The n-th root of a number \( x \) is
\[ \sqrt[\leftroot{-1}\uproot{3}n]{x} = x^{1/n} \]
Examples
\( x = 9, \,\, n = 2: \,\,\sqrt{9} = 9^{1/2} = 3 \)
\( x = 8, \,\, n = 3: \,\, \sqrt[\leftroot{-1}\uproot{3}3]{8} = 8^{1/3} = 2 \)
sqrt(2)
[1] 1.414214
2^(1/2)
[1] 1.414214
9^(0.5)
[1] 3
8^(1/3)
[1] 2
81^(1/4)
[1] 3
32^(1/5)
[1] 2
1 + 24/60 + 51/60^2 + 10/60^3
[1] 1.414213
42 + 25/60 + 51/60^2
[1] 42.43083
30*sqrt(2)
[1] 42.42641
\[ \begin{align*} x_{n+1} & = \frac{x_n}{2} + \frac{1}{x_n} \\ x_0 & = 1\\ x_1 & = \frac{x_0}{2} + \frac{1}{x_0} = 1.5 \\ x_2 & = \frac{x_1}{2} + \frac{1}{x_1} = 1.4167 \\ & \vdots \\ x &= 1.414213...\\ \end{align*} \]
\[ \begin{align*} x_{n+1} & = \frac{x_n}{2} + \frac{1}{x_n} \\ x_0 & = 1\\ x_1 & = \frac{x_0}{2} + \frac{1}{x_0} = 1.5 \\ x_2 & = \frac{x_1}{2} + \frac{1}{x_1} = 1.4167 \\ & \vdots \\ x &= 1.414213...\\ \end{align*} \]
(x0 <- 1)
[1] 1
(x1 <- 0.5*x0 + 1/x0)
[1] 1.5
(x2 <- 0.5*x1 + 1/x1)
[1] 1.416667
\[ \begin{align*} x_0 & = 1\\ x_{k+1} & = \frac{1}{n}\left[ x_k*(n-1) + \frac{a}{x_k^{n-1}} \right] \end{align*} \]
\[ x_{k+1} = \frac{1}{2}\left( x_k + \frac{2}{x_k} \right) \]
\[ \begin{align*} x_0 & = 1\\ x_{k+1} & = \frac{1}{n}\left[ x_k*(n-1) + \frac{a}{x_k^{n-1}} \right] \end{align*} \]
\[ \begin{align*} x_0 & = 1\\ x_{k+1} & = \frac{1}{n}\left[ x_k*(n-1) + \frac{a}{x_k^{n-1}} \right]\\ & = x_k + \frac{1}{n}\left(\frac{a}{x_k^{n-1}} - x_k\right) \\ & = x_k + \Delta x_k \end{align*} \]
deltax <- (1/n)*(a/x^(n-1) - x)
x <- x + deltax
nthroot <- function (a, n, tol = 1/1000) {
x <- 1
deltax <- tol * 10
while (abs( deltax ) > tol) {
deltax <- (1/n)*(a/x^(n-1) - x)
x <- x + deltax }
return (x)
}
\[ \begin{align*} x_{k+1} & = x_k + \frac{1}{n}\left(\frac{a}{x_k^{n-1}} - x_k\right) \\ & = x_k + \Delta x_k \end{align*} \]
nthroot <- function (a, n, tol = 1/1000) {
x <- 1
deltax <- tol * 10
while (abs( deltax ) > tol) {
deltax <- (1/n)*(a/x^(n-1) - x)
x <- x + deltax }
return (x)
}
nthroot(10,2)
[1] 3.162278
nthroot2 <- function (a, n, tol = 1/1000) {
x <- 1
deltax <- tol * 10
iter <- 0
cat("n = ", iter,",", "x(n) = ", x, "\n")
while (abs( deltax ) > tol) {
deltax <- (1/n)*(a/x^(n-1) - x)
x <- x + deltax
iter <- iter + 1
cat("n = ", iter,",", "x(n) = ", x, "\n") }
return (x)
}
nthroot2(10,2)
n = 0 , x(n) = 1
n = 1 , x(n) = 5.5
n = 2 , x(n) = 3.659091
n = 3 , x(n) = 3.196005
n = 4 , x(n) = 3.162456
n = 5 , x(n) = 3.162278
[1] 3.162278
\[ \begin{align*} x_0 & = 1, \,\, n = 2, \,\, a = 10 \\ x_{k+1} & = x_k + \frac{1}{n}\left(\frac{a}{x_k^{n-1}} - x_k\right) \end{align*} \]
nthroot2(100,2)
n = 0 , x(n) = 1
n = 1 , x(n) = 50.5
n = 2 , x(n) = 26.2401
n = 3 , x(n) = 15.02553
n = 4 , x(n) = 10.84043
n = 5 , x(n) = 10.03258
n = 6 , x(n) = 10.00005
n = 7 , x(n) = 10
[1] 10
nthroot2(21,3)
n = 0 , x(n) = 1
n = 1 , x(n) = 7.666667
n = 2 , x(n) = 5.230204
n = 3 , x(n) = 3.742697
n = 4 , x(n) = 2.994854
n = 5 , x(n) = 2.777022
n = 6 , x(n) = 2.759042
n = 7 , x(n) = 2.758924
[1] 2.758924
21^(1/3)
[1] 2.758924
nthroot2(pi,2)
n = 0 , x(n) = 1
n = 1 , x(n) = 2.070796
n = 2 , x(n) = 1.793945
n = 3 , x(n) = 1.772583
n = 4 , x(n) = 1.772454
[1] 1.772454
sqrt(pi)
[1] 1.772454
nthroot <- function (a, n, tol = 1/1000) {
x <- 1
deltax <- tol * 10
while (abs( deltax ) > tol) {
deltax <- (1/n)*(a/x^(n-1) - x)
x <- x + deltax }
return (x)
}
\[ \begin{align*} x_{k+1} & = x_k + \frac{1}{n}\left(\frac{a}{x_k^{n-1}} - x_k\right) \\ & = x_k + \Delta x_k \end{align*} \]