The goal of this project is just to display that you’ve gotten used to working with the data and that you are on track to create your prediction algorithm. Please submit a report on R Pubs (http://rpubs.com/) that explains your exploratory analysis and your goals for the eventual app and algorithm. This document should be concise and explain only the major features of the data you have identified and briefly summarize your plans for creating the prediction algorithm and Shiny app in a way that would be understandable to a non-data scientist manager. You should make use of tables and plots to illustrate important summaries of the data set. The motivation for this project is to:
library(plyr)
library(magrittr)
library(stringr)
library(stringi)
library(tm)
## Loading required package: NLP
library(RWeka)
library(SnowballC)
library(ggplot2)
##
## Attaching package: 'ggplot2'
## The following object is masked from 'package:NLP':
##
## annotate
Download the dataset if it is not already there
if(!file.exists("./data")){
dir.create("./data")
url <- "https://d396qusza40orc.cloudfront.net/dsscapstone/dataset/Coursera-SwiftKey.zip"
download.file(Url, destfile="./data/Coursera-SwiftKey.zip", mode = "wb")
unzip(zipfile="./data/Coursera-SwiftKey.zip", exdir="./data")
}
Read the datasets
dataBlogs <- readLines("./Coursera/final/en_US/en_US.blogs.txt", encoding = "UTF-8", skipNul = TRUE)
dataNews <- readLines("./Coursera/final/en_US/en_US.news.txt", encoding = "UTF-8", skipNul = TRUE)
## Warning in readLines("./Coursera/final/en_US/en_US.news.txt", encoding
## = "UTF-8", : incomplete final line found on './Coursera/final/en_US/
## en_US.news.txt'
dataTwitter <- readLines("./Coursera/final/en_US/en_US.twitter.txt", encoding = "UTF-8", skipNul = TRUE)
Display statistics of the three datasets
stri_stats_general(dataBlogs)
## Lines LinesNEmpty Chars CharsNWhite
## 899288 899288 206824382 170389539
stri_stats_general(dataNews)
## Lines LinesNEmpty Chars CharsNWhite
## 77259 77259 15639408 13072698
stri_stats_general(dataTwitter)
## Lines LinesNEmpty Chars CharsNWhite
## 2360148 2360148 162096241 134082806
Sample the data and create the corpus
subdataBlogs <- sample(dataBlogs, size = 1000)
subdataNews <- sample(dataNews, size = 1000)
subdataTwitter <- sample(dataTwitter, size = 1000)
sampledData <- c(subdataBlogs, subdataNews, subdataTwitter)
corpus <- VCorpus(VectorSource(sampledData))
Remove stopwords, punctuation, whitespaces, numbers etc. from the corpuses
toSpace <- content_transformer(function(x, pattern) gsub(pattern, " ", x))
corpus <- tm_map(corpus, toSpace, "/|@|//|$|:|:)|*|&|!|?|_|-|#|")
corpus <- tm_map(corpus, content_transformer(tolower))
corpus <- tm_map(corpus, removeNumbers)
corpus <- tm_map(corpus, removePunctuation)
corpus <- tm_map(corpus, removeWords, stopwords())
corpus <- tm_map(corpus, stemDocument)
corpus <- tm_map(corpus, stripWhitespace)
Create the Document Term Matrices
dtm1 <- TermDocumentMatrix(corpus)
bigram <- function(x) NGramTokenizer(x, Weka_control(min = 2, max = 2))
dtm2 <- TermDocumentMatrix(corpus, control = list(tokenize = bigram))
trigram <- function(x) NGramTokenizer(x, Weka_control(min = 3, max = 3))
dtm3 <- TermDocumentMatrix(corpus, control = list(tokenize = trigram))
1-Gram Frequency
freq1 <- rowSums(as.matrix(dtm1))
freq1 <- sort(freq1, decreasing = TRUE)
dfFreq1 <- data.frame(word = names(freq1), freq=freq1)
ggplot(dfFreq1[1:20, ], aes(word, freq)) +
geom_bar(stat="identity", fill="red", colour="red") +
theme(axis.text.x=element_text(angle=45, hjust=1)) + ggtitle("1-Gram Frequency")
2-Gram Frequency
freq2 <- rowSums(as.matrix(dtm2))
freq2 <- sort(freq2, decreasing = TRUE)
dfFreq2 <- data.frame(word = names(freq2), freq=freq2)
ggplot(dfFreq2[1:20, ], aes(word, freq)) +
geom_bar(stat="identity", fill="red", colour="red") +
theme(axis.text.x=element_text(angle=45, hjust=1)) + ggtitle("2-Gram Frequency")
3-Gram Frequency
freq3 <- rowSums(as.matrix(dtm3))
freq3 <- sort(freq3, decreasing = TRUE)
dfFreq3 <- data.frame(word = names(freq3), freq=freq3)
ggplot(dfFreq3[1:20, ], aes(word, freq)) +
geom_bar(stat="identity", fill="red", colour="red") +
theme(axis.text.x=element_text(angle=45, hjust=1)) + ggtitle("3-Gram Frequency")
The goal is to create a predictive model which predicts the most probable words to follow an input from the user. This model will be evaluated and deployed as a shiny application.