\[ \frac{dS}{dt} = 10 c_{in}(t) - \frac{1}{10}S(t), \,\, S(0)= s_0 \]
\[ \frac{dS}{dt} + \frac{1}{10}S(t) = 10 c_{in}(t) , \,\, S(0)= s_0 \]
\[ \frac{dS}{dt} + \frac{1}{10}S(t) = 10 c_{in}(t) , \,\, S(0)= s_0 \]
\[ \begin{align*} \mu(t) & = e^{\int \frac{1}{10} dt } = e^{\frac{t}{10} }\\ S(t) & = e^{-\frac{t}{10} } \int 10 e^{-\frac{s}{10} }c_{in}(s) ds + s_0 e^{-\frac{t}{10} } \end{align*} \]
\[ \lim_{t \rightarrow \infty} s_0 e^{-\frac{t}{10}} = 0 \]
\[ \frac{dS}{dt} + \frac{1}{10}S(t) = 10 c_{in}(t) , \,\, S(0)= s_0 \]
\[ S(t) = s_0 e^{-t/10} + 100c_1(1-e^{-t/10}) \]
\[ S(t) = s_0 e^{-t/10} + 20 + \frac{10}{101}(\sin(t) - 10\cos(t) - 192e^{-t/10}) \]
\[ \begin{align*} \frac{dC}{dt} & = \frac{F}{V}c_{in} - \frac{F}{V}C(t) , \,\, C(0)= c_0 \\ & = \frac{F}{V}\left(c_{in} - C(t)\right) \end{align*} \]
\[ \begin{align*} C(t) & = c_{in} - (c_{in} - c_0) e^{-Ft/V } \\ & = c_{in}\left(1 - e^{-Ft/V }\right) + c_0e^{-Ft/V } \end{align*} \]
\[ \begin{align*} C(t) & = c_{in} - (c_{in} - c_0) e^{-Ft/V } \\ & = c_{in}\left(1 - e^{-Ft/V }\right) + c_0e^{-Ft/V } \end{align*} \]
\[ \lim_{t \rightarrow \infty} \left(c_{in} - (c_{in} - c_0) e^{-Ft/V }\right) = c_{in} \]
\[ C(t) = c_{in} - (c_{in} - c_0) e^{-Ft/V } = c_0 e^{-Ft/V } \]
\[ t = \frac{V}{F} \ln \left( \frac{C}{c_0} \right) = - \frac{V}{F}\ln(0.05) \cong \frac{3F}{V} \]
\[ t \cong \frac{3F}{V} \]
\[ t \cong 7.8 \, \mathrm{years} \]
\[ t \cong 23.5 \, \mathrm{years} \]