##  [1] "ARMA-templet.Rmd"                             
##  [2] "ARMA课程练习.Rmd"                             
##  [3] "bitcoin与gold.Rmd"                            
##  [4] "CHAP3arrange排列行.Rmd"                       
##  [5] "CHAP3filter筛选行.Rmd"                        
##  [6] "CHAP3select选择列mutate添加新变量.Rmd"        
##  [7] "CHAP3summarize分组摘要.Rmd"                   
##  [8] "DCCGARCH template.Rmd"                        
##  [9] "DCCGARCH.Rmd"                                 
## [10] "garch.Rmd"                                    
## [11] "garch试验.Rmd"                                
## [12] "ggplot2-学习之外观设置.Rmd"                   
## [13] "ggplot2(1).Rmd"                               
## [14] "ggplot2.Rmd"                                  
## [15] "IBM ARIMA.Rmd"                                
## [16] "Learning-notes-for-R-in-Action.html"          
## [17] "Learning-notes-for-R-in-Action.Rmd"           
## [18] "mtcars.xlsx"                                  
## [19] "Rmarkdown-template1.html"                     
## [20] "Rmarkdown-template2.html"                     
## [21] "Rmarkdown guide.Rmd"                          
## [22] "Rmarkdown template1.Rmd"                      
## [23] "Rmarkdown template2.Rmd"                      
## [24] "rsconnect"                                    
## [25] "R的金融应用第四章第三节.Rmd"                  
## [26] "R的金融应用第四章一二节.docx"                 
## [27] "R的金融应用第四章一二节.Rmd"                  
## [28] "template of ARIMA.Rmd"                        
## [29] "template1 of regression.Rmd"                  
## [30] "tidyverse-reading-and-writing.html"           
## [31] "tidyverse-reading-and-writing.Rmd"            
## [32] "tidyverse2.html"                              
## [33] "tidyverse2.Rmd"                               
## [34] "tvar的脉冲响应函数.txt"                       
## [35] "tvar脉冲函数模板.Rmd"                         
## [36] "univariate garch.Rmd"                         
## [37] "VAR课堂练习.Rmd"                              
## [38] "财务报表分析案例1.Rmd"                        
## [39] "代码.Rproj"                                   
## [40] "单笔时间序列性质.Rmd"                         
## [41] "第12周一元回归.Rmd"                           
## [42] "第九周.R"                                     
## [43] "第九周课2.R"                                  
## [44] "基于ARIMA模型的我国全社会固定资产投资预测.Rmd"
## [45] "金融时间序列第一章案例1.Rmd"                  
## [46] "数据科学第二轮CHAP3(2).Rmd"                 
## [47] "统计练习.Rmd"                                 
## [48] "徐晴霏.R"                                     
## [49] "一元线性回归.Rmd"                             
## [50] "原油期货的TVAR模型.Rmd"                       
## [51] "作业.Rmd"

管道

例子

##  [1] "mpg"  "cyl"  "disp" "hp"   "drat" "wt"   "qsec" "vs"   "am"   "gear"
## [11] "carb"
## 
## Call:
## lm(formula = mpg ~ cyl, data = .)
## 
## Coefficients:
## (Intercept)          cyl  
##      37.885       -2.876
## 'data.frame':    32 obs. of  11 variables:
##  $ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
##  $ cyl : num  6 6 4 6 8 6 8 4 4 6 ...
##  $ disp: num  160 160 108 258 360 ...
##  $ hp  : num  110 110 93 110 175 105 245 62 95 123 ...
##  $ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
##  $ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
##  $ qsec: num  16.5 17 18.6 19.4 17 ...
##  $ vs  : num  0 0 1 1 0 1 0 1 1 1 ...
##  $ am  : num  1 1 1 0 0 0 0 0 0 0 ...
##  $ gear: num  4 4 4 3 3 3 3 4 4 4 ...
##  $ carb: num  4 4 1 1 2 1 4 2 2 4 ...

选择数据框的列(dplyr包)

select提取列

## [1] "title"  "length" "budget" "votes"  "Action"

select_if

## [1] FALSE FALSE FALSE FALSE  TRUE
## [1] 0.2
## [1] "budget"

select_at

选择指定某列

select_all

选择所有列

选择行

slice

根据记录的位置选择行

filter

##   [1] setosa     setosa     setosa     setosa     setosa     setosa    
##   [7] setosa     setosa     setosa     setosa     setosa     setosa    
##  [13] setosa     setosa     setosa     setosa     setosa     setosa    
##  [19] setosa     setosa     setosa     setosa     setosa     setosa    
##  [25] setosa     setosa     setosa     setosa     setosa     setosa    
##  [31] setosa     setosa     setosa     setosa     setosa     setosa    
##  [37] setosa     setosa     setosa     setosa     setosa     setosa    
##  [43] setosa     setosa     setosa     setosa     setosa     setosa    
##  [49] setosa     setosa     versicolor versicolor versicolor versicolor
##  [55] versicolor versicolor versicolor versicolor versicolor versicolor
##  [61] versicolor versicolor versicolor versicolor versicolor versicolor
##  [67] versicolor versicolor versicolor versicolor versicolor versicolor
##  [73] versicolor versicolor versicolor versicolor versicolor versicolor
##  [79] versicolor versicolor versicolor versicolor versicolor versicolor
##  [85] versicolor versicolor versicolor versicolor versicolor versicolor
##  [91] versicolor versicolor versicolor versicolor versicolor versicolor
##  [97] versicolor versicolor versicolor versicolor virginica  virginica 
## [103] virginica  virginica  virginica  virginica  virginica  virginica 
## [109] virginica  virginica  virginica  virginica  virginica  virginica 
## [115] virginica  virginica  virginica  virginica  virginica  virginica 
## [121] virginica  virginica  virginica  virginica  virginica  virginica 
## [127] virginica  virginica  virginica  virginica  virginica  virginica 
## [133] virginica  virginica  virginica  virginica  virginica  virginica 
## [139] virginica  virginica  virginica  virginica  virginica  virginica 
## [145] virginica  virginica  virginica  virginica  virginica  virginica 
## Levels: setosa versicolor virginica
## [1] 150

filter_if

filter all

## Warning in Ops.factor(Species, 7.5): '>' not meaningful for factors

filter at

处理数据框名字

select

rename

select_all

## [1] "SEPAL.LENGTH" "SEPAL.WIDTH"  "PETAL.LENGTH" "PETAL.WIDTH"  "SPECIES"

select_if

## [1] "SEPAL.LENGTH" "SEPAL.WIDTH"  "PETAL.LENGTH" "PETAL.WIDTH"

rename_all

rename_if

排序变量

arange

arange_all

arange_if

select选择特定列排在前面

current_vars按照字母顺序排序

生成和删除若干列

mutate

## [1] "Sepal.Width"  "Petal.Length" "Petal.Width"  "Species"
## [1] "Sepal.Length" "Sepal.Width"  "Petal.Length" "Petal.Width"

row_number生成行序号

lag和lead

##  [1] NA  1  2  3  4  5  6  7  8  9
##  [1] NA NA  1  2  3  4  5  6  7  8
##  [1]  2  3  4  5  6  7  8  9 10 NA
##  [1]  3  4  5  6  7  8  9 10 NA NA

case_when对多个列进行变换

##  [1] 2 2 2 1 3 1 4 2 2 4
##  [1] 200 200 200 100   3 100   4 200 200   4

cumall,cumany,cummean

## [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
##  [1] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
##  [1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

时间

year、month、day等

## [1] "2020-11-03"
## [1] 2020
## [1] 11
## [1] 44
## [1] 3
## [1] 5
## [1] 9
## [1] 25
## [1] 35

yday、mda、wday、dday

## [1] 308
## [1] 3
## [1] 3
## [1] "86400s (~1 days)"
## [1] "31557600s (~1 years)"
## [1] 3
## [1] 星期二
## Levels: 星期日 < 星期一 < 星期二 < 星期三 < 星期四 < 星期五 < 星期六
## [1] "2020-09-01 22:16:06 CST"

时间加加减减

## [1] "2021-09-01"
## [1] "2020-10-01"
## [1] "2020-09-02"
## [1] "2020-09-01 01:00:00 UTC"
## [1] "2020-09-01 00:01:00 UTC"
## [1] "2020-09-01 00:00:01 UTC"

其他常见工作场景

##  [1] "2020-04-01" "2020-04-02" "2020-04-03" "2020-04-04" "2020-04-05"
##  [6] "2020-04-06" "2020-04-07" "2020-04-08" "2020-04-09" "2020-04-10"
##  [1] "2020-04-01" "2020-04-01" "2020-04-01" "2020-04-01" "2020-04-01"
##  [6] "2020-04-01" "2020-04-01" "2020-04-01" "2020-04-01" "2020-04-01"
##  [1] "2020-03-29" "2020-03-29" "2020-03-29" "2020-03-29" "2020-04-05"
##  [6] "2020-04-05" "2020-04-05" "2020-04-05" "2020-04-05" "2020-04-05"
##  [1] "2020-04-30" "2020-04-30" "2020-04-30" "2020-04-30" "2020-04-30"
##  [6] "2020-04-30" "2020-04-30" "2020-04-30" "2020-04-30" "2020-04-30"
##  [1] "2020-04-30" "2020-04-30" "2020-04-30" "2020-04-30" "2020-04-30"
##  [6] "2020-04-30" "2020-04-30" "2020-04-30" "2020-04-30" "2020-04-30"
##  [1] "2019-05-01" "2019-05-01" "2019-05-01" "2019-05-01" "2019-05-01"
##  [6] "2019-05-01" "2019-05-01" "2019-05-01" "2019-05-01" "2019-05-01"
##  [1] "2019-05-01 18:00:00 UTC" "2019-05-01 18:00:00 UTC"
##  [3] "2019-05-01 18:00:00 UTC" "2019-05-01 18:00:00 UTC"
##  [5] "2019-05-01 18:00:00 UTC" "2019-05-01 18:00:00 UTC"
##  [7] "2019-05-01 18:00:00 UTC" "2019-05-01 18:00:00 UTC"
##  [9] "2019-05-01 18:00:00 UTC" "2019-05-01 18:00:00 UTC"
## [1] "2017-11-11" "2017-12-11" "2018-01-11" "2018-02-11"
## [1] "2017-11-11" "2017-12-11" "2018-01-11" "2018-02-11"

产生一个月序列,如果该值不会是月末值,用“+”,否则用“%m+%”强制执行月末行为

## [1] "2017-11-30" "2017-02-28"
## [1]  TRUE FALSE
## [1] TRUE

其他常见工作

## [1] "hello, world!"
## [1] "HELLO, WORLD!"
## [1] "Hello, world!"
## 2 
## 2 
## 2 
## 2 
## 2 
## 2 
## 2 
## 2 
## 2 
## 2
## [[1]]
## NULL
## 
## [[2]]
## NULL
## 
## [[3]]
## NULL
## 
## [[4]]
## NULL
## 
## [[5]]
## NULL
## 
## [[6]]
## NULL
## 
## [[7]]
## NULL
## 
## [[8]]
## NULL
## 
## [[9]]
## NULL
## 
## [[10]]
## NULL
## 2 
## 2 
## 2 
## 2 
## 2 
## 2 
## 2 
## 2 
## 2 
## 2
## [[1]]
## NULL
## 
## [[2]]
## NULL
## 
## [[3]]
## NULL
## 
## [[4]]
## NULL
## 
## [[5]]
## NULL
## 
## [[6]]
## NULL
## 
## [[7]]
## NULL
## 
## [[8]]
## NULL
## 
## [[9]]
## NULL
## 
## [[10]]
## NULL
## $Sepal.Length
## [1] "numeric"
## 
## $Sepal.Width
## [1] "numeric"
## 
## $Petal.Length
## [1] "numeric"
## 
## $Petal.Width
## [1] "numeric"
## 
## $Species
## [1] "factor"
## [1] "numeric"
##  [1] a b c d e f g h i j
## Levels: a b c d e f g h i j
##  [1] male   female male   female male   female male   female male   female
## [11] male   female male   female male   female male   female male   female
## Levels: female male

总结:string处理字符串,forcats处理分类变量