# Data for live-coding exercies
# (cntrl = control = ambient sounds)
# (dist = disturbed = sound disturbance)
#
# 6 rows of data
# telomere length for control (in kilobases)
# telomere length for sound disturbance (in kilobases)
# corticosterone concentration control
# corticosterone concentration distrubrance
## How to enter these data into vectors?
# Task 1) The lines of data below need to be formatted for loading into vectors
# name them as follows and load the data into vectors.
# "telos.cntrl"
# "telos.dist"
# "cort.cntrl"
# "cort.dist
# "trt.cntrl"
# "trt.dist
telos.cntrl <- c(1.202, 1.135, 1.116, 1.339, 0.948, 1.194, 1.179)
telos.dist <- c(0.829, 1.121, 1.128, 1.002, 0.866, 1.087, 0.935, 0.929, 1.012)
cort.cntrl <- c(5.93, 10.45, 1.84, 8.89, 6.32, 1.95, 1.47)
cort.dist <- c(7.38, 0.85, 4.76, 7.26, 5.39, 1.36, 18.35, 5.73, 4.22)
trt.cntrl <- c("cntrl", "cntrl", "cntrl", "cntrl", "cntrl", "cntrl", "cntrl")
trt.dist <- c("dist", "dist", "dist", "dist", "dist", "dist", "dist", "dist", "dist")
telos <- c(telos.cntrl, telos.dist)
trt <- c(trt.cntrl, trt.dist)
# Task 2) How do you calculate the mean for the telomeres? Standard deviation? Sample size?
#Mean
mean.telo.cntrl <- mean(telos.cntrl)
mean.telo.dist <- mean(telos.dist)
print(mean.telo.cntrl)
## [1] 1.159
print(mean.telo.dist)
## [1] 0.9898889
#Standard Deviation
sd.telo.cntrl <- sd(telos.cntrl)
sd.telo.dist <- sd(telos.dist)
print(sd.telo.cntrl)
## [1] 0.1174876
print(sd.telo.cntrl)
## [1] 0.1174876
#Sample Size
n.telo.cntrl <- length(telos.cntrl)
n.telo.dist <- length(telos.dist)
#Standard Error
#Standard Error = SD/sqrt(N)
se.telo.cntrl <- sd.telo.cntrl/sqrt(n.telo.cntrl)
se.telo.dist <- sd.telo.dist/sqrt(n.telo.dist)
#Confidence Intervals
#One CI 'Arm' = 2*SE
upper.arm.cntrl <- 2* se.telo.cntrl + mean.telo.cntrl
lower.arm.cntrl <- mean.telo.cntrl - 2*se.telo.cntrl
upper.arm.dist <- 2*se.telo.dist + mean.telo.dist
lower.arm.dist <- mean.telo.dist - 2*se.telo.dist
#Use the lowbrow_errbars function
#lowbrow_errbars(means = c(mean.telo.cntrl, mean.telo.dist),
# SEs = c(se.telo.cntrl, se.telo.dist),
# categories = c("Control", "Disturbed"),
# x.axis.label = "Experimental Treatment",
# y.axis.label = "Telomere Length (kb)")
#Create A Dataframe
df <- data.frame(telos, trt)
df
#T test
#Telomere length depends on experimental treatment
#y = x
#telo ~ treatment
t.test(telos ~ trt, data = df)
##
## Welch Two Sample t-test
##
## data: telos by trt
## t = 2.9522, df = 12.485, p-value = 0.01165
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.04483683 0.29338539
## sample estimates:
## mean in group cntrl mean in group dist
## 1.1590000 0.9898889