library(tidyverse)
library(openintro)
Exercise 1
## [1] 4683 4457 4102 4590 4839 4820 4928 4605 4457 4952 4784 5332 5200 4910 4617
## [16] 3997 3919 3395 3536 3181 2746 2722 2840 2908 2959 3179 3349 3382 3289 3013
## [31] 2781 3247 4107 4803 4881 5681 4858 4319 5322 5560 5829 5719 6061 6120 5822
## [46] 5738 5717 5847 6203 6033 6041 6299 6533 6744 7158 7127 7246 7119 7214 7101
## [61] 7167 7302 7392 7316 7483 6647 6713 7229 7767 7626 7452 7061 7514 7656 7683
## [76] 5738 7779 7417 7687 7623 7380 7288
Exercise 2
Plotting baptism data of girls over years using line graph
qplot(x = year, y = girls, data = arbuthnot, geom = "line")

print("We see a decline in between 1650 to 1660 and then afterwards there is an increase in number of girls baptized.")
## [1] "We see a decline in between 1650 to 1660 and then afterwards there is an increase in number of girls baptized."
Exercise 3
Boys proportion
prop_boys = arbuthnot$boys / (arbuthnot$boys + arbuthnot$girls)
plot(arbuthnot$year, prop_boys, type = "l")

print("From the graph we can see the proportion of boys getting baptized over years is almost steady.")
## [1] "From the graph we can see the proportion of boys getting baptized over years is almost steady."
Exercise 4
Analyse present dataframe
#Years present in the frame
print("Years present in the frame are : ")
## [1] "Years present in the frame are : "
## [1] 1940 2002
#dimension of the frame
print("Dimension of the frame are : ")
## [1] "Dimension of the frame are : "
## [1] 63 3
#Column names of the frame
print("Column names of the frame are :")
## [1] "Column names of the frame are :"
## [1] "year" "boys" "girls"
Exercise 5
Arbuthnot and present dataframe - count compare
mean(arbuthnot$boys + arbuthnot$girls)
## [1] 11441.74
mean(present$boys + present$girls)
## [1] 3679515
print("We see from the mean of both dataframes that they are not on same magnitude")
## [1] "We see from the mean of both dataframes that they are not on same magnitude"
Exercise 6
Boys proportion in present dataframe
prop_boys = present$boys / (present$boys + present$girls)
plot(present$year, prop_boys, type = "l")

print("Arbuthnot’s observation about boys being born in greater proportion than girls doesnt hold up in the U.S. as per this plot.")
## [1] "Arbuthnot’s observation about boys being born in greater proportion than girls doesnt hold up in the U.S. as per this plot."
Exercise 7
Highest birh rate year
present <- present %>%
mutate(total = boys + girls)
present <- present %>%
arrange(desc(total))
plot( present$year,present$total,type = "l")

paste("Highest bith rate was recorded in ", present$year[(present$boys + present$girls) == max(present$boys + present$girls)])
## [1] "Highest bith rate was recorded in 1961"
LS0tDQp0aXRsZTogIkxhYiAxOiBJbnRybyB0byBSIg0KYXV0aG9yOiAiUGV0ZXIgRmVybmFuZGVzIg0KZGF0ZTogImByIFN5cy5EYXRlKClgIg0Kb3V0cHV0OiBvcGVuaW50cm86OmxhYl9yZXBvcnQNCi0tLQ0KDQpgYGB7ciBsb2FkLXBhY2thZ2VzLCBtZXNzYWdlPUZBTFNFfQ0KbGlicmFyeSh0aWR5dmVyc2UpDQpsaWJyYXJ5KG9wZW5pbnRybykNCmBgYA0KDQojIyMgRXhlcmNpc2UgMQ0KDQpgYGB7ciB2aWV3LWdpcmxzLWNvdW50c30NCmFyYnV0aG5vdCRnaXJscw0KYGBgDQoNCg0KIyMjIEV4ZXJjaXNlIDINCg0KIyBQbG90dGluZyBiYXB0aXNtIGRhdGEgb2YgZ2lybHMgb3ZlciB5ZWFycyB1c2luZyBsaW5lIGdyYXBoDQoNCmBgYHtyIHRyZW5kLWdpcmxzfQ0KcXBsb3QoeCA9IHllYXIsIHkgPSBnaXJscywgZGF0YSA9IGFyYnV0aG5vdCwgZ2VvbSA9ICJsaW5lIikNCnByaW50KCJXZSBzZWUgYSBkZWNsaW5lIGluIGJldHdlZW4gMTY1MCB0byAxNjYwIGFuZCB0aGVuIGFmdGVyd2FyZHMgdGhlcmUgaXMgYW4gaW5jcmVhc2UgaW4gbnVtYmVyIG9mIGdpcmxzIGJhcHRpemVkLiIpDQpgYGANCg0KDQojIyMgRXhlcmNpc2UgMw0KDQojIEJveXMgcHJvcG9ydGlvbg0KDQpgYGB7ciBwbG90LXByb3AtYm95cy1hcmJ1dGhub3R9DQpwcm9wX2JveXMgPSBhcmJ1dGhub3QkYm95cyAvIChhcmJ1dGhub3QkYm95cyArIGFyYnV0aG5vdCRnaXJscykNCnBsb3QoYXJidXRobm90JHllYXIsIHByb3BfYm95cywgdHlwZSA9ICJsIikNCnByaW50KCJGcm9tIHRoZSBncmFwaCB3ZSBjYW4gc2VlIHRoZSBwcm9wb3J0aW9uIG9mIGJveXMgZ2V0dGluZyBiYXB0aXplZCBvdmVyIHllYXJzIGlzIGFsbW9zdCBzdGVhZHkuIikNCmBgYA0KDQoNCiMjIyBFeGVyY2lzZSA0DQoNCiMgQW5hbHlzZSBwcmVzZW50IGRhdGFmcmFtZQ0KDQpgYGB7ciBkaW0tcHJlc2VudH0NCiNZZWFycyBwcmVzZW50IGluIHRoZSBmcmFtZQ0KcHJpbnQoIlllYXJzIHByZXNlbnQgaW4gdGhlIGZyYW1lIGFyZSA6ICIpDQpyYW5nZShwcmVzZW50JHllYXIpDQojZGltZW5zaW9uIG9mIHRoZSBmcmFtZQ0KcHJpbnQoIkRpbWVuc2lvbiBvZiB0aGUgZnJhbWUgYXJlIDogIikNCmRpbShwcmVzZW50KQ0KI0NvbHVtbiBuYW1lcyBvZiB0aGUgZnJhbWUNCnByaW50KCJDb2x1bW4gbmFtZXMgb2YgdGhlIGZyYW1lIGFyZSA6IikNCm5hbWVzKHByZXNlbnQpDQpgYGANCg0KDQojIyMgRXhlcmNpc2UgNQ0KDQojIEFyYnV0aG5vdCBhbmQgcHJlc2VudCBkYXRhZnJhbWUgLSBjb3VudCBjb21wYXJlDQoNCmBgYHtyIGNvdW50LWNvbXBhcmV9DQptZWFuKGFyYnV0aG5vdCRib3lzICsgYXJidXRobm90JGdpcmxzKQ0KbWVhbihwcmVzZW50JGJveXMgKyBwcmVzZW50JGdpcmxzKQ0KcHJpbnQoIldlIHNlZSBmcm9tIHRoZSBtZWFuIG9mIGJvdGggZGF0YWZyYW1lcyB0aGF0IHRoZXkgYXJlIG5vdCBvbiBzYW1lIG1hZ25pdHVkZSIpDQpgYGANCg0KDQojIyMgRXhlcmNpc2UgNg0KDQojIEJveXMgcHJvcG9ydGlvbiBpbiBwcmVzZW50IGRhdGFmcmFtZQ0KDQpgYGB7ciBwbG90LXByb3AtYm95cy1wcmVzZW50fQ0KcHJvcF9ib3lzID0gcHJlc2VudCRib3lzIC8gKHByZXNlbnQkYm95cyArIHByZXNlbnQkZ2lybHMpDQpwbG90KHByZXNlbnQkeWVhciwgcHJvcF9ib3lzLCB0eXBlID0gImwiKQ0KcHJpbnQoIkFyYnV0aG5vdOKAmXMgb2JzZXJ2YXRpb24gYWJvdXQgYm95cyBiZWluZyBib3JuIGluIGdyZWF0ZXIgcHJvcG9ydGlvbiB0aGFuIGdpcmxzIGRvZXNudCBob2xkIHVwIGluIHRoZSBVLlMuIGFzIHBlciB0aGlzIHBsb3QuIikNCmBgYA0KDQoNCiMjIyBFeGVyY2lzZSA3DQoNCiMgSGlnaGVzdCBiaXJoIHJhdGUgeWVhcg0KDQpgYGB7ciBmaW5kLW1heC10b3RhbH0NCnByZXNlbnQgPC0gcHJlc2VudCAlPiUNCiAgICAgICAgbXV0YXRlKHRvdGFsID0gYm95cyArIGdpcmxzKQ0KcHJlc2VudCA8LSBwcmVzZW50ICU+JQ0KICAgICAgICBhcnJhbmdlKGRlc2ModG90YWwpKQ0KcGxvdCggcHJlc2VudCR5ZWFyLHByZXNlbnQkdG90YWwsdHlwZSA9ICJsIikNCnBhc3RlKCJIaWdoZXN0IGJpdGggcmF0ZSB3YXMgcmVjb3JkZWQgaW4gIiwgcHJlc2VudCR5ZWFyWyhwcmVzZW50JGJveXMgKyBwcmVzZW50JGdpcmxzKSA9PSBtYXgocHJlc2VudCRib3lzICsgcHJlc2VudCRnaXJscyldKQ0KDQogDQpgYGANCg0K