## [1] 4683 4457 4102 4590 4839 4820 4928 4605 4457 4952 4784 5332 5200 4910 4617
## [16] 3997 3919 3395 3536 3181 2746 2722 2840 2908 2959 3179 3349 3382 3289 3013
## [31] 2781 3247 4107 4803 4881 5681 4858 4319 5322 5560 5829 5719 6061 6120 5822
## [46] 5738 5717 5847 6203 6033 6041 6299 6533 6744 7158 7127 7246 7119 7214 7101
## [61] 7167 7302 7392 7316 7483 6647 6713 7229 7767 7626 7452 7061 7514 7656 7683
## [76] 5738 7779 7417 7687 7623 7380 7288
The line graph below shows the number of girls baptized over time. There is an increasing amount of girls baptized starting around 1660, with a dramatic decrease and increase after 1700.
The line graph below shows the proportion of boys born over time. The proportion of boys born is slightly higher than the 50% that would be statistically expected, but not out of the ordinary.
arbuthnot <- arbuthnot %>%
mutate(total = boys + girls)
arbuthnot <- arbuthnot %>%
mutate(boy_ratio = boys / total)
ggplot(data = arbuthnot, aes(x = year, y = boy_ratio)) +
geom_line()Years included in the data set: 1940 through 2002. Year is the only demension. The column names are “year,” “boys,” and “girls.”
## year boys girls
## Min. :1940 Min. :1211684 Min. :1148715
## 1st Qu.:1956 1st Qu.:1799857 1st Qu.:1711405
## Median :1971 Median :1924868 Median :1831679
## Mean :1971 Mean :1885600 Mean :1793915
## 3rd Qu.:1986 3rd Qu.:2058524 3rd Qu.:1965538
## Max. :2002 Max. :2186274 Max. :2082052
Data from the present dataset is far, far higher than from arbuthnot’s data set. They are not similar orders of magnitude.
arbuthnot <- arbuthnot %>%
mutate(total = boys + girls)
present <- present %>%
mutate(total = boys + girls)
summary(present$total)## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2360399 3511262 3756547 3679515 4023830 4268326
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 5612 9199 11813 11442 14723 16145
It does not appear that Arbuthnot’s observation about boys being born in greater proportion than girls holds up for the U.S. during this time frame. It appears that the proportion of boys born over time in the present data set is decreased about 0.02% over time.
present <- present %>%
mutate(total = boys + girls)
present <- present %>%
mutate(boy_ratio = boys / total)
ggplot(data = present, aes(x = year, y = boy_ratio)) +
geom_line()Insert any text here.
## # A tibble: 63 x 5
## year boys girls total boy_ratio
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1961 2186274 2082052 4268326 0.512
## 2 1960 2179708 2078142 4257850 0.512
## 3 1957 2179960 2074824 4254784 0.512
## 4 1959 2173638 2071158 4244796 0.512
## 5 1958 2152546 2051266 4203812 0.512
## 6 1962 2132466 2034896 4167362 0.512
## 7 1956 2133588 2029502 4163090 0.513
## 8 1990 2129495 2028717 4158212 0.512
## 9 1991 2101518 2009389 4110907 0.511
## 10 1963 2101632 1996388 4098020 0.513
## # ... with 53 more rows