.000000 | 0.0000000 | 1 | 1 | 1 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 |
| moscu no.2 | 2017 | 1.000000 | NA | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| moscu no.2 | 2018 | 1.000000 | 0.0000000 | 0 | 1 | 1 | 1 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 0 |
| naranjal | 2014 | 44.666667 | 7.1647284 | 50 | 31 | 40 | 408 | 0 | 7 | 232 | 4 | 300 | 4 | 3 | 0 | 44 | 29 | 451 | 0 | 5 |
| naranjal | 2015 | 53.000000 | 10.2691064 | 63 | 32 | 42 | 487 | 0 | 12 | 241 | 3 | 392 | 3 | 0 | 0 | 55 | 25 | 546 | 0 | 7 |
| naranjal | 2016 | 42.500000 | 8.3502858 | 45 | 25 | 38 | 392 | 0 | 10 | 213 | 3 | 294 | 3 | 0 | 1 | 43 | 28 | 425 | 0 | 10 |
| naranjal | 2017 | 44.750000 | 7.1747664 | 60 | 30 | 36 | 397 | 0 | 14 | 262 | 0 | 275 | 0 | 9 | 1 | 75 | 60 | 378 | 0 | 14 |
| naranjal | 2018 | 40.833333 | 7.5297390 | 49 | 28 | 25 | 369 | 0 | 19 | 217 | 2 | 271 | 2 | 0 | 0 | 75 | 66 | 334 | 0 | 13 |
| nueva villa de aburra | 2014 | 3.181818 | 1.9400094 | 2 | 8 | 2 | 23 | 0 | 0 | 20 | 0 | 15 | 0 | 0 | 0 | 2 | 0 | 33 | 0 | 0 |
| nueva villa de aburra | 2015 | 2.833333 | 1.7494588 | 4 | 0 | 2 | 28 | 0 | 0 | 12 | 0 | 22 | 0 | 0 | 0 | 5 | 0 | 29 | 0 | 0 |
| nueva villa de aburra | 2016 | 3.200000 | 1.4757296 | 4 | 2 | 3 | 22 | 0 | 1 | 22 | 1 | 9 | 1 | 0 | 0 | 4 | 2 | 25 | 0 | 0 |
| nueva villa de aburra | 2017 | 3.727273 | 1.9540168 | 5 | 3 | 2 | 29 | 0 | 2 | 19 | 0 | 22 | 0 | 0 | 0 | 9 | 5 | 27 | 0 | 0 |
| nueva villa de aburra | 2018 | 2.818182 | 1.4709304 | 3 | 2 | 2 | 24 | 0 | 0 | 15 | 0 | 16 | 0 | 0 | 0 | 8 | 1 | 22 | 0 | 0 |
| nueva villa de la iguana | 2014 | 6.916667 | 3.6045006 | 13 | 5 | 8 | 56 | 0 | 1 | 56 | 0 | 27 | 0 | 1 | 0 | 11 | 2 | 68 | 0 | 1 |
| nueva villa de la iguana | 2015 | 6.500000 | 2.4308622 | 9 | 5 | 5 | 55 | 0 | 4 | 48 | 1 | 29 | 1 | 0 | 0 | 16 | 2 | 59 | 0 | 0 |
| nueva villa de la iguana | 2016 | 7.250000 | 2.4167973 | 12 | 9 | 9 | 54 | 0 | 3 | 46 | 1 | 40 | 1 | 0 | 0 | 11 | 3 | 72 | 0 | 0 |
| nueva villa de la iguana | 2017 | 7.583333 | 3.4234043 | 11 | 6 | 4 | 67 | 0 | 3 | 59 | 0 | 32 | 0 | 2 | 0 | 20 | 5 | 63 | 1 | 0 |
| nueva villa de la iguana | 2018 | 7.500000 | 1.6787441 | 10 | 4 | 10 | 63 | 0 | 3 | 57 | 0 | 33 | 0 | 1 | 1 | 16 | 10 | 60 | 0 | 2 |
| nuevos conquistadores | 2014 | 2.444444 | 1.6666667 | 4 | 7 | 4 | 7 | 0 | 0 | 18 | 1 | 3 | 1 | 0 | 0 | 0 | 2 | 19 | 0 | 0 |
| nuevos conquistadores | 2015 | 2.083333 | 0.9962049 | 7 | 7 | 3 | 8 | 0 | 0 | 17 | 0 | 8 | 0 | 0 | 0 | 1 | 1 | 23 | 0 | 0 |
| nuevos conquistadores | 2016 | 2.181818 | 1.3280197 | 4 | 8 | 4 | 4 | 0 | 4 | 23 | 0 | 1 | 0 | 0 | 0 | 1 | 4 | 19 | 0 | 0 |
| nuevos conquistadores | 2017 | 1.625000 | 0.7440238 | 1 | 3 | 1 | 8 | 0 | 0 | 7 | 0 | 6 | 0 | 0 | 0 | 1 | 2 | 10 | 0 | 0 |
| nuevos conquistadores | 2018 | 2.000000 | 1.1547005 | 0 | 2 | 4 | 8 | 0 | 0 | 7 | 0 | 7 | 0 | 0 | 0 | 2 | 2 | 10 | 0 | 0 |
| ocho de marzo | 2014 | 1.166667 | 0.4082483 | 0 | 1 | 1 | 4 | 0 | 1 | 5 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 6 | 0 | 0 |
| ocho de marzo | 2015 | 1.428571 | 0.5345225 | 0 | 1 | 0 | 8 | 0 | 1 | 7 | 0 | 3 | 0 | 0 | 0 | 1 | 0 | 9 | 0 | 0 |
| ocho de marzo | 2016 | 1.600000 | 0.8944272 | 5 | 2 | 0 | 1 | 0 | 0 | 7 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 5 | 0 | 0 |
| ocho de marzo | 2017 | 1.222222 | 0.4409586 | 0 | 4 | 0 | 7 | 0 | 0 | 6 | 0 | 5 | 0 | 0 | 0 | 1 | 2 | 8 | 0 | 0 |
| ocho de marzo | 2018 | 1.714286 | 0.4879500 | 1 | 1 | 1 | 8 | 0 | 1 | 6 | 0 | 6 | 0 | 0 | 0 | 1 | 1 | 10 | 0 | 0 |
| olaya herrera | 2014 | 2.500000 | 1.5075567 | 6 | 12 | 2 | 10 | 0 | 0 | 24 | 0 | 6 | 0 | 0 | 0 | 1 | 4 | 25 | 0 | 0 |
| olaya herrera | 2015 | 3.200000 | 1.8135294 | 6 | 13 | 4 | 8 | 0 | 1 | 28 | 0 | 4 | 0 | 0 | 0 | 0 | 3 | 29 | 0 | 0 |
| olaya herrera | 2016 | 2.700000 | 1.2516656 | 3 | 5 | 6 | 13 | 0 | 0 | 21 | 1 | 5 | 1 | 0 | 0 | 1 | 3 | 22 | 0 | 0 |
| olaya herrera | 2017 | 4.000000 | 1.6514456 | 7 | 7 | 4 | 26 | 0 | 4 | 34 | 0 | 14 | 0 | 0 | 1 | 4 | 10 | 32 | 0 | 1 |
| olaya herrera | 2018 | 3.916667 | 1.7816404 | 9 | 6 | 11 | 21 | 0 | 0 | 32 | 0 | 15 | 0 | 0 | 0 | 2 | 12 | 33 | 0 | 0 |
| oleoducto | 2014 | 5.000000 | 2.8284271 | 4 | 4 | 5 | 47 | 0 | 0 | 31 | 1 | 28 | 1 | 0 | 0 | 1 | 0 | 58 | 0 | 0 |
| oleoducto | 2015 | 6.416667 | 2.8109634 | 3 | 4 | 6 | 62 | 0 | 2 | 42 | 0 | 35 | 0 | 0 | 0 | 2 | 1 | 74 | 0 | 0 |
| oleoducto | 2016 | 4.181818 | 2.2723636 | 3 | 2 | 1 | 37 | 0 | 3 | 27 | 2 | 17 | 2 | 0 | 0 | 3 | 1 | 40 | 0 | 0 |
| oleoducto | 2017 | 10.583333 | 4.9259671 | 12 | 5 | 13 | 93 | 0 | 4 | 85 | 0 | 42 | 0 | 0 | 0 | 4 | 8 | 108 | 0 | 7 |
| oleoducto | 2018 | 14.000000 | 3.6680438 | 16 | 7 | 11 | 122 | 0 | 12 | 106 | 3 | 59 | 2 | 1 | 0 | 7 | 13 | 129 | 0 | 16 |
| oriente | 2014 | 1.600000 | 0.8432740 | 1 | 5 | 3 | 5 | 0 | 2 | 11 | 1 | 4 | 1 | 0 | 0 | 1 | 0 | 14 | 0 | 0 |
| oriente | 2015 | 1.600000 | 0.6992059 | 1 | 10 | 2 | 2 | 0 | 1 | 15 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 15 | 0 | 0 |
| oriente | 2016 | 1.909091 | 1.0444659 | 1 | 11 | 1 | 7 | 0 | 1 | 18 | 0 | 3 | 0 | 0 | 0 | 2 | 3 | 16 | 0 | 0 |
| oriente | 2017 | 1.875000 | 1.3562027 | 2 | 0 | 1 | 10 | 0 | 2 | 11 | 1 | 3 | 1 | 0 | 0 | 0 | 3 | 11 | 0 | 0 |
| oriente | 2018 | 2.200000 | 1.1352924 | 3 | 4 | 5 | 9 | 0 | 1 | 17 | 2 | 3 | 1 | 0 | 0 | 3 | 10 | 8 | 0 | 0 |
| pablo vi | 2014 | 1.727273 | 0.4670994 | 2 | 6 | 2 | 9 | 0 | 0 | 14 | 0 | 5 | 0 | 0 | 0 | 1 | 0 | 18 | 0 | 0 |
| pablo vi | 2015 | 2.200000 | 1.2292726 | 2 | 9 | 2 | 8 | 0 | 1 | 15 | 1 | 6 | 1 | 0 | 0 | 0 | 0 | 20 | 0 | 1 |
| pablo vi | 2016 | 1.666667 | 0.7784989 | 2 | 7 | 1 | 8 | 0 | 2 | 13 | 0 | 7 | 0 | 1 | 0 | 0 | 0 | 19 | 0 | 0 |
| pablo vi | 2017 | 1.900000 | 0.7378648 | 1 | 6 | 0 | 12 | 0 | 0 | 11 | 0 | 8 | 0 | 0 | 0 | 3 | 3 | 13 | 0 | 0 |
| pablo vi | 2018 | 1.714286 | 0.4879500 | 1 | 2 | 1 | 7 | 0 | 1 | 7 | 1 | 4 | 1 | 0 | 0 | 2 | 1 | 8 | 0 | 0 |
| pajarito | 2014 | 1.600000 | 0.5477226 | 2 | 1 | 2 | 2 | 0 | 1 | 7 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 7 | 0 | 0 |
| pajarito | 2015 | 1.600000 | 1.0749677 | 3 | 1 | 3 | 7 | 0 | 2 | 14 | 0 | 2 | 0 | 0 | 0 | 0 | 3 | 13 | 0 | 0 |
| pajarito | 2016 | 1.909091 | 0.9438798 | 3 | 1 | 5 | 11 | 0 | 1 | 13 | 0 | 8 | 0 | 0 | 0 | 2 | 1 | 18 | 0 | 0 |
| pajarito | 2017 | 2.272727 | 1.1908744 | 6 | 2 | 1 | 15 | 0 | 1 | 15 | 0 | 10 | 0 | 0 | 0 | 6 | 5 | 14 | 0 | 0 |
| pajarito | 2018 | 2.750000 | 1.2154311 | 9 | 4 | 10 | 9 | 0 | 1 | 28 | 0 | 5 | 0 | 0 | 0 | 4 | 10 | 19 | 0 | 0 |
| palenque | 2014 | 8.250000 | 2.5980762 | 16 | 11 | 14 | 53 | 0 | 5 | 65 | 0 | 34 | 0 | 2 | 0 | 7 | 3 | 87 | 0 | 0 |
| palenque | 2015 | 7.083333 | 2.5030285 | 13 | 6 | 18 | 48 | 0 | 0 | 57 | 0 | 28 | 0 | 0 | 0 | 14 | 2 | 69 | 0 | 0 |
| palenque | 2016 | 7.416667 | 2.9682665 | 12 | 10 | 9 | 57 | 0 | 1 | 49 | 1 | 39 | 1 | 0 | 0 | 8 | 1 | 79 | 0 | 0 |
| palenque | 2017 | 4.583333 | 2.1514618 | 6 | 5 | 7 | 36 | 0 | 1 | 31 | 0 | 24 | 0 | 1 | 0 | 12 | 5 | 37 | 0 | 0 |
| palenque | 2018 | 5.916667 | 2.8749177 | 7 | 5 | 8 | 48 | 0 | 3 | 44 | 0 | 27 | 0 | 0 | 0 | 14 | 19 | 36 | 0 | 2 |
| palermo | 2014 | 3.583333 | 1.1645002 | 5 | 9 | 4 | 24 | 1 | 0 | 29 | 0 | 14 | 0 | 0 | 0 | 2 | 1 | 40 | 0 | 0 |
| palermo | 2015 | 4.416667 | 1.7298625 | 5 | 8 | 3 | 34 | 0 | 3 | 33 | 1 | 19 | 1 | 0 | 0 | 10 | 0 | 42 | 0 | 0 |
| palermo | 2016 | 5.416667 | 3.3967453 | 11 | 11 | 7 | 33 | 0 | 3 | 46 | 0 | 19 | 0 | 0 | 6 | 4 | 1 | 52 | 0 | 2 |
| palermo | 2017 | 7.333333 | 2.9949452 | 5 | 17 | 11 | 52 | 0 | 3 | 52 | 1 | 35 | 1 | 0 | 8 | 8 | 8 | 54 | 0 | 9 |
| palermo | 2018 | 9.083333 | 1.8809250 | 16 | 13 | 10 | 66 | 0 | 4 | 71 | 1 | 37 | 1 | 1 | 13 | 12 | 10 | 69 | 0 | 3 |
| parque juan pablo ii | 2014 | 10.416667 | 2.5030285 | 10 | 7 | 10 | 93 | 0 | 5 | 69 | 2 | 54 | 2 | 0 | 0 | 17 | 4 | 102 | 0 | 0 |
| parque juan pablo ii | 2015 | 9.083333 | 2.6784776 | 11 | 9 | 10 | 75 | 0 | 4 | 74 | 3 | 32 | 3 | 0 | 0 | 13 | 3 | 90 | 0 | 0 |
| parque juan pablo ii | 2016 | 13.750000 | 4.3301270 | 28 | 4 | 14 | 109 | 0 | 10 | 113 | 0 | 52 | 0 | 0 | 1 | 22 | 4 | 138 | 0 | 0 |
| parque juan pablo ii | 2017 | 13.000000 | 3.0748245 | 15 | 6 | 12 | 114 | 0 | 9 | 78 | 1 | 77 | 1 | 1 | 11 | 29 | 25 | 89 | 0 | 0 |
| parque juan pablo ii | 2018 | 12.500000 | 4.2958754 | 12 | 11 | 5 | 115 | 0 | 7 | 84 | 2 | 64 | 1 | 0 | 17 | 17 | 18 | 97 | 0 | 0 |
| parque norte | 2014 | 7.833333 | 3.4067669 | 11 | 8 | 3 | 71 | 0 | 1 | 45 | 0 | 49 | 0 | 1 | 0 | 11 | 1 | 79 | 0 | 2 |
| parque norte | 2015 | 8.083333 | 2.0207259 | 12 | 9 | 4 | 69 | 0 | 3 | 53 | 1 | 43 | 1 | 0 | 0 | 7 | 0 | 86 | 0 | 3 |
| parque norte | 2016 | 8.416667 | 2.9987371 | 7 | 9 | 11 | 70 | 0 | 4 | 61 | 0 | 40 | 0 | 0 | 0 | 16 | 1 | 83 | 0 | 1 |
| parque norte | 2017 | 3.727273 | 2.4531983 | 5 | 3 | 5 | 26 | 0 | 2 | 25 | 0 | 16 | 0 | 0 | 0 | 6 | 7 | 28 | 0 | 0 |
| parque norte | 2018 | 3.300000 | 1.8287822 | 2 | 5 | 2 | 23 | 0 | 1 | 16 | 0 | 17 | 0 | 0 | 0 | 6 | 3 | 24 | 0 | 0 |
| patio bonito | 2014 | 15.666667 | 6.7733882 | 16 | 9 | 13 | 146 | 0 | 4 | 78 | 0 | 110 | 0 | 1 | 0 | 25 | 5 | 156 | 0 | 1 |
| patio bonito | 2015 | 14.750000 | 5.7227616 | 11 | 4 | 6 | 154 | 0 | 2 | 68 | 1 | 108 | 1 | 0 | 0 | 26 | 3 | 147 | 0 | 0 |
| patio bonito | 2016 | 14.333333 | 4.7161875 | 11 | 5 | 7 | 141 | 0 | 8 | 69 | 1 | 102 | 1 | 0 | 0 | 18 | 3 | 150 | 0 | 0 |
| patio bonito | 2017 | 18.166667 | 3.5376760 | 16 | 6 | 8 | 183 | 0 | 5 | 81 | 0 | 137 | 0 | 1 | 0 | 31 | 12 | 171 | 0 | 3 |
| patio bonito | 2018 | 17.083333 | 5.3335701 | 8 | 9 | 8 | 177 | 0 | 3 | 71 | 0 | 134 | 0 | 1 | 1 | 33 | 14 | 153 | 0 | 3 |
| pedregal | 2014 | 15.583333 | 5.0535016 | 39 | 32 | 40 | 71 | 0 | 5 | 156 | 0 | 31 | 0 | 2 | 0 | 27 | 7 | 151 | 0 | 0 |
| pedregal | 2015 | 14.833333 | 3.0100841 | 25 | 37 | 19 | 88 | 0 | 9 | 138 | 1 | 39 | 1 | 0 | 2 | 38 | 8 | 129 | 0 | 0 |
| pedregal | 2016 | 14.250000 | 4.2022721 | 24 | 34 | 31 | 77 | 0 | 5 | 137 | 2 | 32 | 2 | 0 | 2 | 35 | 8 | 124 | 0 | 0 |
| pedregal | 2017 | 15.000000 | 5.5595945 | 32 | 33 | 28 | 80 | 0 | 7 | 144 | 1 | 35 | 1 | 1 | 1 | 29 | 34 | 114 | 0 | 0 |
| pedregal | 2018 | 15.416667 | 4.1221868 | 27 | 34 | 42 | 77 | 0 | 5 | 146 | 3 | 36 | 2 | 0 | 4 | 35 | 57 | 87 | 0 | 0 |
| pedregal alto | 2014 | 1.000000 | 0.0000000 | 1 | 0 | 1 | 3 | 0 | 0 | 3 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 |
| pedregal alto | 2015 | 1.500000 | 0.8366600 | 1 | 0 | 2 | 4 | 0 | 2 | 7 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 8 | 0 | 0 |
| pedregal alto | 2016 | 2.000000 | 1.2247449 | 3 | 2 | 3 | 2 | 0 | 0 | 9 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 9 | 0 | 0 |
| pedregal alto | 2017 | 1.285714 | 0.4879500 | 3 | 0 | 2 | 3 | 0 | 1 | 8 | 0 | 1 | 0 | 0 | 0 | 1 | 2 | 6 | 0 | 0 |
| pedregal alto | 2018 | 1.300000 | 0.6749486 | 4 | 0 | 4 | 5 | 0 | 0 | 10 | 0 | 3 | 0 | 0 | 0 | 1 | 6 | 6 | 0 | 0 |
| pedregal bajo | 2014 | 2.750000 | 1.5447860 | 12 | 1 | 5 | 14 | 0 | 1 | 25 | 0 | 8 | 0 | 0 | 0 | 2 | 1 | 30 | 0 | 0 |
| pedregal bajo | 2015 | 2.454546 | 1.3684763 | 3 | 3 | 8 | 10 | 0 | 3 | 24 | 0 | 3 | 0 | 0 | 0 | 1 | 1 | 25 | 0 | 0 |
| pedregal bajo | 2016 | 2.181818 | 1.3280197 | 5 | 1 | 5 | 11 | 0 | 2 | 21 | 0 | 3 | 0 | 0 | 0 | 1 | 2 | 21 | 0 | 0 |
| pedregal bajo | 2017 | 2.000000 | 1.6733201 | 0 | 0 | 4 | 7 | 0 | 1 | 9 | 0 | 3 | 0 | 0 | 0 | 1 | 3 | 8 | 0 | 0 |
| pedregal bajo | 2018 | 1.000000 | 0.0000000 | 1 | 0 | 1 | 1 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 |
| perpetuo socorro | 2014 | 64.583333 | 8.6493125 | 72 | 29 | 40 | 612 | 0 | 22 | 384 | 2 | 389 | 2 | 4 | 19 | 112 | 15 | 603 | 0 | 20 |
| perpetuo socorro | 2015 | 67.000000 | 7.8624539 | 55 | 41 | 52 | 632 | 0 | 24 | 388 | 4 | 412 | 4 | 4 | 17 | 150 | 18 | 602 | 0 | 9 |
| perpetuo socorro | 2016 | 72.916667 | 10.6979890 | 96 | 32 | 54 | 673 | 0 | 20 | 402 | 5 | 468 | 5 | 2 | 22 | 145 | 20 | 665 | 0 | 16 |
| perpetuo socorro | 2017 | 72.583333 | 6.4731380 | 63 | 28 | 54 | 702 | 0 | 24 | 373 | 0 | 498 | 0 | 4 | 24 | 201 | 55 | 542 | 0 | 45 |
| perpetuo socorro | 2018 | 66.416667 | 10.0946280 | 67 | 30 | 48 | 629 | 0 | 23 | 349 | 3 | 445 | 1 | 3 | 22 | 172 | 61 | 496 | 0 | 42 |
| picachito | 2014 | 1.714286 | 0.9511897 | 4 | 4 | 4 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
| picachito | 2015 | 1.571429 | 0.5345225 | 4 | 3 | 0 | 4 | 0 | 0 | 10 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 10 | 0 | 0 |
| picachito | 2016 | 1.625000 | 1.1877349 | 3 | 3 | 3 | 3 | 0 | 1 | 12 | 0 | 1 | 0 | 0 | 0 | 2 | 3 | 8 | 0 | 0 |
| picachito | 2017 | 1.500000 | 0.7977240 | 1 | 5 | 4 | 4 | 0 | 4 | 16 | 0 | 2 | 0 | 1 | 0 | 0 | 4 | 13 | 0 | 0 |
| picachito | 2018 | 2.000000 | 1.0954451 | 6 | 0 | 9 | 6 | 0 | 1 | 18 | 0 | 4 | 0 | 0 | 0 | 2 | 11 | 9 | 0 | 0 |
| picacho | 2014 | 12.250000 | 3.8641711 | 29 | 25 | 35 | 57 | 0 | 1 | 118 | 0 | 29 | 0 | 0 | 0 | 10 | 7 | 130 | 0 | 0 |
| picacho | 2015 | 12.916667 | 2.7455198 | 29 | 18 | 38 | 63 | 0 | 7 | 120 | 0 | 35 | 0 | 0 | 0 | 12 | 6 | 137 | 0 | 0 |
| picacho | 2016 | 14.000000 | 3.7899388 | 32 | 42 | 28 | 61 | 0 | 5 | 130 | 0 | 38 | 0 | 0 | 0 | 19 | 12 | 137 | 0 | 0 |
| picacho | 2017 | 13.000000 | 5.5103209 | 30 | 24 | 36 | 61 | 0 | 5 | 123 | 1 | 32 | 1 | 0 | 0 | 13 | 34 | 108 | 0 | 0 |
| picacho | 2018 | 12.166667 | 3.5632807 | 20 | 21 | 35 | 68 | 0 | 2 | 109 | 0 | 37 | 0 | 0 | 0 | 16 | 57 | 71 | 0 | 2 |
| piedra gorda | 2017 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| piedras blancas | 2014 | 1.272727 | 0.6466698 | 2 | 5 | 2 | 4 | 0 | 1 | 11 | 0 | 3 | 0 | 0 | 0 | 0 | 2 | 12 | 0 | 0 |
| piedras blancas | 2015 | 2.300000 | 1.3374935 | 1 | 10 | 3 | 7 | 0 | 2 | 21 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 22 | 0 | 0 |
| piedras blancas | 2016 | 1.600000 | 0.6992059 | 1 | 6 | 3 | 6 | 0 | 0 | 12 | 1 | 3 | 1 | 0 | 0 | 0 | 2 | 13 | 0 | 0 |
| piedras blancas | 2017 | 2.500000 | 1.2692955 | 3 | 12 | 3 | 6 | 0 | 1 | 21 | 0 | 4 | 0 | 1 | 0 | 1 | 9 | 14 | 0 | 0 |
| piedras blancas | 2018 | 2.333333 | 1.4142136 | 0 | 7 | 2 | 12 | 0 | 0 | 14 | 0 | 7 | 0 | 0 | 0 | 0 | 5 | 16 | 0 | 0 |
| piedras blancas - matasano | 2015 | 1.000000 | NA | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| piedras blancas represa | 2014 | 1.000000 | NA | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| piedras blancas represa | 2015 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| piedras blancas represa | 2016 | 1.000000 | 0.0000000 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
| piedras blancas represa | 2018 | 1.000000 | NA | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| playon de los comuneros | 2014 | 5.333333 | 2.2696949 | 7 | 23 | 4 | 30 | 0 | 0 | 48 | 0 | 16 | 0 | 1 | 0 | 7 | 1 | 55 | 0 | 0 |
| playon de los comuneros | 2015 | 5.416667 | 2.4293034 | 6 | 7 | 12 | 36 | 0 | 4 | 47 | 1 | 17 | 1 | 0 | 0 | 7 | 2 | 55 | 0 | 0 |
| playon de los comuneros | 2016 | 4.500000 | 2.2763607 | 4 | 15 | 4 | 25 | 0 | 6 | 43 | 0 | 11 | 0 | 0 | 0 | 3 | 3 | 48 | 0 | 0 |
| playon de los comuneros | 2017 | 5.250000 | 2.0943647 | 9 | 8 | 2 | 43 | 0 | 1 | 34 | 0 | 29 | 0 | 0 | 0 | 21 | 8 | 34 | 0 | 0 |
| playon de los comuneros | 2018 | 6.166667 | 2.3677121 | 9 | 10 | 5 | 46 | 0 | 4 | 43 | 2 | 29 | 1 | 0 | 0 | 10 | 12 | 50 | 0 | 1 |
| plaza de ferias | 2014 | 2.333333 | 1.3026779 | 2 | 1 | 2 | 23 | 0 | 0 | 18 | 0 | 10 | 0 | 0 | 0 | 3 | 0 | 25 | 0 | 0 |
| plaza de ferias | 2015 | 2.333333 | 1.5811388 | 1 | 5 | 0 | 14 | 0 | 1 | 11 | 1 | 9 | 1 | 0 | 0 | 3 | 0 | 16 | 0 | 1 |
| plaza de ferias | 2016 | 3.000000 | 2.0449494 | 1 | 4 | 2 | 29 | 0 | 0 | 23 | 0 | 13 | 0 | 0 | 0 | 6 | 2 | 28 | 0 | 0 |
| plaza de ferias | 2017 | 2.363636 | 1.2060454 | 0 | 3 | 2 | 20 | 0 | 1 | 18 | 0 | 8 | 0 | 0 | 0 | 8 | 3 | 15 | 0 | 0 |
| plaza de ferias | 2018 | 2.000000 | 0.8660254 | 0 | 0 | 0 | 18 | 0 | 0 | 8 | 0 | 10 | 0 | 0 | 0 | 1 | 1 | 16 | 0 | 0 |
| popular | 2014 | 10.083333 | 3.8954130 | 18 | 35 | 18 | 48 | 1 | 1 | 85 | 1 | 35 | 1 | 2 | 0 | 4 | 1 | 113 | 0 | 0 |
| popular | 2015 | 7.916667 | 3.1176429 | 11 | 25 | 16 | 39 | 0 | 4 | 71 | 0 | 24 | 0 | 0 | 0 | 7 | 7 | 81 | 0 | 0 |
| popular | 2016 | 7.333333 | 3.0846639 | 9 | 29 | 6 | 41 | 0 | 3 | 60 | 0 | 28 | 0 | 0 | 0 | 5 | 3 | 80 | 0 | 0 |
| popular | 2017 | 6.583333 | 1.8809250 | 6 | 20 | 16 | 33 | 0 | 4 | 55 | 1 | 23 | 1 | 0 | 0 | 7 | 14 | 57 | 0 | 0 |
| popular | 2018 | 6.750000 | 2.0504988 | 16 | 18 | 13 | 32 | 0 | 2 | 57 | 0 | 24 | 0 | 0 | 0 | 5 | 30 | 46 | 0 | 0 |
| potrerito | 2014 | 1.000000 | 0.0000000 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
| potrerito | 2015 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| potrerito | 2017 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| potrerito | 2018 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| prado | 2014 | 38.583333 | 6.0371326 | 42 | 41 | 36 | 335 | 0 | 9 | 252 | 2 | 209 | 2 | 0 | 0 | 116 | 3 | 342 | 0 | 0 |
| prado | 2015 | 36.166667 | 6.8600733 | 34 | 35 | 36 | 311 | 0 | 18 | 236 | 2 | 196 | 2 | 1 | 1 | 121 | 5 | 304 | 0 | 0 |
| prado | 2016 | 33.500000 | 6.5017480 | 37 | 36 | 25 | 284 | 1 | 19 | 233 | 2 | 167 | 2 | 3 | 0 | 110 | 9 | 278 | 0 | 0 |
| prado | 2017 | 31.666667 | 7.7733032 | 29 | 23 | 21 | 296 | 0 | 11 | 214 | 0 | 166 | 0 | 0 | 0 | 187 | 25 | 167 | 0 | 1 |
| prado | 2018 | 29.000000 | 6.1200119 | 25 | 29 | 25 | 261 | 0 | 8 | 212 | 8 | 128 | 5 | 2 | 0 | 176 | 37 | 128 | 0 | 0 |
| robledo | 2014 | 14.500000 | 2.9076701 | 29 | 18 | 23 | 100 | 0 | 4 | 107 | 0 | 67 | 0 | 0 | 0 | 25 | 5 | 143 | 0 | 1 |
| robledo | 2015 | 17.500000 | 5.1433982 | 35 | 25 | 27 | 108 | 0 | 15 | 143 | 1 | 66 | 1 | 1 | 0 | 28 | 7 | 172 | 0 | 1 |
| robledo | 2016 | 17.416667 | 4.9627400 | 42 | 17 | 36 | 97 | 0 | 17 | 160 | 1 | 48 | 1 | 0 | 0 | 15 | 10 | 182 | 0 | 1 |
| robledo | 2017 | 20.750000 | 5.9103146 | 53 | 13 | 41 | 125 | 0 | 17 | 174 | 2 | 73 | 2 | 0 | 0 | 39 | 43 | 164 | 0 | 1 |
| robledo | 2018 | 15.750000 | 3.8168288 | 26 | 11 | 41 | 101 | 0 | 10 | 134 | 1 | 54 | 1 | 0 | 0 | 25 | 56 | 106 | 0 | 1 |
| rosales | 2014 | 22.333333 | 3.1430539 | 19 | 17 | 21 | 208 | 0 | 3 | 135 | 0 | 133 | 0 | 1 | 0 | 56 | 5 | 203 | 0 | 3 |
| rosales | 2015 | 23.833333 | 6.6446606 | 21 | 13 | 16 | 229 | 0 | 7 | 148 | 1 | 137 | 1 | 0 | 3 | 78 | 3 | 199 | 0 | 2 |
| rosales | 2016 | 27.500000 | 4.3379928 | 20 | 11 | 30 | 255 | 0 | 14 | 180 | 2 | 148 | 2 | 1 | 2 | 76 | 8 | 239 | 1 | 1 |
| rosales | 2017 | 25.500000 | 6.4737231 | 31 | 18 | 16 | 230 | 0 | 11 | 174 | 0 | 132 | 0 | 1 | 0 | 120 | 25 | 156 | 0 | 4 |
| rosales | 2018 | 26.083333 | 4.2949936 | 18 | 19 | 15 | 257 | 0 | 4 | 160 | 3 | 150 | 2 | 0 | 4 | 107 | 26 | 170 | 0 | 4 |
| san antonio | 2014 | 1.400000 | 0.5477226 | 2 | 1 | 2 | 2 | 0 | 0 | 5 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 |
| san antonio | 2015 | 1.400000 | 0.5477226 | 0 | 1 | 1 | 4 | 0 | 1 | 4 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 |
| san antonio | 2016 | 1.200000 | 0.4472136 | 0 | 2 | 1 | 2 | 0 | 1 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 |
| san antonio | 2017 | 2.000000 | NA | 1 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
| san antonio | 2018 | 1.000000 | NA | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| san benito | 2014 | 58.000000 | 11.3458042 | 46 | 97 | 45 | 497 | 0 | 11 | 305 | 7 | 384 | 7 | 2 | 0 | 83 | 17 | 580 | 0 | 7 |
| san benito | 2015 | 72.333333 | 14.4243061 | 55 | 105 | 53 | 633 | 0 | 22 | 369 | 13 | 486 | 13 | 1 | 2 | 74 | 22 | 751 | 0 | 5 |
| san benito | 2016 | 60.833333 | 8.8094302 | 56 | 88 | 46 | 519 | 0 | 21 | 333 | 4 | 393 | 4 | 1 | 0 | 82 | 26 | 608 | 2 | 7 |
| san benito | 2017 | 47.083333 | 10.5525381 | 48 | 55 | 23 | 425 | 0 | 14 | 224 | 3 | 338 | 3 | 2 | 2 | 99 | 43 | 405 | 0 | 11 |
| san benito | 2018 | 48.166667 | 8.9932635 | 32 | 65 | 31 | 435 | 1 | 14 | 240 | 1 | 337 | 1 | 0 | 1 | 111 | 61 | 392 | 0 | 12 |
| san bernardo | 2014 | 15.166667 | 3.0100841 | 15 | 17 | 17 | 125 | 0 | 8 | 99 | 0 | 83 | 0 | 1 | 0 | 32 | 1 | 148 | 0 | 0 |
| san bernardo | 2015 | 15.916667 | 2.2343733 | 12 | 26 | 16 | 131 | 0 | 6 | 120 | 1 | 70 | 1 | 0 | 0 | 32 | 6 | 152 | 0 | 0 |
| san bernardo | 2016 | 19.916667 | 4.0330078 | 30 | 27 | 22 | 152 | 0 | 8 | 146 | 1 | 92 | 1 | 0 | 0 | 56 | 7 | 174 | 0 | 1 |
| san bernardo | 2017 | 17.333333 | 5.1049590 | 30 | 20 | 19 | 129 | 0 | 10 | 123 | 1 | 84 | 1 | 2 | 0 | 61 | 28 | 116 | 0 | 0 |
| san bernardo | 2018 | 15.750000 | 3.3063300 | 19 | 21 | 11 | 132 | 0 | 6 | 108 | 6 | 75 | 4 | 1 | 0 | 70 | 24 | 90 | 0 | 0 |
| san diego | 2014 | 45.666667 | 9.7731853 | 48 | 41 | 51 | 393 | 0 | 15 | 248 | 2 | 298 | 2 | 1 | 17 | 47 | 17 | 447 | 0 | 17 |
| san diego | 2015 | 48.666667 | 7.8315601 | 55 | 32 | 36 | 446 | 0 | 15 | 244 | 0 | 340 | 0 | 1 | 32 | 42 | 24 | 480 | 0 | 5 |
| san diego | 2016 | 49.833333 | 6.0877423 | 51 | 22 | 32 | 477 | 0 | 16 | 238 | 2 | 358 | 2 | 1 | 35 | 45 | 30 | 473 | 0 | 12 |
| san diego | 2017 | 48.916667 | 7.2545701 | 60 | 31 | 36 | 444 | 0 | 16 | 246 | 2 | 339 | 2 | 1 | 45 | 70 | 63 | 381 | 0 | 25 |
| san diego | 2018 | 45.250000 | 7.2503918 | 29 | 22 | 22 | 454 | 0 | 16 | 174 | 6 | 363 | 4 | 1 | 50 | 83 | 67 | 318 | 0 | 20 |
| san german | 2014 | 8.416667 | 3.6545945 | 12 | 13 | 7 | 69 | 0 | 0 | 50 | 0 | 51 | 0 | 2 | 0 | 12 | 4 | 83 | 0 | 0 |
| san german | 2015 | 9.583333 | 3.7284736 | 11 | 15 | 6 | 78 | 0 | 5 | 66 | 3 | 46 | 3 | 1 | 1 | 16 | 2 | 92 | 0 | 0 |
| san german | 2016 | 10.583333 | 2.7784343 | 11 | 14 | 6 | 92 | 0 | 4 | 78 | 0 | 49 | 0 | 1 | 0 | 12 | 6 | 105 | 0 | 3 |
| san german | 2017 | 11.083333 | 3.8954130 | 12 | 7 | 8 | 102 | 0 | 4 | 69 | 0 | 64 | 0 | 0 | 0 | 31 | 13 | 86 | 0 | 3 |
| san german | 2018 | 14.583333 | 5.5670840 | 14 | 17 | 12 | 128 | 0 | 4 | 92 | 2 | 81 | 2 | 1 | 1 | 32 | 25 | 112 | 0 | 2 |
| san isidro | 2014 | 13.166667 | 3.4067669 | 30 | 25 | 24 | 74 | 0 | 5 | 113 | 2 | 43 | 2 | 1 | 0 | 23 | 2 | 128 | 0 | 2 |
| san isidro | 2015 | 15.416667 | 3.7284736 | 26 | 31 | 26 | 97 | 0 | 5 | 139 | 1 | 45 | 1 | 0 | 0 | 34 | 5 | 143 | 0 | 2 |
| san isidro | 2016 | 19.083333 | 3.3967453 | 37 | 33 | 31 | 116 | 0 | 12 | 173 | 2 | 54 | 2 | 1 | 2 | 49 | 7 | 167 | 0 | 1 |
| san isidro | 2017 | 19.000000 | 3.5675303 | 37 | 21 | 25 | 139 | 0 | 6 | 157 | 0 | 71 | 0 | 0 | 2 | 69 | 40 | 115 | 0 | 2 |
| san isidro | 2018 | 17.333333 | 6.4291005 | 25 | 25 | 31 | 119 | 0 | 8 | 144 | 0 | 64 | 0 | 1 | 8 | 49 | 40 | 103 | 0 | 7 |
| san javier | 2017 | 1.000000 | 0.0000000 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| san javier no.1 | 2014 | 13.416667 | 3.1176429 | 25 | 23 | 23 | 83 | 0 | 7 | 119 | 0 | 42 | 0 | 0 | 3 | 24 | 6 | 127 | 0 | 1 |
| san javier no.1 | 2015 | 11.583333 | 2.4293034 | 20 | 17 | 15 | 78 | 0 | 9 | 90 | 1 | 48 | 1 | 0 | 7 | 21 | 6 | 104 | 0 | 0 |
| san javier no.1 | 2016 | 12.500000 | 3.1188576 | 18 | 20 | 20 | 83 | 0 | 9 | 105 | 2 | 43 | 2 | 0 | 9 | 28 | 2 | 109 | 0 | 0 |
| san javier no.1 | 2017 | 12.750000 | 4.7887178 | 25 | 17 | 20 | 83 | 0 | 8 | 111 | 1 | 41 | 1 | 0 | 10 | 39 | 30 | 73 | 0 | 0 |
| san javier no.1 | 2018 | 10.250000 | 4.4543135 | 12 | 20 | 13 | 74 | 0 | 4 | 84 | 0 | 39 | 0 | 0 | 9 | 42 | 23 | 49 | 0 | 0 |
| san javier no.2 | 2014 | 5.666667 | 1.5569979 | 8 | 16 | 7 | 36 | 0 | 1 | 42 | 1 | 25 | 1 | 1 | 0 | 13 | 1 | 52 | 0 | 0 |
| san javier no.2 | 2015 | 4.250000 | 1.7645499 | 5 | 11 | 7 | 28 | 0 | 0 | 35 | 0 | 16 | 0 | 0 | 1 | 5 | 2 | 43 | 0 | 0 |
| san javier no.2 | 2016 | 6.250000 | 1.9128750 | 8 | 20 | 8 | 35 | 0 | 4 | 55 | 0 | 20 | 0 | 0 | 0 | 14 | 2 | 59 | 0 | 0 |
| san javier no.2 | 2017 | 4.454546 | 1.7529196 | 8 | 6 | 4 | 31 | 0 | 0 | 30 | 0 | 19 | 0 | 0 | 0 | 15 | 8 | 26 | 0 | 0 |
| san javier no.2 | 2018 | 4.000000 | 1.8586408 | 5 | 6 | 8 | 28 | 0 | 1 | 25 | 0 | 23 | 0 | 0 | 0 | 14 | 8 | 26 | 0 | 0 |
| san joaquin | 2014 | 11.000000 | 2.8919952 | 9 | 9 | 6 | 105 | 0 | 3 | 57 | 2 | 73 | 2 | 0 | 0 | 21 | 4 | 105 | 0 | 0 |
| san joaquin | 2015 | 11.333333 | 3.7979261 | 8 | 12 | 8 | 105 | 0 | 3 | 73 | 0 | 63 | 0 | 0 | 0 | 21 | 2 | 112 | 0 | 1 |
| san joaquin | 2016 | 13.416667 | 3.9648073 | 14 | 13 | 7 | 119 | 0 | 8 | 88 | 1 | 72 | 1 | 0 | 0 | 30 | 6 | 123 | 1 | 0 |
| san joaquin | 2017 | 8.833333 | 3.5118846 | 8 | 10 | 3 | 82 | 0 | 3 | 47 | 1 | 58 | 1 | 0 | 0 | 24 | 6 | 75 | 0 | 0 |
| san joaquin | 2018 | 10.750000 | 3.8876261 | 8 | 7 | 4 | 107 | 0 | 3 | 56 | 3 | 70 | 2 | 1 | 0 | 38 | 9 | 79 | 0 | 0 |
| san jose de la montana | 2017 | 1.000000 | NA | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| san jose de la montana | 2018 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| san jose la cima no. 1 | 2014 | 1.000000 | 0.0000000 | 1 | 2 | 0 | 1 | 0 | 1 | 4 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 4 | 0 | 0 |
| san jose la cima no. 1 | 2015 | 1.571429 | 0.7867958 | 0 | 4 | 0 | 7 | 0 | 0 | 7 | 1 | 3 | 1 | 0 | 0 | 0 | 0 | 10 | 0 | 0 |
| san jose la cima no. 1 | 2016 | 1.333333 | 0.5163978 | 2 | 1 | 2 | 3 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 |
| san jose la cima no. 1 | 2017 | 1.400000 | 0.5477226 | 3 | 0 | 1 | 3 | 0 | 0 | 4 | 0 | 3 | 0 | 0 | 0 | 1 | 2 | 4 | 0 | 0 |
| san jose la cima no. 1 | 2018 | 1.250000 | 0.5000000 | 0 | 4 | 1 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 3 | 0 | 0 |
| san jose la cima no.2 | 2014 | 1.000000 | 0.0000000 | 4 | 2 | 2 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 6 | 0 | 0 |
| san jose la cima no.2 | 2015 | 1.000000 | 0.0000000 | 0 | 1 | 1 | 1 | 0 | 1 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
| san jose la cima no.2 | 2016 | 1.000000 | 0.0000000 | 1 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| san jose la cima no.2 | 2017 | 1.500000 | 0.7071068 | 2 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 |
| san jose la cima no.2 | 2018 | 1.000000 | 0.0000000 | 0 | 1 | 1 | 0 | 0 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| san lucas | 2014 | 2.750000 | 1.4222262 | 1 | 1 | 1 | 30 | 0 | 0 | 8 | 0 | 25 | 0 | 0 | 1 | 1 | 2 | 29 | 0 | 0 |
| san lucas | 2015 | 1.750000 | 1.2154311 | 1 | 2 | 0 | 17 | 0 | 1 | 6 | 1 | 14 | 1 | 0 | 0 | 3 | 3 | 14 | 0 | 0 |
| san lucas | 2016 | 2.416667 | 1.1645002 | 4 | 2 | 1 | 21 | 0 | 1 | 10 | 0 | 19 | 0 | 0 | 0 | 0 | 0 | 29 | 0 | 0 |
| san lucas | 2017 | 4.636364 | 2.2033033 | 2 | 1 | 2 | 45 | 0 | 1 | 10 | 0 | 41 | 0 | 0 | 1 | 5 | 9 | 36 | 0 | 0 |
| san lucas | 2018 | 4.909091 | 2.4679767 | 2 | 3 | 1 | 45 | 0 | 3 | 13 | 0 | 41 | 0 | 0 | 0 | 4 | 10 | 39 | 0 | 1 |
| san martin de porres | 2014 | 10.166667 | 2.9797295 | 19 | 20 | 31 | 50 | 0 | 2 | 88 | 1 | 33 | 1 | 1 | 0 | 11 | 4 | 105 | 0 | 0 |
| san martin de porres | 2015 | 10.083333 | 2.6443192 | 20 | 20 | 17 | 54 | 0 | 10 | 86 | 0 | 35 | 0 | 1 | 0 | 18 | 7 | 95 | 0 | 0 |
| san martin de porres | 2016 | 9.583333 | 3.2601822 | 25 | 18 | 21 | 44 | 0 | 7 | 88 | 0 | 27 | 0 | 0 | 0 | 15 | 7 | 93 | 0 | 0 |
| san martin de porres | 2017 | 10.416667 | 3.9876704 | 19 | 21 | 18 | 60 | 0 | 7 | 91 | 0 | 34 | 0 | 1 | 0 | 24 | 26 | 74 | 0 | 0 |
| san martin de porres | 2018 | 10.916667 | 3.6296339 | 21 | 19 | 31 | 56 | 0 | 4 | 102 | 0 | 29 | 0 | 2 | 0 | 23 | 45 | 61 | 0 | 0 |
| san miguel | 2014 | 16.000000 | 4.1778637 | 21 | 17 | 25 | 124 | 0 | 5 | 138 | 3 | 51 | 3 | 1 | 0 | 57 | 2 | 129 | 0 | 0 |
| san miguel | 2015 | 14.000000 | 3.4112115 | 12 | 13 | 8 | 127 | 0 | 8 | 112 | 1 | 55 | 1 | 0 | 0 | 62 | 4 | 101 | 0 | 0 |
| san miguel | 2016 | 12.583333 | 3.0289012 | 22 | 16 | 13 | 93 | 0 | 7 | 112 | 0 | 39 | 0 | 0 | 0 | 65 | 2 | 84 | 0 | 0 |
| san miguel | 2017 | 13.416667 | 3.8954130 | 16 | 10 | 17 | 110 | 0 | 8 | 109 | 0 | 52 | 0 | 0 | 0 | 79 | 23 | 58 | 1 | 0 |
| san miguel | 2018 | 11.583333 | 3.9186810 | 14 | 10 | 15 | 93 | 0 | 7 | 96 | 0 | 43 | 0 | 0 | 0 | 56 | 20 | 62 | 0 | 1 |
| san pablo | 2014 | 6.818182 | 2.9603440 | 6 | 37 | 8 | 22 | 0 | 2 | 67 | 0 | 8 | 0 | 0 | 0 | 4 | 2 | 69 | 0 | 0 |
| san pablo | 2015 | 7.166667 | 1.6966991 | 10 | 24 | 17 | 31 | 0 | 4 | 70 | 0 | 16 | 0 | 0 | 0 | 9 | 3 | 74 | 0 | 0 |
| san pablo | 2016 | 6.333333 | 3.3393884 | 10 | 21 | 11 | 31 | 0 | 3 | 58 | 0 | 18 | 0 | 0 | 0 | 7 | 3 | 66 | 0 | 0 |
| san pablo | 2017 | 5.583333 | 1.7816404 | 10 | 8 | 10 | 37 | 0 | 2 | 42 | 0 | 25 | 0 | 0 | 0 | 10 | 4 | 53 | 0 | 0 |
| san pablo | 2018 | 5.000000 | 1.5954481 | 7 | 13 | 14 | 21 | 0 | 5 | 48 | 0 | 12 | 0 | 0 | 0 | 7 | 24 | 29 | 0 | 0 |
| san pedro | 2014 | 16.916667 | 4.9074773 | 22 | 17 | 25 | 136 | 0 | 3 | 114 | 1 | 88 | 1 | 0 | 16 | 43 | 2 | 141 | 0 | 0 |
| san pedro | 2015 | 15.500000 | 4.2958754 | 21 | 16 | 14 | 133 | 0 | 2 | 95 | 2 | 89 | 2 | 0 | 12 | 38 | 3 | 131 | 0 | 0 |
| san pedro | 2016 | 17.166667 | 6.5758972 | 13 | 23 | 22 | 146 | 0 | 2 | 111 | 3 | 92 | 3 | 2 | 13 | 42 | 3 | 143 | 0 | 0 |
| san pedro | 2017 | 14.916667 | 3.0289012 | 20 | 19 | 7 | 128 | 0 | 5 | 94 | 0 | 85 | 0 | 2 | 26 | 53 | 17 | 81 | 0 | 0 |
| san pedro | 2018 | 14.750000 | 4.0926764 | 12 | 20 | 11 | 130 | 0 | 4 | 85 | 0 | 92 | 0 | 0 | 19 | 51 | 20 | 87 | 0 | 0 |
| santa cruz | 2014 | 6.583333 | 3.4498573 | 10 | 21 | 11 | 34 | 0 | 3 | 59 | 2 | 18 | 2 | 2 | 0 | 10 | 3 | 62 | 0 | 0 |
| santa cruz | 2015 | 4.416667 | 1.8809250 | 4 | 15 | 7 | 26 | 0 | 1 | 45 | 1 | 7 | 1 | 0 | 0 | 11 | 0 | 41 | 0 | 0 |
| santa cruz | 2016 | 4.500000 | 2.5045413 | 7 | 14 | 2 | 31 | 0 | 0 | 41 | 0 | 13 | 0 | 0 | 0 | 7 | 3 | 44 | 0 | 0 |
| santa cruz | 2017 | 5.000000 | 1.8090681 | 7 | 16 | 5 | 30 | 0 | 2 | 38 | 5 | 17 | 5 | 1 | 0 | 8 | 3 | 43 | 0 | 0 |
| santa cruz | 2018 | 5.916667 | 2.8109634 | 13 | 12 | 6 | 38 | 0 | 2 | 53 | 0 | 18 | 0 | 0 | 1 | 13 | 18 | 39 | 0 | 0 |
| santa fe | 2014 | 56.083333 | 8.7952294 | 58 | 34 | 60 | 491 | 1 | 29 | 364 | 3 | 306 | 3 | 2 | 10 | 74 | 4 | 572 | 0 | 8 |
| santa fe | 2015 | 47.916667 | 6.5151339 | 57 | 48 | 61 | 390 | 0 | 19 | 336 | 3 | 236 | 3 | 2 | 18 | 62 | 9 | 478 | 0 | 3 |
| santa fe | 2016 | 58.000000 | 8.9035233 | 72 | 51 | 41 | 510 | 0 | 22 | 381 | 3 | 312 | 3 | 0 | 16 | 75 | 23 | 571 | 0 | 8 |
| santa fe | 2017 | 59.666667 | 9.6137528 | 87 | 25 | 42 | 530 | 0 | 32 | 395 | 3 | 318 | 3 | 5 | 32 | 109 | 63 | 492 | 0 | 12 |
| santa fe | 2018 | 59.666667 | 10.2985730 | 63 | 35 | 35 | 560 | 1 | 22 | 335 | 8 | 373 | 6 | 2 | 27 | 125 | 44 | 509 | 0 | 3 |
| santa ines | 2014 | 11.333333 | 3.2844906 | 23 | 33 | 16 | 59 | 0 | 5 | 106 | 0 | 30 | 0 | 1 | 1 | 9 | 5 | 120 | 0 | 0 |
| santa ines | 2015 | 8.250000 | 2.1794495 | 16 | 17 | 17 | 47 | 0 | 2 | 68 | 1 | 30 | 1 | 0 | 0 | 11 | 2 | 85 | 0 | 0 |
| santa ines | 2016 | 9.083333 | 1.6213537 | 14 | 23 | 13 | 56 | 0 | 3 | 81 | 0 | 28 | 0 | 0 | 1 | 14 | 5 | 89 | 0 | 0 |
| santa ines | 2017 | 7.416667 | 1.7816404 | 10 | 14 | 9 | 53 | 0 | 3 | 58 | 0 | 31 | 0 | 0 | 1 | 20 | 10 | 58 | 0 | 0 |
| santa ines | 2018 | 9.583333 | 3.7284736 | 19 | 25 | 8 | 58 | 0 | 5 | 81 | 2 | 32 | 2 | 1 | 0 | 17 | 32 | 63 | 0 | 0 |
| santa lucia | 2014 | 5.111111 | 2.1473498 | 4 | 9 | 8 | 24 | 0 | 1 | 31 | 0 | 15 | 0 | 0 | 0 | 4 | 0 | 42 | 0 | 0 |
| santa lucia | 2015 | 4.666667 | 1.5569979 | 5 | 12 | 8 | 30 | 0 | 1 | 37 | 0 | 19 | 0 | 0 | 0 | 7 | 1 | 48 | 0 | 0 |
| santa lucia | 2016 | 3.583333 | 1.4433757 | 1 | 9 | 7 | 21 | 0 | 5 | 31 | 0 | 12 | 0 | 0 | 0 | 5 | 1 | 37 | 0 | 0 |
| santa lucia | 2017 | 5.250000 | 1.9128750 | 9 | 7 | 2 | 42 | 0 | 3 | 41 | 0 | 22 | 0 | 0 | 0 | 20 | 4 | 39 | 0 | 0 |
| santa lucia | 2018 | 3.916667 | 1.7816404 | 1 | 11 | 3 | 32 | 0 | 0 | 23 | 1 | 23 | 1 | 0 | 0 | 13 | 4 | 29 | 0 | 0 |
| santa margarita | 2014 | 2.444444 | 2.2973415 | 4 | 1 | 3 | 10 | 0 | 4 | 16 | 0 | 6 | 0 | 0 | 0 | 3 | 0 | 19 | 0 | 0 |
| santa margarita | 2015 | 2.083333 | 1.1645002 | 2 | 4 | 10 | 9 | 0 | 0 | 16 | 0 | 9 | 0 | 1 | 0 | 1 | 0 | 22 | 0 | 1 |
| santa margarita | 2016 | 2.636364 | 1.5015144 | 5 | 3 | 8 | 10 | 0 | 3 | 22 | 0 | 7 | 0 | 0 | 0 | 4 | 1 | 24 | 0 | 0 |
| santa margarita | 2017 | 5.090909 | 2.8444523 | 10 | 2 | 12 | 30 | 0 | 2 | 44 | 0 | 12 | 0 | 0 | 0 | 4 | 12 | 40 | 0 | 0 |
| santa margarita | 2018 | 7.000000 | 2.7633971 | 14 | 8 | 18 | 41 | 0 | 3 | 63 | 1 | 20 | 1 | 0 | 0 | 10 | 22 | 49 | 0 | 2 |
| santa maria de los angeles | 2014 | 13.750000 | 3.0785179 | 13 | 4 | 7 | 139 | 0 | 2 | 56 | 0 | 109 | 0 | 1 | 0 | 20 | 8 | 134 | 0 | 2 |
| santa maria de los angeles | 2015 | 14.583333 | 3.3967453 | 8 | 4 | 6 | 152 | 0 | 5 | 58 | 1 | 116 | 1 | 1 | 0 | 12 | 9 | 150 | 0 | 2 |
| santa maria de los angeles | 2016 | 15.416667 | 3.3427896 | 24 | 7 | 12 | 138 | 0 | 4 | 76 | 3 | 106 | 3 | 0 | 0 | 8 | 11 | 163 | 0 | 0 |
| santa maria de los angeles | 2017 | 22.833333 | 3.5376760 | 28 | 3 | 15 | 217 | 0 | 11 | 115 | 0 | 159 | 0 | 2 | 0 | 32 | 32 | 201 | 0 | 7 |
| santa maria de los angeles | 2018 | 14.583333 | 4.6992907 | 18 | 7 | 9 | 137 | 0 | 4 | 67 | 3 | 105 | 2 | 2 | 0 | 21 | 17 | 132 | 0 | 1 |
| santa monica | 2014 | 6.833333 | 1.3371158 | 11 | 4 | 8 | 59 | 0 | 0 | 46 | 1 | 35 | 1 | 0 | 0 | 24 | 1 | 56 | 0 | 0 |
| santa monica | 2015 | 6.583333 | 2.3915888 | 15 | 5 | 5 | 51 | 0 | 3 | 54 | 1 | 24 | 1 | 0 | 0 | 24 | 2 | 52 | 0 | 0 |
| santa monica | 2016 | 8.250000 | 2.8643578 | 9 | 3 | 17 | 69 | 0 | 1 | 67 | 0 | 32 | 0 | 0 | 0 | 29 | 3 | 67 | 0 | 0 |
| santa monica | 2017 | 6.333333 | 3.0251471 | 7 | 4 | 9 | 53 | 0 | 3 | 53 | 0 | 23 | 0 | 0 | 0 | 32 | 11 | 33 | 0 | 0 |
| santa monica | 2018 | 5.333333 | 1.8257419 | 6 | 6 | 4 | 47 | 0 | 1 | 39 | 0 | 25 | 0 | 1 | 0 | 27 | 7 | 29 | 0 | 0 |
| santa rosa de lima | 2014 | 1.400000 | 0.5477226 | 1 | 1 | 2 | 2 | 0 | 1 | 5 | 1 | 1 | 1 | 0 | 0 | 2 | 0 | 4 | 0 | 0 |
| santa rosa de lima | 2015 | 1.333333 | 0.5773503 | 0 | 1 | 0 | 3 | 0 | 0 | 3 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 0 |
| santa rosa de lima | 2016 | 1.000000 | NA | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| santa rosa de lima | 2017 | 1.333333 | 0.5163978 | 1 | 0 | 3 | 4 | 0 | 0 | 5 | 0 | 3 | 0 | 0 | 0 | 0 | 2 | 6 | 0 | 0 |
| santa rosa de lima | 2018 | 1.000000 | 0.0000000 | 2 | 2 | 0 | 2 | 0 | 0 | 5 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 4 | 0 | 0 |
| santa teresita | 2014 | 4.583333 | 1.8319554 | 4 | 3 | 2 | 45 | 0 | 1 | 32 | 0 | 23 | 0 | 1 | 0 | 15 | 2 | 37 | 0 | 0 |
| santa teresita | 2015 | 4.583333 | 1.5050420 | 4 | 5 | 1 | 43 | 0 | 2 | 29 | 0 | 26 | 0 | 0 | 0 | 16 | 2 | 37 | 0 | 0 |
| santa teresita | 2016 | 4.666667 | 2.3484360 | 2 | 3 | 2 | 45 | 0 | 4 | 29 | 0 | 27 | 0 | 0 | 0 | 25 | 1 | 30 | 0 | 0 |
| santa teresita | 2017 | 4.750000 | 1.4847712 | 8 | 3 | 2 | 43 | 0 | 1 | 32 | 0 | 25 | 0 | 0 | 0 | 23 | 10 | 24 | 0 | 0 |
| santa teresita | 2018 | 5.181818 | 2.0404990 | 4 | 2 | 3 | 48 | 0 | 0 | 27 | 0 | 30 | 0 | 0 | 0 | 22 | 7 | 28 | 0 | 0 |
| santander | 2014 | 8.166667 | 2.6571801 | 15 | 29 | 20 | 32 | 0 | 2 | 80 | 1 | 17 | 1 | 0 | 0 | 7 | 5 | 85 | 0 | 0 |
| santander | 2015 | 7.583333 | 3.2601822 | 9 | 22 | 22 | 33 | 0 | 5 | 75 | 1 | 15 | 1 | 0 | 0 | 4 | 9 | 77 | 0 | 0 |
| santander | 2016 | 9.333333 | 4.1633320 | 21 | 20 | 21 | 47 | 0 | 3 | 84 | 3 | 25 | 3 | 0 | 0 | 13 | 3 | 93 | 0 | 0 |
| santander | 2017 | 10.833333 | 4.4890439 | 23 | 31 | 24 | 50 | 0 | 2 | 105 | 1 | 24 | 1 | 2 | 0 | 27 | 22 | 78 | 0 | 0 |
| santander | 2018 | 8.666667 | 3.6762959 | 12 | 26 | 25 | 40 | 0 | 1 | 85 | 2 | 17 | 2 | 0 | 0 | 16 | 37 | 49 | 0 | 0 |
| santo domingo savio no. 1 | 2014 | 9.666667 | 2.8069179 | 14 | 41 | 19 | 32 | 0 | 10 | 89 | 1 | 26 | 1 | 0 | 0 | 5 | 5 | 105 | 0 | 0 |
| santo domingo savio no. 1 | 2015 | 8.333333 | 3.0550505 | 14 | 41 | 19 | 23 | 0 | 3 | 83 | 1 | 16 | 1 | 0 | 0 | 6 | 7 | 86 | 0 | 0 |
| santo domingo savio no. 1 | 2016 | 9.166667 | 2.8867513 | 19 | 34 | 18 | 33 | 0 | 6 | 87 | 0 | 23 | 0 | 0 | 0 | 3 | 10 | 97 | 0 | 0 |
| santo domingo savio no. 1 | 2017 | 6.666667 | 3.0550505 | 10 | 24 | 3 | 38 | 0 | 5 | 51 | 0 | 29 | 0 | 0 | 0 | 7 | 13 | 60 | 0 | 0 |
| santo domingo savio no. 1 | 2018 | 7.750000 | 3.1370223 | 22 | 33 | 12 | 23 | 0 | 3 | 78 | 3 | 12 | 3 | 0 | 0 | 7 | 35 | 48 | 0 | 0 |
| santo domingo savio no. 2 | 2014 | 3.250000 | 1.5447860 | 2 | 14 | 8 | 15 | 0 | 0 | 34 | 0 | 5 | 0 | 0 | 0 | 1 | 3 | 35 | 0 | 0 |
| santo domingo savio no. 2 | 2015 | 3.272727 | 1.7372915 | 2 | 20 | 5 | 8 | 0 | 1 | 28 | 1 | 7 | 1 | 1 | 0 | 0 | 2 | 32 | 0 | 0 |
| santo domingo savio no. 2 | 2016 | 3.416667 | 2.2746961 | 5 | 19 | 7 | 10 | 0 | 0 | 35 | 1 | 5 | 1 | 0 | 0 | 0 | 4 | 36 | 0 | 0 |
| santo domingo savio no. 2 | 2017 | 3.200000 | 1.2292726 | 7 | 10 | 4 | 11 | 0 | 0 | 21 | 0 | 11 | 0 | 0 | 0 | 3 | 10 | 19 | 0 | 0 |
| santo domingo savio no. 2 | 2018 | 2.250000 | 0.9653073 | 1 | 8 | 5 | 12 | 0 | 1 | 18 | 0 | 9 | 0 | 0 | 0 | 2 | 9 | 16 | 0 | 0 |
| santo domingo savio no.1 | 2014 | 1.000000 | 0.0000000 | 1 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| santo domingo savio no.1 | 2015 | 1.000000 | NA | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| santo domingo savio no.1 | 2017 | 1.000000 | 0.0000000 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| santo domingo savio no.1 | 2018 | 1.000000 | 0.0000000 | 0 | 0 | 1 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| sevilla | 2014 | 21.000000 | 3.9312270 | 18 | 31 | 19 | 181 | 0 | 3 | 123 | 3 | 126 | 3 | 0 | 10 | 42 | 4 | 192 | 1 | 0 |
| sevilla | 2015 | 20.333333 | 5.9288713 | 29 | 22 | 31 | 157 | 0 | 5 | 138 | 2 | 104 | 2 | 2 | 4 | 35 | 10 | 191 | 0 | 0 |
| sevilla | 2016 | 19.583333 | 5.5507302 | 19 | 17 | 18 | 177 | 0 | 4 | 115 | 2 | 118 | 2 | 0 | 13 | 46 | 8 | 165 | 1 | 0 |
| sevilla | 2017 | 24.583333 | 7.0124348 | 40 | 23 | 30 | 194 | 0 | 8 | 165 | 1 | 129 | 1 | 0 | 16 | 55 | 40 | 183 | 0 | 0 |
| sevilla | 2018 | 19.666667 | 5.8981250 | 15 | 27 | 18 | 171 | 0 | 5 | 127 | 2 | 107 | 1 | 0 | 14 | 60 | 29 | 132 | 0 | 0 |
| simon bolivar | 2014 | 5.500000 | 2.2360680 | 5 | 7 | 5 | 49 | 0 | 0 | 29 | 0 | 37 | 0 | 0 | 0 | 16 | 0 | 50 | 0 | 0 |
| simon bolivar | 2015 | 8.333333 | 2.5346089 | 9 | 6 | 6 | 76 | 0 | 3 | 61 | 1 | 38 | 1 | 0 | 0 | 30 | 3 | 66 | 0 | 0 |
| simon bolivar | 2016 | 7.416667 | 2.5746433 | 1 | 3 | 5 | 77 | 0 | 3 | 47 | 0 | 42 | 0 | 0 | 0 | 31 | 2 | 56 | 0 | 0 |
| simon bolivar | 2017 | 6.583333 | 1.9286516 | 3 | 7 | 3 | 66 | 0 | 0 | 46 | 0 | 33 | 0 | 0 | 6 | 33 | 2 | 37 | 0 | 1 |
| simon bolivar | 2018 | 6.500000 | 2.1532217 | 5 | 1 | 5 | 67 | 0 | 0 | 40 | 0 | 38 | 0 | 0 | 4 | 38 | 6 | 30 | 0 | 0 |
| sin nombre | 2014 | 1.000000 | 0.0000000 | 1 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
| sin nombre | 2015 | 2.000000 | NA | 1 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
| sin nombre | 2018 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| suburbano altavista | 2014 | 2.000000 | 0.8660254 | 4 | 2 | 4 | 8 | 0 | 0 | 15 | 0 | 3 | 0 | 0 | 0 | 0 | 2 | 16 | 0 | 0 |
| suburbano altavista | 2015 | 2.875000 | 1.5526475 | 3 | 3 | 2 | 14 | 0 | 1 | 17 | 0 | 6 | 0 | 0 | 0 | 1 | 1 | 21 | 0 | 0 |
| suburbano altavista | 2016 | 1.666667 | 0.8660254 | 0 | 3 | 2 | 9 | 0 | 1 | 10 | 1 | 4 | 1 | 0 | 0 | 0 | 0 | 14 | 0 | 0 |
| suburbano altavista | 2017 | 2.375000 | 1.7677670 | 5 | 3 | 2 | 8 | 0 | 1 | 14 | 0 | 5 | 0 | 0 | 0 | 1 | 2 | 16 | 0 | 0 |
| suburbano altavista | 2018 | 1.500000 | 0.7559289 | 3 | 2 | 1 | 6 | 0 | 0 | 9 | 0 | 3 | 0 | 0 | 0 | 0 | 3 | 9 | 0 | 0 |
| suburbano chacaltaya | 2015 | 1.000000 | 0.0000000 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
| suburbano chacaltaya | 2016 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| suburbano chacaltaya | 2017 | 4.000000 | NA | 0 | 0 | 0 | 4 | 0 | 0 | 1 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
| suburbano el llano | 2015 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| suburbano el llano | 2017 | 1.285714 | 0.4879500 | 0 | 0 | 1 | 8 | 0 | 0 | 2 | 0 | 7 | 0 | 0 | 0 | 0 | 1 | 8 | 0 | 0 |
| suburbano el llano | 2018 | 1.375000 | 0.5175492 | 1 | 2 | 0 | 6 | 0 | 2 | 5 | 0 | 6 | 0 | 0 | 0 | 1 | 1 | 9 | 0 | 0 |
| suburbano el plan | 2014 | 14.250000 | 8.0693021 | 52 | 12 | 44 | 45 | 0 | 18 | 145 | 0 | 26 | 0 | 3 | 0 | 0 | 28 | 140 | 0 | 0 |
| suburbano el plan | 2015 | 7.166667 | 8.4405227 | 21 | 10 | 21 | 26 | 0 | 8 | 69 | 0 | 17 | 0 | 0 | 0 | 0 | 32 | 54 | 0 | 0 |
| suburbano el plan | 2016 | 2.750000 | 1.4222262 | 3 | 9 | 12 | 5 | 0 | 4 | 32 | 0 | 1 | 0 | 0 | 0 | 0 | 30 | 3 | 0 | 0 |
| suburbano el plan | 2017 | 3.333333 | 1.6329932 | 5 | 4 | 3 | 7 | 0 | 1 | 16 | 0 | 4 | 0 | 0 | 0 | 1 | 10 | 9 | 0 | 0 |
| suburbano el tesoro | 2014 | 1.500000 | 0.7071068 | 0 | 0 | 0 | 3 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 |
| suburbano el tesoro | 2015 | 1.250000 | 0.5000000 | 1 | 0 | 0 | 4 | 0 | 0 | 2 | 0 | 3 | 0 | 0 | 0 | 1 | 0 | 4 | 0 | 0 |
| suburbano el tesoro | 2016 | 1.000000 | 0.0000000 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| suburbano el tesoro | 2017 | 1.000000 | 0.0000000 | 0 | 0 | 1 | 2 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 |
| suburbano el tesoro | 2018 | 1.000000 | 0.0000000 | 0 | 0 | 0 | 5 | 0 | 2 | 2 | 0 | 5 | 0 | 0 | 1 | 0 | 2 | 4 | 0 | 0 |
| suburbano la loma | 2014 | 3.636364 | 1.0269106 | 2 | 4 | 6 | 26 | 0 | 2 | 23 | 0 | 17 | 0 | 0 | 0 | 1 | 0 | 39 | 0 | 0 |
| suburbano la loma | 2015 | 4.000000 | 1.4770979 | 7 | 4 | 7 | 29 | 0 | 1 | 32 | 0 | 16 | 0 | 0 | 0 | 1 | 1 | 46 | 0 | 0 |
| suburbano la loma | 2016 | 4.500000 | 2.4308622 | 13 | 4 | 9 | 26 | 0 | 2 | 34 | 1 | 19 | 1 | 0 | 0 | 2 | 5 | 45 | 0 | 1 |
| suburbano la loma | 2017 | 2.833333 | 1.6966991 | 4 | 9 | 3 | 18 | 0 | 0 | 22 | 1 | 11 | 1 | 0 | 0 | 5 | 3 | 24 | 0 | 1 |
| suburbano la loma | 2018 | 4.833333 | 2.2495791 | 14 | 6 | 4 | 31 | 0 | 3 | 38 | 0 | 20 | 0 | 0 | 0 | 3 | 13 | 42 | 0 | 0 |
| suburbano mirador del poblado | 2014 | 1.400000 | 0.5477226 | 0 | 0 | 1 | 5 | 0 | 1 | 3 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 |
| suburbano mirador del poblado | 2015 | 1.500000 | 0.7559289 | 1 | 0 | 2 | 7 | 0 | 2 | 7 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
| suburbano mirador del poblado | 2016 | 1.200000 | 0.4472136 | 0 | 0 | 0 | 5 | 0 | 1 | 4 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 |
| suburbano mirador del poblado | 2017 | 2.142857 | 1.4638501 | 3 | 0 | 1 | 10 | 0 | 1 | 8 | 0 | 7 | 0 | 0 | 0 | 4 | 2 | 9 | 0 | 0 |
| suburbano mirador del poblado | 2018 | 1.818182 | 1.0787198 | 2 | 0 | 3 | 13 | 1 | 1 | 9 | 0 | 11 | 0 | 0 | 2 | 0 | 1 | 17 | 0 | 0 |
| suburbano palma patio | 2014 | 1.333333 | 0.5773503 | 0 | 0 | 1 | 3 | 0 | 0 | 3 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 3 | 0 | 0 |
| suburbano palma patio | 2015 | 1.333333 | 0.5773503 | 0 | 0 | 2 | 2 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 0 | 0 |
| suburbano palma patio | 2016 | 1.666667 | 0.5773503 | 2 | 0 | 2 | 1 | 0 | 0 | 4 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 4 | 0 | 0 |
| suburbano palma patio | 2017 | 2.000000 | 1.0000000 | 0 | 1 | 1 | 4 | 0 | 0 | 2 | 0 | 4 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 2 |
| suburbano palma patio | 2018 | 1.666667 | 0.5773503 | 0 | 0 | 0 | 5 | 0 | 0 | 2 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
| suburbano palmitas | 2015 | 1.000000 | 0.0000000 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
| suburbano palmitas | 2016 | 1.333333 | 0.5773503 | 0 | 0 | 0 | 4 | 0 | 0 | 1 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
| suburbano palmitas | 2017 | 1.000000 | 0.0000000 | 0 | 0 | 0 | 2 | 0 | 1 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 |
| suburbano palmitas | 2018 | 1.000000 | NA | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| suburbano pedregal alto | 2014 | 1.250000 | 0.5000000 | 2 | 0 | 0 | 2 | 0 | 1 | 4 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 |
| suburbano pedregal alto | 2015 | 1.000000 | 0.0000000 | 1 | 0 | 1 | 2 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
| suburbano pedregal alto | 2016 | 1.222222 | 0.4409586 | 5 | 1 | 3 | 1 | 0 | 1 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 9 | 0 | 0 |
| suburbano pedregal alto | 2017 | 1.000000 | NA | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| suburbano pedregal alto | 2018 | 1.000000 | 0.0000000 | 1 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| suburbano potrerito | 2017 | 1.000000 | NA | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| suburbano travesias | 2014 | 1.500000 | 0.5270463 | 4 | 5 | 1 | 5 | 0 | 0 | 12 | 0 | 3 | 0 | 0 | 0 | 1 | 3 | 11 | 0 | 0 |
| suburbano travesias | 2015 | 1.500000 | 0.8366600 | 3 | 0 | 2 | 3 | 0 | 1 | 7 | 0 | 2 | 0 | 0 | 0 | 0 | 3 | 6 | 0 | 0 |
| suburbano travesias | 2016 | 2.100000 | 1.1005049 | 1 | 5 | 4 | 10 | 0 | 1 | 17 | 0 | 4 | 0 | 0 | 0 | 4 | 1 | 16 | 0 | 0 |
| suburbano travesias | 2017 | 1.625000 | 0.7440238 | 4 | 2 | 1 | 4 | 0 | 2 | 11 | 0 | 2 | 0 | 0 | 0 | 1 | 3 | 8 | 0 | 1 |
| suburbano travesias | 2018 | 2.333333 | 1.1180340 | 2 | 6 | 4 | 8 | 0 | 1 | 15 | 0 | 6 | 0 | 0 | 0 | 2 | 4 | 14 | 0 | 1 |
| sucre | 2014 | 12.083333 | 4.1000739 | 15 | 23 | 10 | 91 | 0 | 6 | 92 | 1 | 52 | 1 | 0 | 0 | 30 | 2 | 111 | 0 | 1 |
| sucre | 2015 | 12.333333 | 3.6013465 | 15 | 19 | 8 | 101 | 0 | 5 | 96 | 1 | 51 | 1 | 0 | 0 | 31 | 2 | 114 | 0 | 0 |
| sucre | 2016 | 12.250000 | 4.1148291 | 20 | 12 | 9 | 98 | 0 | 8 | 99 | 0 | 48 | 0 | 1 | 0 | 28 | 5 | 111 | 0 | 2 |
| sucre | 2017 | 9.916667 | 2.6097138 | 14 | 10 | 9 | 81 | 0 | 5 | 81 | 0 | 38 | 0 | 1 | 1 | 48 | 15 | 53 | 0 | 1 |
| sucre | 2018 | 10.000000 | 2.6285150 | 15 | 7 | 12 | 81 | 0 | 5 | 88 | 2 | 30 | 2 | 0 | 1 | 42 | 26 | 49 | 0 | 0 |
| suramericana | 2014 | 27.583333 | 5.4013186 | 21 | 16 | 15 | 276 | 0 | 3 | 128 | 2 | 201 | 2 | 0 | 0 | 68 | 4 | 255 | 0 | 2 |
| suramericana | 2015 | 29.916667 | 5.4181233 | 22 | 10 | 16 | 307 | 0 | 4 | 127 | 1 | 231 | 1 | 2 | 0 | 55 | 8 | 293 | 0 | 0 |
| suramericana | 2016 | 25.083333 | 6.2152062 | 36 | 16 | 19 | 225 | 0 | 5 | 134 | 3 | 164 | 3 | 0 | 0 | 39 | 10 | 247 | 0 | 2 |
| suramericana | 2017 | 29.583333 | 5.4515775 | 27 | 16 | 26 | 273 | 0 | 13 | 163 | 0 | 192 | 0 | 1 | 0 | 92 | 22 | 240 | 0 | 0 |
| suramericana | 2018 | 26.000000 | 5.4104276 | 29 | 21 | 13 | 243 | 1 | 5 | 145 | 2 | 165 | 1 | 2 | 0 | 79 | 33 | 195 | 0 | 2 |
| tejelo | 2014 | 11.000000 | 4.8429893 | 27 | 19 | 20 | 63 | 0 | 3 | 94 | 4 | 34 | 4 | 1 | 0 | 23 | 3 | 101 | 0 | 0 |
| tejelo | 2015 | 10.333333 | 2.9644357 | 21 | 15 | 21 | 62 | 0 | 5 | 92 | 1 | 31 | 1 | 1 | 0 | 29 | 5 | 88 | 0 | 0 |
| tejelo | 2016 | 14.500000 | 3.3709993 | 28 | 31 | 30 | 77 | 0 | 8 | 132 | 0 | 42 | 0 | 0 | 0 | 32 | 10 | 132 | 0 | 0 |
| tejelo | 2017 | 11.333333 | 3.4728383 | 20 | 19 | 20 | 69 | 0 | 8 | 109 | 0 | 27 | 0 | 0 | 0 | 36 | 17 | 83 | 0 | 0 |
| tejelo | 2018 | 13.083333 | 3.5791907 | 11 | 26 | 39 | 76 | 0 | 5 | 117 | 0 | 40 | 0 | 0 | 0 | 39 | 37 | 81 | 0 | 0 |
| tenche | 2014 | 15.000000 | 3.3574882 | 9 | 10 | 14 | 142 | 0 | 5 | 88 | 0 | 92 | 0 | 2 | 0 | 31 | 1 | 146 | 0 | 0 |
| tenche | 2015 | 18.916667 | 5.0173940 | 15 | 8 | 7 | 191 | 0 | 6 | 105 | 3 | 119 | 3 | 0 | 0 | 36 | 4 | 184 | 0 | 0 |
| tenche | 2016 | 20.083333 | 5.5178773 | 23 | 18 | 11 | 185 | 0 | 4 | 136 | 0 | 105 | 0 | 0 | 0 | 51 | 6 | 181 | 0 | 3 |
| tenche | 2017 | 14.666667 | 3.5248039 | 10 | 4 | 8 | 149 | 0 | 5 | 80 | 0 | 96 | 0 | 2 | 0 | 56 | 10 | 108 | 0 | 0 |
| tenche | 2018 | 14.916667 | 4.3788403 | 16 | 2 | 6 | 155 | 0 | 0 | 80 | 3 | 96 | 2 | 1 | 0 | 51 | 16 | 106 | 0 | 3 |
| terminal de transporte | 2014 | 54.833333 | 8.2443737 | 85 | 47 | 52 | 465 | 0 | 9 | 298 | 3 | 357 | 3 | 1 | 48 | 25 | 24 | 541 | 0 | 16 |
| terminal de transporte | 2015 | 47.666667 | 5.3143602 | 64 | 24 | 49 | 418 | 0 | 17 | 250 | 5 | 317 | 5 | 0 | 50 | 24 | 17 | 467 | 0 | 9 |
| terminal de transporte | 2016 | 45.166667 | 8.2553931 | 70 | 25 | 26 | 411 | 0 | 10 | 231 | 3 | 308 | 3 | 2 | 66 | 35 | 19 | 406 | 0 | 11 |
| terminal de transporte | 2017 | 52.583333 | 10.0313901 | 87 | 36 | 49 | 431 | 0 | 28 | 318 | 5 | 308 | 5 | 5 | 105 | 36 | 71 | 391 | 0 | 18 |
| terminal de transporte | 2018 | 41.916667 | 7.2420280 | 40 | 28 | 37 | 382 | 0 | 16 | 235 | 3 | 265 | 3 | 1 | 79 | 35 | 84 | 279 | 0 | 22 |
| toscana | 2014 | 9.583333 | 2.1514618 | 16 | 7 | 10 | 78 | 0 | 4 | 67 | 2 | 46 | 2 | 0 | 0 | 7 | 3 | 103 | 0 | 0 |
| toscana | 2015 | 10.750000 | 4.6539328 | 14 | 10 | 15 | 85 | 0 | 5 | 81 | 3 | 45 | 3 | 0 | 0 | 6 | 2 | 115 | 0 | 3 |
| toscana | 2016 | 11.083333 | 3.5791907 | 15 | 9 | 14 | 92 | 0 | 3 | 85 | 2 | 46 | 2 | 1 | 0 | 6 | 1 | 119 | 0 | 4 |
| toscana | 2017 | 17.000000 | 4.1341153 | 23 | 13 | 14 | 148 | 0 | 6 | 111 | 0 | 93 | 0 | 0 | 0 | 13 | 14 | 170 | 0 | 7 |
| toscana | 2018 | 19.416667 | 4.7569726 | 17 | 14 | 14 | 177 | 0 | 11 | 129 | 4 | 100 | 3 | 0 | 0 | 14 | 16 | 192 | 0 | 8 |
| travesias | 2017 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| trece de noviembre | 2014 | 1.500000 | 0.5477226 | 0 | 1 | 2 | 6 | 0 | 0 | 4 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 0 |
| trece de noviembre | 2015 | 1.200000 | 0.4472136 | 0 | 4 | 0 | 2 | 0 | 0 | 4 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 |
| trece de noviembre | 2016 | 1.555556 | 1.0137938 | 0 | 2 | 0 | 12 | 0 | 0 | 4 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 14 | 0 | 0 |
| trece de noviembre | 2017 | 1.875000 | 1.1259916 | 1 | 3 | 0 | 11 | 0 | 0 | 5 | 0 | 10 | 0 | 0 | 0 | 1 | 1 | 13 | 0 | 0 |
| trece de noviembre | 2018 | 1.500000 | 0.7559289 | 1 | 4 | 0 | 7 | 0 | 0 | 7 | 0 | 5 | 0 | 1 | 0 | 0 | 0 | 11 | 0 | 0 |
| tricentenario | 2014 | 15.000000 | 4.5527215 | 21 | 10 | 18 | 127 | 0 | 4 | 96 | 0 | 84 | 0 | 0 | 0 | 5 | 5 | 170 | 0 | 0 |
| tricentenario | 2015 | 14.833333 | 4.7065396 | 12 | 8 | 16 | 137 | 0 | 5 | 103 | 2 | 73 | 2 | 0 | 0 | 12 | 2 | 162 | 0 | 0 |
| tricentenario | 2016 | 15.833333 | 3.9041547 | 20 | 11 | 17 | 137 | 0 | 5 | 102 | 1 | 87 | 1 | 0 | 0 | 10 | 4 | 174 | 0 | 1 |
| tricentenario | 2017 | 18.166667 | 4.4890439 | 20 | 11 | 13 | 153 | 0 | 21 | 117 | 1 | 100 | 1 | 1 | 0 | 11 | 19 | 183 | 0 | 3 |
| tricentenario | 2018 | 17.166667 | 5.0060569 | 27 | 8 | 26 | 141 | 0 | 4 | 130 | 1 | 75 | 1 | 0 | 0 | 10 | 27 | 165 | 0 | 3 |
| trinidad | 2014 | 18.833333 | 3.0401356 | 27 | 32 | 10 | 152 | 0 | 5 | 139 | 1 | 86 | 1 | 2 | 0 | 55 | 6 | 162 | 0 | 0 |
| trinidad | 2015 | 19.083333 | 2.9063671 | 12 | 40 | 13 | 157 | 0 | 7 | 138 | 1 | 90 | 1 | 1 | 0 | 49 | 3 | 175 | 0 | 0 |
| trinidad | 2016 | 19.500000 | 3.5290998 | 16 | 27 | 18 | 168 | 0 | 5 | 134 | 3 | 97 | 3 | 0 | 0 | 44 | 5 | 182 | 0 | 0 |
| trinidad | 2017 | 16.583333 | 3.5280263 | 22 | 18 | 17 | 133 | 0 | 9 | 119 | 1 | 79 | 1 | 1 | 0 | 53 | 25 | 119 | 0 | 0 |
| trinidad | 2018 | 15.500000 | 3.4245106 | 16 | 23 | 4 | 141 | 0 | 2 | 90 | 0 | 96 | 0 | 0 | 0 | 59 | 15 | 112 | 0 | 0 |
| u.d. atanasio girardot | 2014 | 5.750000 | 2.5271256 | 4 | 6 | 5 | 54 | 0 | 0 | 38 | 0 | 31 | 0 | 1 | 0 | 11 | 0 | 57 | 0 | 0 |
| u.d. atanasio girardot | 2015 | 5.000000 | 2.0000000 | 7 | 10 | 4 | 39 | 0 | 0 | 36 | 0 | 24 | 0 | 1 | 0 | 5 | 2 | 52 | 0 | 0 |
| u.d. atanasio girardot | 2016 | 5.916667 | 3.3698755 | 11 | 8 | 5 | 46 | 0 | 1 | 42 | 0 | 29 | 0 | 1 | 0 | 9 | 3 | 58 | 0 | 0 |
| u.d. atanasio girardot | 2017 | 4.416667 | 2.4664414 | 7 | 3 | 1 | 40 | 0 | 2 | 21 | 0 | 32 | 0 | 0 | 1 | 14 | 5 | 32 | 0 | 1 |
| u.d. atanasio girardot | 2018 | 4.083333 | 2.2343733 | 5 | 6 | 6 | 31 | 0 | 1 | 24 | 0 | 25 | 0 | 2 | 0 | 8 | 9 | 30 | 0 | 0 |
| u.p.b. | 2014 | 2.333333 | 1.3662601 | 4 | 0 | 1 | 9 | 0 | 0 | 8 | 0 | 6 | 0 | 0 | 0 | 0 | 5 | 9 | 0 | 0 |
| u.p.b. | 2015 | 2.750000 | 2.1876275 | 2 | 1 | 1 | 17 | 0 | 1 | 7 | 0 | 15 | 0 | 0 | 0 | 2 | 3 | 17 | 0 | 0 |
| u.p.b. | 2016 | 2.000000 | 1.1547005 | 3 | 3 | 0 | 14 | 0 | 0 | 9 | 0 | 11 | 0 | 0 | 0 | 3 | 0 | 17 | 0 | 0 |
| u.p.b. | 2017 | 3.666667 | 1.9694639 | 2 | 1 | 0 | 38 | 0 | 3 | 11 | 0 | 33 | 0 | 0 | 3 | 12 | 2 | 26 | 0 | 1 |
| u.p.b. | 2018 | 2.800000 | 1.3165612 | 3 | 1 | 5 | 19 | 0 | 0 | 12 | 1 | 15 | 0 | 0 | 1 | 2 | 3 | 22 | 0 | 0 |
| universidad de antioquia | 2014 | 13.083333 | 4.1000739 | 12 | 16 | 11 | 113 | 0 | 5 | 71 | 0 | 86 | 0 | 3 | 1 | 4 | 1 | 142 | 0 | 6 |
| universidad de antioquia | 2015 | 12.083333 | 3.5021638 | 13 | 10 | 4 | 111 | 0 | 7 | 58 | 1 | 86 | 1 | 0 | 0 | 11 | 4 | 125 | 0 | 4 |
| universidad de antioquia | 2016 | 11.833333 | 3.7859389 | 20 | 4 | 12 | 101 | 0 | 5 | 76 | 0 | 66 | 0 | 0 | 0 | 8 | 3 | 128 | 0 | 3 |
| universidad de antioquia | 2017 | 20.166667 | 13.9273004 | 46 | 7 | 31 | 138 | 0 | 20 | 163 | 1 | 78 | 1 | 2 | 0 | 15 | 24 | 198 | 0 | 2 |
| universidad de antioquia | 2018 | 16.833333 | 6.2498485 | 26 | 10 | 22 | 136 | 0 | 8 | 119 | 2 | 81 | 1 | 0 | 1 | 22 | 22 | 148 | 0 | 8 |
| universidad nacional | 2014 | 34.083333 | 6.0371326 | 39 | 28 | 25 | 305 | 0 | 12 | 186 | 2 | 221 | 2 | 3 | 0 | 29 | 10 | 354 | 0 | 11 |
| universidad nacional | 2015 | 34.583333 | 4.8702872 | 38 | 20 | 27 | 312 | 0 | 18 | 215 | 4 | 196 | 4 | 1 | 0 | 41 | 5 | 360 | 0 | 4 |
| universidad nacional | 2016 | 34.500000 | 5.7603661 | 48 | 14 | 28 | 303 | 0 | 21 | 213 | 2 | 199 | 2 | 0 | 0 | 30 | 11 | 362 | 0 | 9 |
| universidad nacional | 2017 | 28.083333 | 4.5618643 | 28 | 13 | 24 | 264 | 0 | 8 | 189 | 1 | 147 | 1 | 3 | 1 | 31 | 20 | 253 | 0 | 28 |
| universidad nacional | 2018 | 22.500000 | 3.4245106 | 22 | 15 | 19 | 201 | 0 | 13 | 138 | 3 | 129 | 3 | 0 | 0 | 25 | 27 | 197 | 0 | 18 |
| veinte de julio | 2014 | 7.500000 | 2.7797972 | 10 | 19 | 11 | 50 | 0 | 0 | 70 | 2 | 18 | 2 | 1 | 0 | 13 | 1 | 73 | 0 | 0 |
| veinte de julio | 2015 | 6.000000 | 2.5584086 | 14 | 18 | 5 | 33 | 0 | 2 | 52 | 2 | 18 | 2 | 0 | 0 | 6 | 4 | 60 | 0 | 0 |
| veinte de julio | 2016 | 6.000000 | 2.4120908 | 8 | 14 | 6 | 38 | 0 | 6 | 55 | 0 | 17 | 0 | 0 | 0 | 14 | 1 | 57 | 0 | 0 |
| veinte de julio | 2017 | 5.333333 | 2.7743413 | 6 | 17 | 10 | 30 | 0 | 1 | 54 | 2 | 8 | 2 | 0 | 0 | 12 | 7 | 43 | 0 | 0 |
| veinte de julio | 2018 | 5.083333 | 1.8319554 | 10 | 10 | 5 | 36 | 0 | 0 | 42 | 0 | 19 | 0 | 0 | 0 | 12 | 12 | 37 | 0 | 0 |
| versalles no. 1 | 2014 | 9.000000 | 2.6967994 | 13 | 32 | 17 | 43 | 0 | 3 | 82 | 1 | 25 | 1 | 0 | 0 | 15 | 5 | 87 | 0 | 0 |
| versalles no. 1 | 2015 | 9.583333 | 3.5021638 | 21 | 26 | 18 | 44 | 0 | 6 | 83 | 0 | 32 | 0 | 0 | 0 | 12 | 2 | 101 | 0 | 0 |
| versalles no. 1 | 2016 | 8.500000 | 2.3159526 | 11 | 19 | 10 | 58 | 0 | 4 | 63 | 0 | 39 | 0 | 0 | 0 | 13 | 4 | 85 | 0 | 0 |
| versalles no. 1 | 2017 | 8.250000 | 2.5980762 | 20 | 27 | 10 | 41 | 0 | 1 | 66 | 1 | 32 | 1 | 2 | 0 | 18 | 14 | 64 | 0 | 0 |
| versalles no. 1 | 2018 | 6.416667 | 1.7298625 | 13 | 22 | 11 | 27 | 0 | 4 | 56 | 1 | 20 | 1 | 0 | 0 | 7 | 21 | 48 | 0 | 0 |
| versalles no. 2 | 2014 | 1.571429 | 0.5345225 | 1 | 4 | 1 | 5 | 0 | 0 | 6 | 0 | 5 | 0 | 1 | 0 | 0 | 0 | 10 | 0 | 0 |
| versalles no. 2 | 2015 | 1.428571 | 0.5345225 | 0 | 3 | 2 | 5 | 0 | 0 | 6 | 0 | 4 | 0 | 0 | 0 | 1 | 0 | 9 | 0 | 0 |
| versalles no. 2 | 2016 | 1.142857 | 0.3779645 | 1 | 3 | 0 | 4 | 0 | 0 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 1 | 7 | 0 | 0 |
| versalles no. 2 | 2017 | 1.555556 | 0.8819171 | 1 | 3 | 3 | 5 | 0 | 2 | 9 | 0 | 5 | 0 | 0 | 0 | 1 | 3 | 10 | 0 | 0 |
| versalles no. 2 | 2018 | 1.571429 | 0.5345225 | 2 | 3 | 0 | 6 | 0 | 0 | 8 | 0 | 3 | 0 | 0 | 0 | 0 | 3 | 8 | 0 | 0 |
| versalles no.1 | 2014 | 1.000000 | 0.0000000 | 0 | 1 | 0 | 2 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 |
| versalles no.1 | 2015 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| versalles no.1 | 2016 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| versalles no.1 | 2017 | 1.000000 | 0.0000000 | 0 | 1 | 0 | 3 | 0 | 0 | 1 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 3 | 0 | 0 |
| versalles no.1 | 2018 | 1.000000 | 0.0000000 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| versalles no.2 | 2015 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| versalles no.2 | 2016 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| versalles no.2 | 2017 | 1.000000 | NA | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| villa carlota | 2014 | 34.250000 | 5.2936497 | 20 | 19 | 26 | 340 | 0 | 6 | 183 | 3 | 225 | 3 | 1 | 0 | 39 | 12 | 352 | 1 | 3 |
| villa carlota | 2015 | 34.500000 | 5.8542914 | 22 | 14 | 18 | 349 | 0 | 11 | 172 | 3 | 239 | 3 | 2 | 0 | 38 | 12 | 359 | 0 | 0 |
| villa carlota | 2016 | 39.583333 | 9.0900378 | 25 | 18 | 14 | 403 | 0 | 15 | 208 | 1 | 266 | 1 | 0 | 0 | 49 | 22 | 396 | 0 | 7 |
| villa carlota | 2017 | 36.500000 | 8.2406972 | 21 | 8 | 17 | 376 | 2 | 14 | 152 | 1 | 285 | 1 | 0 | 0 | 63 | 35 | 336 | 0 | 3 |
| villa carlota | 2018 | 40.916667 | 7.5010100 | 24 | 17 | 16 | 424 | 0 | 10 | 170 | 2 | 319 | 2 | 1 | 1 | 64 | 50 | 371 | 0 | 2 |
| villa del socorro | 2014 | 7.250000 | 2.0943647 | 10 | 24 | 16 | 36 | 0 | 1 | 55 | 3 | 29 | 3 | 1 | 0 | 4 | 0 | 79 | 0 | 0 |
| villa del socorro | 2015 | 6.583333 | 2.1933094 | 11 | 17 | 9 | 39 | 0 | 3 | 59 | 0 | 20 | 0 | 0 | 0 | 5 | 2 | 72 | 0 | 0 |
| villa del socorro | 2016 | 8.416667 | 2.8431204 | 17 | 18 | 8 | 54 | 0 | 4 | 67 | 0 | 34 | 0 | 1 | 0 | 8 | 3 | 89 | 0 | 0 |
| villa del socorro | 2017 | 6.416667 | 1.9752253 | 10 | 16 | 10 | 40 | 0 | 1 | 50 | 0 | 27 | 0 | 0 | 0 | 5 | 11 | 61 | 0 | 0 |
| villa del socorro | 2018 | 7.083333 | 1.8809250 | 11 | 17 | 4 | 51 | 0 | 2 | 51 | 0 | 34 | 0 | 0 | 0 | 9 | 21 | 55 | 0 | 0 |
| villa flora | 2014 | 13.000000 | 6.3389130 | 20 | 8 | 19 | 108 | 0 | 1 | 85 | 0 | 71 | 0 | 0 | 0 | 19 | 3 | 134 | 0 | 0 |
| villa flora | 2015 | 14.916667 | 3.1176429 | 22 | 11 | 21 | 117 | 0 | 8 | 109 | 0 | 70 | 0 | 1 | 0 | 18 | 2 | 158 | 0 | 0 |
| villa flora | 2016 | 12.750000 | 2.7675063 | 29 | 11 | 20 | 87 | 0 | 6 | 105 | 0 | 48 | 0 | 0 | 0 | 24 | 5 | 124 | 0 | 0 |
| villa flora | 2017 | 13.000000 | 1.9069252 | 28 | 5 | 24 | 93 | 0 | 6 | 107 | 0 | 49 | 0 | 1 | 0 | 27 | 22 | 106 | 0 | 0 |
| villa flora | 2018 | 14.666667 | 4.5193188 | 36 | 10 | 29 | 96 | 0 | 5 | 113 | 0 | 63 | 0 | 0 | 0 | 28 | 57 | 91 | 0 | 0 |
| villa guadalupe | 2014 | 6.500000 | 3.2891005 | 11 | 22 | 8 | 33 | 0 | 4 | 60 | 0 | 18 | 0 | 0 | 0 | 6 | 3 | 69 | 0 | 0 |
| villa guadalupe | 2015 | 5.750000 | 2.3788844 | 10 | 15 | 9 | 34 | 0 | 1 | 42 | 2 | 25 | 2 | 1 | 0 | 3 | 1 | 61 | 0 | 1 |
| villa guadalupe | 2016 | 5.000000 | 2.6285150 | 8 | 17 | 7 | 27 | 0 | 1 | 46 | 0 | 14 | 0 | 0 | 0 | 5 | 1 | 54 | 0 | 0 |
| villa guadalupe | 2017 | 6.166667 | 2.2087978 | 16 | 18 | 11 | 25 | 0 | 4 | 59 | 0 | 15 | 0 | 1 | 0 | 11 | 14 | 47 | 0 | 1 |
| villa guadalupe | 2018 | 6.750000 | 1.9128750 | 8 | 22 | 12 | 35 | 0 | 4 | 63 | 0 | 18 | 0 | 0 | 0 | 17 | 16 | 48 | 0 | 0 |
| villa hermosa | 2014 | 10.333333 | 3.5760144 | 22 | 22 | 19 | 57 | 0 | 4 | 97 | 1 | 26 | 1 | 0 | 0 | 28 | 4 | 91 | 0 | 0 |
| villa hermosa | 2015 | 9.416667 | 3.2039275 | 18 | 24 | 11 | 53 | 0 | 7 | 89 | 0 | 24 | 0 | 0 | 0 | 29 | 3 | 81 | 0 | 0 |
| villa hermosa | 2016 | 9.000000 | 3.3844564 | 16 | 13 | 10 | 64 | 0 | 5 | 76 | 0 | 32 | 0 | 0 | 0 | 20 | 5 | 83 | 0 | 0 |
| villa hermosa | 2017 | 8.166667 | 2.7906771 | 10 | 20 | 10 | 53 | 0 | 5 | 63 | 1 | 34 | 1 | 0 | 0 | 26 | 11 | 60 | 0 | 0 |
| villa hermosa | 2018 | 9.416667 | 4.5016832 | 15 | 19 | 17 | 55 | 0 | 7 | 81 | 0 | 32 | 0 | 0 | 1 | 30 | 26 | 56 | 0 | 0 |
| villa liliam | 2014 | 1.818182 | 1.2504545 | 5 | 6 | 3 | 5 | 0 | 1 | 18 | 0 | 2 | 0 | 0 | 0 | 2 | 1 | 17 | 0 | 0 |
| villa liliam | 2015 | 2.181818 | 1.1677484 | 2 | 9 | 4 | 8 | 0 | 1 | 18 | 0 | 6 | 0 | 1 | 0 | 0 | 1 | 22 | 0 | 0 |
| villa liliam | 2016 | 1.833333 | 0.8348471 | 3 | 6 | 4 | 9 | 0 | 0 | 19 | 0 | 3 | 0 | 1 | 0 | 1 | 3 | 17 | 0 | 0 |
| villa liliam | 2017 | 2.222222 | 1.2018504 | 4 | 6 | 2 | 8 | 0 | 0 | 15 | 0 | 5 | 0 | 0 | 0 | 4 | 5 | 11 | 0 | 0 |
| villa liliam | 2018 | 2.250000 | 1.4222262 | 1 | 10 | 4 | 9 | 0 | 3 | 23 | 0 | 4 | 0 | 0 | 0 | 1 | 11 | 15 | 0 | 0 |
| villa lilliam | 2014 | 1.000000 | 0.0000000 | 0 | 1 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
| villa lilliam | 2015 | 1.000000 | 0.0000000 | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| villa lilliam | 2016 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| villa lilliam | 2017 | 1.000000 | NA | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| villa lilliam | 2018 | 1.000000 | NA | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| villa niza | 2014 | 3.800000 | 1.6193277 | 8 | 9 | 2 | 17 | 0 | 2 | 24 | 0 | 14 | 0 | 0 | 0 | 4 | 3 | 31 | 0 | 0 |
| villa niza | 2015 | 2.916667 | 1.5050420 | 6 | 10 | 3 | 14 | 0 | 2 | 20 | 1 | 14 | 1 | 0 | 0 | 4 | 0 | 30 | 0 | 0 |
| villa niza | 2016 | 2.181818 | 1.3280197 | 5 | 3 | 5 | 11 | 0 | 0 | 20 | 1 | 3 | 1 | 0 | 0 | 1 | 3 | 19 | 0 | 0 |
| villa niza | 2017 | 3.250000 | 1.7645499 | 3 | 7 | 7 | 21 | 0 | 1 | 28 | 0 | 11 | 0 | 0 | 0 | 3 | 3 | 33 | 0 | 0 |
| villa niza | 2018 | 3.454546 | 1.6949122 | 2 | 7 | 6 | 22 | 0 | 1 | 26 | 0 | 12 | 0 | 0 | 0 | 3 | 6 | 29 | 0 | 0 |
| villa nueva | 2014 | 50.166667 | 8.7472940 | 41 | 102 | 45 | 404 | 0 | 10 | 286 | 8 | 308 | 8 | 3 | 0 | 108 | 5 | 476 | 1 | 1 |
| villa nueva | 2015 | 53.166667 | 12.6694574 | 49 | 74 | 40 | 458 | 0 | 17 | 291 | 3 | 344 | 3 | 1 | 1 | 123 | 13 | 495 | 0 | 2 |
| villa nueva | 2016 | 46.000000 | 8.3883035 | 44 | 75 | 41 | 371 | 0 | 21 | 273 | 5 | 274 | 5 | 0 | 1 | 96 | 11 | 435 | 0 | 4 |
| villa nueva | 2017 | 47.333333 | 8.7835935 | 36 | 69 | 34 | 410 | 1 | 18 | 275 | 2 | 291 | 2 | 6 | 0 | 166 | 40 | 341 | 0 | 13 |
| villa nueva | 2018 | 45.666667 | 8.6269486 | 41 | 80 | 38 | 379 | 0 | 10 | 262 | 1 | 285 | 1 | 3 | 1 | 160 | 55 | 320 | 0 | 8 |
| villa turbay | 2014 | 1.250000 | 0.4629100 | 4 | 2 | 2 | 2 | 0 | 0 | 9 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 8 | 0 | 0 |
| villa turbay | 2015 | 1.428571 | 0.5345225 | 1 | 2 | 2 | 5 | 0 | 0 | 8 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 10 | 0 | 0 |
| villa turbay | 2016 | 1.571429 | 0.5345225 | 1 | 4 | 4 | 2 | 0 | 0 | 9 | 0 | 2 | 0 | 0 | 0 | 1 | 1 | 9 | 0 | 0 |
| villa turbay | 2017 | 1.333333 | 0.5773503 | 0 | 0 | 2 | 2 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
| villa turbay | 2018 | 1.600000 | 1.3416408 | 3 | 0 | 1 | 4 | 0 | 0 | 5 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 7 | 0 | 0 |
| villatina | 2014 | 7.416667 | 2.8109634 | 12 | 20 | 17 | 34 | 1 | 5 | 65 | 0 | 24 | 0 | 0 | 1 | 3 | 3 | 82 | 0 | 0 |
| villatina | 2015 | 7.916667 | 3.1176429 | 18 | 21 | 19 | 30 | 0 | 7 | 76 | 0 | 19 | 0 | 0 | 0 | 5 | 2 | 88 | 0 | 0 |
| villatina | 2016 | 8.583333 | 2.1933094 | 13 | 18 | 14 | 53 | 0 | 5 | 69 | 1 | 33 | 1 | 1 | 0 | 5 | 4 | 92 | 0 | 0 |
| villatina | 2017 | 7.000000 | 2.2156468 | 11 | 18 | 19 | 31 | 0 | 5 | 65 | 1 | 18 | 1 | 0 | 0 | 8 | 24 | 51 | 0 | 0 |
| villatina | 2018 | 8.333333 | 3.2003788 | 11 | 18 | 18 | 51 | 0 | 2 | 65 | 0 | 35 | 0 | 0 | 0 | 8 | 24 | 68 | 0 | 0 |
| volcana guayabal | 2018 | 1.000000 | NA | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| yolombo | 2014 | 1.000000 | NA | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| yolombo | 2016 | 1.000000 | NA | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| yolombo | 2017 | 1.000000 | 0.0000000 | 1 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
| yolombo | 2018 | 1.625000 | 0.9161254 | 1 | 1 | 0 | 10 | 0 | 1 | 5 | 0 | 8 | 0 | 0 | 0 | 0 | 1 | 12 | 0 | 0 |
Los hallazgos realizados para el análisis de clustering se puede decir que para los diferentes años analizados (2014,2015,2016,2017 y 2018) se puede decir que el número óptimo de cluster que presentan la accidentalidad en la ciudad son k = 4 . Estos cluster pueden ser llamados cluster de muy alta, alta, moderada y baja accidentalidad para la ciudad de Medellín en el periodo de análisis.
No obstante, es importante resaltar que para el año 2017 no se cumplio completamente el patron de los 4 cluster (solo se evidenciaban 3 cluster) que se encontraban para los otros años; por esta razón se optó por dejarlo con un k = 3.
Finalmente, se publica el mapa de Medellín con los respectivos cluster encontrados y se evidencian las conclusiones y los resultados finales del clustering:
De esta gráfica se puede concluir varias cosas:
1. Otro de los resultados del análisis de clustering es que aquellos barrios con mayor accidentalidad se encuentran ubicados por las zonas valle y mayormente transitadas en la ciudad, calles como la avenida del río, la avenida guayabal, la avenida de la 33 y sus alrededores, y calles como la 30 a la altura de la 80, la 33 con la 65 y la alpujarra entre otros.
2. Con base en lo anterior se puede decir también que Medellín es primordial y predominantemente una ciudad céntrica la cual en su mayoría su actividad económica está ubicada en el centro de la ciudad y los alrededores cercanos.
3. Así mismo, si se trazará una línea con los puntos rojos se podría observar que esta corresponde en mayor parte a las vías conocidas como La Regional y la Autopista Norte vías profundamente estratégicas que conectan todo el Valle (sentido Norte-Sur-Norte) lo que por supuesto las hace unas vías con altos índices de movilidad y de manera directa de altos incidentes viales.
4. Otra conclusión que se puede derivar de este análisis es que para los corredores viales de la Avenida la 80 (puntos anaranjados) y la Autopista Norte (puntos rojos) es que tienen una infraestructura vial que es limitada para el número de vehículos que la transitan habitualmente, con esto se quiere decir que: la malla vial de de estas zonas es en muchos casos precaria o deficiente, toda vez que hay partes de estas vías en las que se transita en 3 carriles y luego en 2, generando efectos embudo que ante circunstancias cambiantes (lluvia, arreglos viales, represamiento vehicular y demás) son vías más propensas a generar accidentes.
5. Finalmente, y como un hecho meramente visual se puede observar que los niveles de accidentalidad muy alta, alta, moderada y baja corresponden a cordones, circuitos o capas viales que se van agravando a medida que se acerca al centro de la ciudad.
Como parte entonces del análisis descriptivo y con los resultados obtenidos del proceso de clustering nos adentramos en la parte de modelado. Como fruto del aprendizaje de estas etapas previas se contempla la opción de incluir una sábana de datos que identifique para cada una de las agregaciones de los modelos, los días festivos, los días especiales y los días especiales con festivo esto con ocasión de poder tener un mejor panorama del comportamiento de los accidentes.
Asi mismo, es importante resaltar que el objetivo de la capa de modelamiento se tiene estipulado, predecir el número de accidentes para cada nivel de agregación (Mensual,Semanal y Diario) según la clase de accidente (Choque, Atropello, Caída ocupante, Volcamiento, Otros e Incendios) esto quiere decir que serian para cada nivel de agregación serán 6 modelos esto bajo el entendido que seran modelos de regresion, en total se tendrían 18 modelos. De igual manera, se considera pertinente tener modelos lineales, ya que se cuenta con menos de 50 datos por clase de accidente, por lo que un modelo no-lineal, como árboles de decisión o modelos más avanzados, tenderían a sobre ajustarse fácilmente.
Antes de continuar un hecho que vale la pena mencionar es la omisión de la clase de accidentes incendios para la estimación de los modelos semanales y diarios. Esta decisión se toma como resultado que para la clase incendio y para cada una de estas agregaciones se presentan muy pocos datos. Esto hace alusión a que los incendios son muy poco comunes en los incidentes viales, además en términos de valores también son muy bajos a lo sumo 3 o 5 por mes, esto dificulta que se pudiera pensar en hacer siquiera un modelo único para incendio.
A continuación, se muestra la sábana de datos construida para los días especiales, los festivos y los días especiales con festivos.
| PERIODO | MES | DIA | DIA_FESTIVO | FECHA_ESPECIAL | FESTIVO_FECHA_ESPECIAL |
|---|---|---|---|---|---|
| 2014 | 1 | 1 | 1 | 1 | 1 |
| 2014 | 1 | 2 | 0 | 0 | 0 |
| 2014 | 1 | 3 | 0 | 0 | 0 |
| 2014 | 1 | 4 | 0 | 0 | 0 |
| 2014 | 1 | 5 | 0 | 0 | 0 |
| 2014 | 1 | 6 | 1 | 1 | 1 |
Uno de los procesamientos realizados sobre la sábana de datos es el escalamiento de los datos a escala logarítmica para aproximarlos lo más posible a una normal. Así mismo, se construyen nuevas variables como los rezagos del número de accidentes para cada clase de accidentes, esto se da con ocasión del comportamiento de las variables mensuales. Donde se observar las tendencias que tienen los niveles de accidentes según la clase de accidentes.
En general para los modelos 5 modelos mensuales la estimación se realiza usando una regresión lineal aplicando regularización lasso que es la técnica que presenta menores errores de estimación frente a los modelos entrenados bajo la stepwise elimination para seleccionar variables. Para los casos de los modelos con stepwise elimination se observaban niveles considerables de sobreajuste al comparar los resultados de entrenamiento y validación. Como se observa en el siguiente gráfico para el modelo de choques:
Por último para los modelos mensuales, se grafican los diferentes RMSE tanto de entrenamiento como de validación para las diferentes clases.
De esta tabla se resaltan varias cosas que son importantes mencionar:
1. En general se tienen niveles ‘bajos’ para los RMSE esto entendiendo que son pronósticos mensuales y sobretodo para la clase de choque en la que se presentan un promedio mensual de más de dos mil incidentes relacionados choques, esto se puede interpretar como un nivel bajo de error de accidentes.
2. De la anterior tabla resumen se nota que, la diferencia entre los valores para el RMSE de validación (63) y entrenamiento (31) para la clase otros es del doble para validación respecto al entrenamiento; esto sugiere una clara subestimación para esta clase. Una de las razones para esto es que quizás hacen falta más variables que expliquen el comportamiento de este fenómeno puesto que hasta su propia descripción (otros incidentes) pueden ser cualquier otro tipo de factores, lo cual dificulta que se pueda saber con exactitud cuales son las variables que representan de mejor manera este siniestro.
3. Una desventaja de los modelos mensuales es la poca cantidad de observaciones disponibles para hacer unas estimaciones más robustas. Es claro que hay margen de mejora, en especial para los modelos de volcamientos y otros accidentes que fueron los que presentaron el peor error de estimación, próximamente se procederá a explorar otras alternativas de modelamiento para estas clases de accidentes.
| RMSE_VALIDATION | RMSE_TRAIN | CLASE_MODELO |
|---|---|---|
| 82.14387 | 63.58809 | choque |
| 29.23950 | 24.24131 | atropello |
| 39.39862 | 28.61665 | caida ocupante |
| 21.55456 | 19.89053 | volcamiento |
| 63.28099 | 31.33044 | otro |
Siguiendo con los modelos semanales se mantiene la misma lógica que en los modelos mensuales: Se utilizan modelos de regresión lineal con penalización lasso y modelos para cada una de las clases. Así mismo, también se extraen los rezagos de los accidentes de la última semana de todas las clases, así como los niveles de gravedad y sus respectivos rezagos.
La siguiente tabla muestra las variables que se tienen en cuenta para el modelo semanal.Esta tabla corresponde también a las variables llevadas a valores logarítmicos, centradas y escaladas.
| SEMANA | atropello | caida ocupante | choque | incendio | otro | volcamiento | herido | muerto | solo danos | t_minus_2 | t_minus_3 | accidentes_domingo | dias_festivos | dias_especiales | dias_festivos_especiales | numero_accidentes |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 4 | 0.4136883 | -0.0585666 | -0.4934288 | 2.9865335 | -0.2323735 | -1.3544516 | -0.7166120 | 1.703705 | -0.1534963 | -1.5103648 | -2.5006412 | -0.4472644 | -0.6081611 | -0.584525 | -0.3888251 | 6.331502 |
| 5 | 1.6054300 | -0.8919562 | -0.2711959 | 2.9865335 | 1.2822620 | -0.7636751 | -0.1688497 | 0.846727 | 0.2127917 | -0.4939650 | -1.4750273 | 0.3895605 | -0.6081611 | -0.584525 | -0.3888251 | 6.297109 |
| 6 | 0.5924496 | 0.0456071 | -0.4722637 | -0.2986534 | 0.7448107 | -2.1421535 | -0.4290368 | 0.418238 | -0.1534963 | -0.2716276 | -0.4703443 | -0.6441644 | -0.6081611 | -0.584525 | -0.3888251 | 6.376727 |
| 7 | 0.6520366 | 0.3060414 | 0.0039495 | -0.2986534 | 0.6959515 | -0.2713614 | -0.1140735 | 0.846727 | 0.5332937 | -0.4727900 | -0.2505699 | 0.0449855 | -0.6081611 | 1.002043 | -0.3888251 | 6.398595 |
| 8 | 0.4732754 | 0.3060414 | 0.1415222 | -0.2986534 | 1.5754173 | -1.0590633 | 0.3789126 | -1.724207 | 0.3806737 | 0.0036474 | -0.4494134 | 0.1434355 | -0.6081611 | -0.584525 | -0.3888251 | 6.354370 |
| 9 | 1.7246041 | 0.4102151 | -0.1336232 | 2.9865335 | 0.5493739 | -1.7483025 | 0.3515245 | 1.275216 | -0.1534963 | 0.1412848 | 0.0215318 | 0.5864605 | -0.6081611 | -0.584525 | -0.3888251 | 6.470800 |
Como un hecho particular vale la pena resaltar que para el tipo de accidente choque tanto para el modelo mensual y ahora para el modelo semanal presentan gran robustez y buena capacidad de generalización. Sin embargo, cuando se evalúa la variación del rmse de validación respecto a entrenamiento es de un 29.181 lo cual es cercano al 15%. Valor que se encuentra cerca del límite máximo definido por el profesor como sobreentrenamiento del modelo. Por esta razón se procede a comparar las fpd de los errores de entrenamiento y validación y paso seguido a realizar la estimación del modelo con la penalización lasso.
Para cerrar el análisis de los modelos semanales se presentará una tabla resumen de los RMSE para validación y entrenamiento y se darán las conclusiones generales.
| RMSE_VALIDATION | RMSE_TRAIN | CLASE_MODELO |
|---|---|---|
| 50.115732 | 43.883510 | choque |
| 11.926097 | 11.151636 | atropello |
| 39.398624 | 28.616646 | caida ocupante |
| 8.409265 | 8.644724 | volcamiento |
| 21.656486 | 14.700903 | otros |
1. Los modelos semanales tuvieron un buen desempeño a nivel general, a excepción de los modelos de volcamiento y otros, los cuales sufrieron de tener rangos muy cerrados de estimación, por lo que no tienen en cuenta toda la variabilidad total del fenómeno de estudio. Es importante explorar nuevas variables que le permitan a los modelos capturar la variabilidad de estas clases.
2. Para el modelo de atropellos, se ve una deficiencia en la calidad de las predicciones, en especial para el conjunto de validación, donde es claro un sobreestimación de las observaciones, sin embargo, en términos de RMSE, es un modelo que no posee una gran variación respecto al conjunto de entrenamiento.
3. Para caida ocupante, la variación del RMSE de validación respecto al entrenamiento es de un 14.202% lo cual es un buen indicativo de la capacidad de generalización del modelo. Adicional, las FDP de los errores de entrenamiento y validación no se diferencian mucho por lo que se ve que el modelo tiene un buen ajuste.
4. A pesar de que el modelo de volcamiento no posea una variación tan alta 14.202%, es evidente que el modelo se encuentra subestimando los datos, y el rango de las predicciones no es acorde al rango lo la variabilidad natural del fenómeno en estudio, es necesario profundizar para este modelo.
En primera instancia, se observa un muy buen ajuste de los datos de entrenamiento para el modelo de regresión lineal. No obstante, es necesario evaluar su capacidad de generalizar, es necesario evaluarlo en el conjunto de validación. En la siguiente gráfica se observan los resultados del RMSE tanto para validación como para entrenamiento para la clase choque, lo cual hace sospechar que se presenta subestimación de los datos pero sin que esto sea algo grave.
Dado lo anterior se graficaron los errores tanto para validación como para entrenamiento.
Del análisis de errores, es claro que el modelo tiene problemas de subestimación, ya que las estimaciones no superan los valores de aproximadamente 120 choques por día. Sin embargo, viendo justamente los datos, es una proporción pequeña respecto a todo el conjunto de datos, por lo que podrían denotarse como observaciones más atípicas.
Al continuar con el proceso de entrenamiento de los modelos semanales es preciso decir que si bien para la clase choque la regresión lineal ajusta relativamente bien los datos, para la demás clases esta hipótesis no se cumple a cabalidad. Como se mostrará en el siguiente gráfico para los rmse del modelo de la clase atropello:
El modelo de regresión lineal claramente parece no ajustarse correctamente a los datos. Sin embargo, en términos de RMSE no se presentan valores exageradamente altos que es lo que sucede cuando no se ajustan los datos a la regresión lineal, esto puede deberse a que hay un comportamiento no lineal atípico y de esta manera se ajusta completamente la regresión lineal.Una de las soluciones puede ser incorporar nuevas variables que logren explicar mejor la variabilidad del fenómeno a estudiar.
| RMSE_VALIDATION | RMSE_TRAIN | CLASE_MODELO |
|---|---|---|
| 82.143874 | 82.143874 | choque |
| 3.773002 | 4.177523 | atropello |
| 4.460137 | 4.650115 | caida ocupante |
| 2.382718 | 2.715830 | volcamiento |
| 4.925106 | 5.469337 | otros |
En suma, del trabajo en general queda una buena sensacion de los resultados obtenidos, con las oportunidades de mejora correspondientes. Asi mismo, es preciso resaltar que para todo el proyecto se realizo un aplicacion de los conocimientos obtenidos del curso al igual que otros conocimientos previos que hacian enriquecer y refinar los resultados. De igual manera, es importante resaltar el hecho que se haya decidido como entregables el aplicativo web en Shiny y los reportes en Rpubs pues esto afianza conocimientos y nos invita a realizar publicaciones abiertas al publico y hacer divulgacion de los conocimientos. Otro hecho relevante es la invitacion y la directriz de alojar el proyecto sobre un repositorio lo cual tambien nuevamente genera confianza para la publicacion del conocimiento y poder en algunos casos realizar disscusiones que mejoren los hechos empiricos.
En cuanto a los resultados del trabajo es importante resaltar que:
1. Los atropellos se presentan la mayoría de las veces contra ciclistas (ciclo ruta) y contra peatones (vía peatonal) lo cual hace que estos 2 actores (ciclistas y peatones) sean los más vulnerables en las vías.
2. Las caídas de ocupante se dan con mayor frecuencia en túneles, lotes o predios y en ciclo rutas.
3. Para las tendencias anuales de la gravedad del accidente: se pueden observar disminuciones de la fatalidad de los mismos (heridos y muertos) lo que puede hablar sobre mejores niveles de educación vial de los actores. Sin embargo, para solo daño se presenta una tendencia creciente. No obstante, se hace imperativo obtener más datos para esto ya que tan solo 4 años no parecen ser suficientes para comprender ampliamente estos fenómenos.
4. Los días domingo se presentan menos accidentes en comparación con los demás días de la semana, esto bajo el supuesto que son días de ocio de las personas y el uso de los medios de transporte son menores. Así mismo, este gráfico muestra que para todos los días con excepción para domingo todos los días tienen valores muy similares.
5. Los lugares de la ciudad donde se presentan mayores números de autos también son lugares con mayores niveles de choque: La Candelaria, El poblado, Belén, Guayabal, Robledo y demás, son lugares con alta congestión vehicular lo que puede traducir mayores niveles de choques.
6. Para la clase accidente se puede realizar una reducción de dimensión, pasando de 6 dimensiones a tan solo 2 dimensiones. Estas nuevas dimensiones (Siniestro con Lesiones -SCL- y Siniestro sin Lesión -SSL-) están relacionadas con si hay o no lesiones en el siniestro. Se observa que para la gravedad solo daños el 99.3% de los siniestros fue sin lecciones lo que hace suponer el la mayoría de la clase de choques son menores y no hay lecciones (materiales graves ni sobre las personas). De esta manera, la clase choque se puede convertir SSL* y las demás clases (atropello, caída ocupante, incendio, otro y volcamiento) se pueden convertir en SCL.
7. Los hallazgos realizados para el análisis de clustering se puede decir que para los diferentes años analizados (2014,2015,2016,2017 y 2018) se puede decir que el número óptimo de cluster que presentan la accidentalidad en la ciudad son k = 4 . Estos cluster pueden ser llamados cluster de muy alta, alta, moderada y baja accidentalidad para la ciudad de Medellín en el periodo de análisis. Con base en lo anterior se puede decir también que Medellín es primordial y predominantemente una ciudad céntrica la cual en su mayoría su actividad económica está ubicada en el centro de la ciudad y los alrededores cercanos.
8. Al trazar una línea con los puntos rojos se podría observar que esta corresponde en mayor parte a las vías conocidas como La Regional y la Autopista Norte vías profundamente estratégicas que conectan todo el Valle (sentido Norte-Sur-Norte) lo que por supuesto las hace unas vías con altos índices de movilidad y de manera directa de altos incidentes viales.
9. Los corredores viales de la Avenida la 80 (puntos anaranjados) y la Autopista Norte (puntos rojos) es que tienen una infraestructura vial que es limitada para el número de vehículos que la transitan habitualmente, con esto se quiere decir que: la malla vial de de estas zonas es en muchos casos precaria o deficiente, toda vez que hay partes de estas vías en las que se transita en 3 carriles y luego en 2, generando efectos embudo que ante circunstancias cambiantes (lluvia, arreglos viales, represamiento vehicular y demás) son vías más propensas a generar accidentes.
10. La tenencia de buenos datos y de calidad son importantes en el proceso de modelamiento, por eso la omisión de la clase de accidentes incendios para la estimación de los modelos semanales y diarios deja un sinsabor. Esta decisión se toma como resultado que para la clase incendio y para cada una de estas agregaciones se presentan muy pocos datos. Esto hace alusión a que los incendios son muy poco comunes en los incidentes viales, además en términos de valores también son muy bajos a lo sumo 3 o 5 por mes, esto dificulta que se pudiera pensar en hacer siquiera un modelo único para incendio.
11. En general para los modelos 5 modelos mensuales la estimación se realiza usando una regresión lineal aplicando regularización lasso que es la técnica que presenta menores errores de estimación frente a los modelos entrenados bajo la stepwise elimination para seleccionar variables. Para los casos de los modelos con stepwise elimination se observaban niveles considerables de sobreajuste al comparar los resultados de entrenamiento y validación.
12.Una desventaja de los modelos mensuales es la poca cantidad de observaciones disponibles para hacer unas estimaciones más robustas. Es claro que hay margen de mejora, en especial para los modelos de volcamientos y otros accidentes que fueron los que presentaron el peor error de estimación, próximamente se procederá a explorar otras alternativas de modelamiento para estas clases de accidentes.
13. Los modelos para las clases volcamiento y otros se consideran para los 3 niveles de agregación una oportunidad de mejora. Ya que estos sufrieron de tener rangos muy cerrados de estimación, por lo que no tienen en cuenta toda la variabilidad total del fenómeno de estudio. Es importante explorar nuevas variables que le permitan a los modelos capturar la variabilidad de estas clases. Adicional a esto, son eventos que desde su concepción pueden limitar el análisis: pues son incidentes viales (muy graves por supuesto) con baja frecuencia de accidentes, esto no quiere decir que esté mal, sino por el contrario es positivo. Sin embargo, pero para el objeto que nos compete (realizar modelos predictivos) no son de mucha ayuda el tener pocas observaciones o hace que se deban tratar con otras metodologías (detección de anomalías).
El repositorio del proyecto se encuentra en el siguiente enlace
El reporte del analisis exploratorio de los datos se encuentra en el siguiente enlace
Los Reportes de los modelos predictivos se encuentran en los siguiente enlace
El reporte de la clusterizacion se encuentra en el siguiente enlace
El video promocional de la pagina web se encuentra en el siguiente enlace
El video promocional de la pagina web se encuentra en el siguiente enlace