Este documento hace parte del trabajo del curso de Analítica Predictiva de la Universidad Nacional de Colombia para la Maestría en Ingeniería y Especialización en Analítica. El alcance de este es la agrupación de los barrios de Medellín de acuerdo a su accidentalidad, para esto, se llevara a cabo un análisis exploratorio a nivel de barrios para determinar las variables que mejor se pueden ajustar a un algoritmo de agrupación o clustering. Como resultado, se presentaran los grupos en un mapa y se discutiran las características espaciales de dichos grupos.
# Manipulación de datos
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(tidyr)
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
library(na.tools)
library(factoextra)
## Loading required package: ggplot2
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
library(clustertend)
# Análisis geoespacial
library(geosphere)
library(leaflet)
# Visualización
library(ggplot2)
# Formato tablas
library(kableExtra)
##
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
## group_rows
df <- rbind(
read.csv('../../data/processed/train_data.csv'),
read.csv('../../data/processed/test_data.csv')
)
kable(head(df)) %>%
kable_styling(bootstrap_options = "striped", full_width = F) %>%
scroll_box(width = "100%")
| X | DIA | PERIODO | CLASE | DIRECCION | DIRECCION_ENC | CBML | TIPO_GEOCOD | GRAVEDAD | BARRIO | COMUNA | DISENO | DIA_NOMBRE | MES | LONGITUD | LATITUD | FECHA |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 2014 | choque | cr 63 cl 94 | cr 063 094 000 00000 | no ubicada | solo danos | tramo de via | miercoles | 1 | -75.70382 | 6.221806 | 2014-01-01 19:00:00 | |||
| 2 | 1 | 2014 | choque | cl 30 cr 66 b | cl 030 066 b 000 00000 | 1602 | malla vial | solo danos | rosales | belen | interseccion | miercoles | 1 | -75.58727 | 6.231716 | 2014-01-01 07:40:00 |
| 3 | 1 | 2014 | choque | cr 52 cl 97 | cr 052 097 000 00000 | 0402 | malla vial | solo danos | san isidro | aranjuez | interseccion | miercoles | 1 | -75.56253 | 6.289907 | 2014-01-01 05:30:00 |
| 4 | 1 | 2014 | choque | tv 78 cl 65 | tv 078 065 000 00000 | 0519 | malla vial | solo danos | el progreso | castilla | tramo de via | miercoles | 1 | -75.57365 | 6.275473 | 2014-01-01 13:50:00 |
| 5 | 1 | 2014 | otro | cr 63 cl 50 | cr 063 050 000 00000 | 1101 | malla vial | solo danos | carlos e. restrepo | laureles estadio | tramo de via | miercoles | 1 | -75.57697 | 6.255457 | 2014-01-01 07:25:00 |
| 6 | 1 | 2014 | choque | cr 57 cl 51 | cr 057 051 000 00000 | 1006 | malla vial | solo danos | san benito | la candelaria | tramo de via | miercoles | 1 | -75.57481 | 6.254322 | 2014-01-01 04:15:00 |
str(df)
## 'data.frame': 228693 obs. of 17 variables:
## $ X : int 1 2 3 4 5 6 7 8 9 10 ...
## $ DIA : int 1 1 1 1 1 1 1 1 1 1 ...
## $ PERIODO : int 2014 2014 2014 2014 2014 2014 2014 2014 2014 2014 ...
## $ CLASE : chr "choque" "choque" "choque" "choque" ...
## $ DIRECCION : chr "cr 63 cl 94" "cl 30 cr 66 b" "cr 52 cl 97" "tv 78 cl 65" ...
## $ DIRECCION_ENC: chr "cr 063 094 000 00000" "cl 030 066 b 000 00000" "cr 052 097 000 00000" "tv 078 065 000 00000" ...
## $ CBML : chr "" "1602" "0402" "0519" ...
## $ TIPO_GEOCOD : chr "no ubicada" "malla vial" "malla vial" "malla vial" ...
## $ GRAVEDAD : chr "solo danos" "solo danos" "solo danos" "solo danos" ...
## $ BARRIO : chr "" "rosales" "san isidro" "el progreso" ...
## $ COMUNA : chr "" "belen" "aranjuez" "castilla" ...
## $ DISENO : chr "tramo de via" "interseccion" "interseccion" "tramo de via" ...
## $ DIA_NOMBRE : chr "miercoles" "miercoles" "miercoles" "miercoles" ...
## $ MES : int 1 1 1 1 1 1 1 1 1 1 ...
## $ LONGITUD : num -75.7 -75.6 -75.6 -75.6 -75.6 ...
## $ LATITUD : num 6.22 6.23 6.29 6.28 6.26 ...
## $ FECHA : chr "2014-01-01 19:00:00" "2014-01-01 07:40:00" "2014-01-01 05:30:00" "2014-01-01 13:50:00" ...
Inicialmente, se transforman los datos de tipo fecha, ya que son una gran fuente de información al momento de crear nuevas variables, como estadísticos agregados de las clases de accidentes y extracción de características espaciales.
df <- df %>%
mutate(
FECHA=lubridate::as_datetime(FECHA)
) %>%
mutate(
SEMANA=lubridate::week(FECHA),
HORA=lubridate::hour(FECHA)
)
Del análisis exploratorio de datos hecho en Exploratory-Data-Analysis, se evidencia que la mayoría de los registros de colisiones, no se tienen datos del barrio.
df %>%
group_by(BARRIO) %>%
summarise(
Frecuencia=n(),
prop=round(n()/nrow(df), 3),
.groups="drop") %>%
arrange(desc(Frecuencia), .by_group=T) %>%
top_n(10) %>%
kable() %>% kable_styling(bootstrap_options = "striped", position = "left")
## Selecting by prop
| BARRIO | Frecuencia | prop |
|---|---|---|
| 19766 | 0.086 | |
| la candelaria | 5101 | 0.022 |
| caribe | 4436 | 0.019 |
| campo amor | 4147 | 0.018 |
| perpetuo socorro | 4122 | 0.018 |
| los conquistadores | 3756 | 0.016 |
| barrio colon | 3630 | 0.016 |
| guayaquil | 3513 | 0.015 |
| san benito | 3437 | 0.015 |
| santa fe | 3376 | 0.015 |
Como se puede observar, 19766 observaciones, que corresponden a casi un 10% de los datos, no tienen barrio asociado. Siendo una cantidad imporante de los datos, se va a proceder a realizar una imputación por distancia acorde a la latitud y longitud de esos registros vs los centroides de estás dos variables de los registros que si poseen información. Antes de proceder, se valida la completitud de las columnas de latitud y longitud de los datos.
rbind(df %>%
dplyr::select(LATITUD, LONGITUD) %>%
summarise(
na_values=sum(is.na(LATITUD)),
avg=round(mean(LATITUD),5),
std=round(sd(LATITUD),5),
min_value=round(min(LATITUD),5),
max_value=round(max(LATITUD),5),
.groups="drop"
),
df %>%
dplyr::select(LATITUD, LONGITUD) %>%
summarise(
na_values=sum(is.na(LONGITUD)),
avg=round(mean(LONGITUD),5),
std=round(sd(LONGITUD),5),
min_value=round(min(LONGITUD),5),
max_value=round(max(LONGITUD),5),
.groups="drop"
)
) %>%
t() %>% data.frame() %>%
rename(LATITUD=X1, LONGITUD=X2) %>%
kable() %>% kable_styling(bootstrap_options = "striped", position = "left")
| LATITUD | LONGITUD | |
|---|---|---|
| na_values | 0.00000 | 0.00000 |
| avg | 6.24840 | -75.58750 |
| std | 0.02787 | 0.03950 |
| min_value | 6.15193 | -75.70382 |
| max_value | 6.34341 | -75.47344 |
Como se puede observar, no hay valores extremos o atípicos dentro de la longitud y latitud, al igual que no hay valores nulos por lo que se puede proceder con la estrategia planteada de extraer el centroide de cada barrio de acuerdo a los accidentes, e imputar los valores de los barrios de acuerdo a la cercania del registro del accidente con los centroides de los barrios. Para esto, se usara la distancia de harvesine entre dos puntos.
centroides_barrios <- df %>%
dplyr::select(BARRIO, LATITUD, LONGITUD) %>%
filter(!(BARRIO %in% c("", "0", "6001", "7001", "9004", "", "9086"))) %>%
group_by(BARRIO) %>%
summarise(
n_accidentes=n(),
lng=median(LONGITUD),
lat=median(LATITUD),
.groups="drop_last"
) %>%
arrange(desc(n_accidentes))
centroides_barrios %>% top_n(15, n_accidentes) %>% kable() %>% kable_styling(bootstrap_options = "striped", position = "left")
| BARRIO | n_accidentes | lng | lat |
|---|---|---|---|
| la candelaria | 5101 | -75.56578 | 6.248704 |
| caribe | 4436 | -75.57446 | 6.268025 |
| campo amor | 4147 | -75.58192 | 6.214046 |
| perpetuo socorro | 4122 | -75.57427 | 6.233385 |
| los conquistadores | 3756 | -75.58306 | 6.240020 |
| barrio colon | 3630 | -75.56921 | 6.243275 |
| guayaquil | 3513 | -75.57357 | 6.246122 |
| san benito | 3437 | -75.57384 | 6.253888 |
| santa fe | 3376 | -75.57825 | 6.223634 |
| carlos e. restrepo | 2987 | -75.58015 | 6.256308 |
| villa nueva | 2908 | -75.56299 | 6.253410 |
| terminal de transporte | 2906 | -75.57280 | 6.276299 |
| san diego | 2860 | -75.56941 | 6.233526 |
| naranjal | 2709 | -75.58253 | 6.248620 |
| castilla | 2599 | -75.57047 | 6.289639 |
Vamos a visualizar los centroides de los barrios de acuerdo a los registros de los accidentes..
centroides_barrios %>%
leaflet() %>%
addTiles() %>%
addMarkers(
clusterOptions = markerClusterOptions(),
) %>%
setView(lng = mean(centroides_barrios$lng), lat = mean(centroides_barrios$lat), zoom = 11)
## Assuming "lng" and "lat" are longitude and latitude, respectively
Lo primero que se observa en los centroides de los barrios, es que hay 3 barrios, específicamente los cercanos a san feliz y otros hacia el oriente del área metropolitana que se encuentran muy lejos de la densidad de accidentes. Por otro lado hay otros 14 barrios cercanos a San Antonio de Prado, lo cual ya se encuentra cerca del borde del área metropolitana, con lo cual nos cuestina si es necesario incluir estos barrios.
Ahora teniendo la tabla de referencia de la latitud y la longitud para los barrios conocidos, se usa la fórmula del semiverseno para calcular la distancia espacial entre los centroides de los barrios conocidos y las coordenadas de los registros que no se tiene un barrio. Una vez computada estás distancias, se toma las coordenadas con menor distancia y se asigna ese barrio.
asignacion_barrios <- function(df_barrios, centroides_referencia){
barrios <- c()
for (i in 1:nrow(df_barrios)){
idx <- which.min(distHaversine(
p1 = df_barrios[i, ],
p2 = centroides_referencia[,c(3, 4)])
)
barrio <- centroides_referencia[idx, 1] %>% unlist(., use.names = F)
barrios[i] <- barrio
}
return(barrios)
}
df_con_barrio <- df %>%
filter(!(BARRIO %in% c("", "0", "6001", "7001", "9004", "", "9086")))
df_sin_barrio <- df %>%
filter(BARRIO %in% c("", "0", "6001", "7001", "9004", "", "9086"))
df_lng_lat <- df_sin_barrio %>%
dplyr::select(LONGITUD, LATITUD)
centroides_barrios <- as.data.frame(centroides_barrios)
df_lng_lat <- as.data.frame(df_lng_lat)
barrios <- asignacion_barrios(df_barrios = df_lng_lat, centroides_referencia = centroides_barrios)
df_sin_barrio$BARRIO <- barrios
# df <- rbind(df_sin_barrio, df_con_barrio)
df_sin_barrio %>%
group_by(BARRIO) %>%
summarise(
n_records=n(),
proportion=(n() / nrow(df_sin_barrio))*100,
.groups="drop_last"
) %>%
arrange(desc(n_records)) %>%
top_n(10) %>% kable() %>% kable_styling(bootstrap_options = "striped", position = "left")
## Selecting by proportion
| BARRIO | n_records | proportion |
|---|---|---|
| la oculta | 19251 | 97.1046658 |
| la aguacatala | 224 | 1.1298865 |
| suburbano chacaltaya | 139 | 0.7011349 |
| media luna | 37 | 0.1866330 |
| auc1 | 28 | 0.1412358 |
| piedras blancas represa | 19 | 0.0958386 |
| alejandro echavarria | 12 | 0.0605296 |
| suburbano el llano | 12 | 0.0605296 |
| eduardo santos | 9 | 0.0453972 |
| los cerros el vergel | 8 | 0.0403531 |
| ocho de marzo | 8 | 0.0403531 |
La mayoria de las asignaciones corresponde al barrio la oculta (aproximadamente el 97%), el cual es un barrio de San Antonio de Prado. Sin embargo, sería interesante revisar cual es la ubicación promedio de estos registros que se les acaba de imputar el barrio.
coordinates <- df_sin_barrio %>%
summarise(
mean_lat=mean(LATITUD),
mean_lng=mean(LONGITUD),
max_lat=max(LATITUD),
max_lng=max(LONGITUD),
min_lat=min(LATITUD),
min_lng=min(LONGITUD)
)
leaflet() %>%
setView(lng = mean(df_con_barrio$LONGITUD), lat = mean(df_con_barrio$LATITUD), zoom= 11) %>%
addMarkers(
lng = coordinates$mean_lng,
lat = coordinates$mean_lat,
label = "Media lat-lng de registros sin barrio",
labelOptions = labelOptions(noHide = T, direction = "bottom", textOnly = T, style = list("font-size" = "13px", "font-weight" = "bold"))
) %>%
addTiles()
Como se puede ver, el promedio de la latitudy la longitud es a las afueras de medellín, a las afueras de san antonio de prado, por esto, aproximadamente el 97% de la imputación de los datos, se hace con el barrio la oculta. Por calidad del análisis está imputación está altamente sesgada por la zona de los accidentes, lo cual consideramos innecesario proceder con los barrios imputados con la oculta, con lo que se va a proceder a dejar la imputación para el 3% restante
df <- rbind(
df_con_barrio,
rbind(df_sin_barrio %>%
filter(BARRIO=="la oculta") %>%
mutate(BARRIO=""),
df_sin_barrio %>%
filter(BARRIO!="la oculta")
)
)
Después del análisis exploratorio de datos, se evidenció que el problema de los barrios se extiende de igual forma a las comunas, pero viendo el mapa anterior donde el promedio de estos registros se encuentran en las afueras del área metropolitana, no es de extrañarse que estos faltantes o registros nulos se refieran al mismo caso. Sin embargo, hubo un porcentaje pequeño que si podía registrarse en el área, como fue el caso del 1.2% del subconjunto de datos (registros sin barrio). Volvemos a repetir los mismos pasos anteriores para hacer imputación, sin embargo, antes vamos a visualizar el promedio de la latitud y longitud y ubicarlo en un mapa.
rbind(df %>%
group_by(COMUNA) %>%
summarise(
n_values = n(),
.groups = "drop"
) %>%
arrange(n_values) %>% top_n(5),
df %>%
group_by(COMUNA) %>%
summarise(
n_values = n(),
.groups = "drop"
) %>%
arrange(n_values) %>% slice(1:5)) %>%
kable() %>% kable_styling(bootstrap_options = "striped", position = "left")
## Selecting by n_values
| COMUNA | n_values |
|---|---|
| el poblado | 17149 |
| 19736 | |
| castilla | 21209 |
| laureles estadio | 23850 |
| la candelaria | 43715 |
| alejandro echavarria | 1 |
| alfonso lopez | 1 |
| altavista | 1 |
| antonio narino | 1 |
| barrio colon | 1 |
coordinates <- df %>%
filter(COMUNA == "") %>%
summarise(
mean_lat=mean(LATITUD),
mean_lng=mean(LONGITUD),
max_lat=max(LATITUD),
max_lng=max(LONGITUD),
min_lat=min(LATITUD),
min_lng=min(LONGITUD)
)
leaflet() %>%
setView(lng = mean(df_con_barrio$LONGITUD), lat = mean(df_con_barrio$LATITUD), zoom= 11) %>%
addMarkers(
lng = coordinates$mean_lng,
lat = coordinates$mean_lat,
label = "Media lat-lng de registros sin comuna",
labelOptions = labelOptions(noHide = T, direction = "bottom", textOnly = T, style = list("font-size" = "13px", "font-weight" = "bold"))
) %>%
addTiles()
Se evidencia la falta de comuna para estos registros y que el centroide de lat-lng es el mismo, debido a que la clusterización se va hacer a nivel de barrio, se va dejar este campo vacio para los registros que no se tienen datos
Antes de proceder a realizar el agrupamiento de los barrios en función de la accidentalidad, se debe hacer una exploración rápida de los accidentes en función del tiempo, para validar si el agrupamiento se debe hacer también en función del tiempo, como el año, o sobre todo el conjunto de datos sin discriminar el tiempo.
df %>%
group_by(PERIODO) %>%
summarise(
n_accidentes=n(),
.groups="drop"
) %>%
ggplot() +
geom_bar(aes(x=PERIODO, y=n_accidentes), stat = "identity") +
labs(x="Año", y ="Número de accidentes") +
ggtitle("Accidentes por año") +
geom_text(aes(x=PERIODO, y=n_accidentes,label = n_accidentes), vjust=-0.3, size=3.5) +
theme_classic() +
theme(plot.title = element_text(hjust = 0.5))
Como se ve en el anterior gráfico, el número de accidentes por año es muy estable a lo largo de los 5 años del análisis.
df %>%
mutate(MES_COD=month(MES)) %>%
group_by(PERIODO, MES_COD) %>%
summarise(
n_accidentes=n(),
.groups="drop"
) %>%
ggplot() +
geom_line(aes(x=MES_COD, y=n_accidentes, colour=factor(PERIODO))) +
scale_x_discrete(name ="Mes", limits=factor(1:12)) +
labs(colour="Año", y="Número accidentes", title="Número de accidentes por año y mes") +
theme_classic() +
theme(plot.title = element_text(hjust = 0.5))
Del análisis de tiempo, se pueden ver algunos patrones por meses, pero por año no se ve ninguna diferenciación a nivel general del conjunto de datos, aunque por meses se pueden ver unos leves patrones de cambios. Ahora vamos a analizar por semana del año, día del mes, de la semana y hora del dia.
df %>%
group_by(PERIODO, SEMANA) %>%
summarise(
n_accidentes=n(),
.groups="drop"
) %>%
group_by(SEMANA) %>%
summarise(
accidentes=sum(n_accidentes),
promedio_accidentes=mean(n_accidentes, na.rm = T),
sd_accidentes=sd(n_accidentes, na.rm = T),
.groups="drop"
) %>%
ggplot(aes(x=SEMANA, y=promedio_accidentes)) +
geom_line() +
geom_point()+
geom_errorbar(aes(ymin=promedio_accidentes-sd_accidentes, ymax=promedio_accidentes+sd_accidentes), width=.2,
position=position_dodge(0.05)) +
scale_x_discrete(name ="Semana del año", limits=factor(1:53)) +
theme_classic() + labs(y="Promedio de accidentes") +
ggtitle("Promedio de accidentes por semana del año") +
theme(plot.title = element_text(hjust = 0.5))
df %>%
mutate(DIA_MES=day(FECHA)) %>%
group_by(PERIODO, DIA_MES) %>%
summarise(
n_accidentes=n(),
.groups="drop"
) %>%
group_by(DIA_MES) %>%
summarise(
accidentes=sum(n_accidentes),
promedio_accidentes=mean(n_accidentes, na.rm = T),
sd_accidentes=sd(n_accidentes, na.rm = T),
.groups="drop"
) %>%
ggplot(aes(x=DIA_MES, y=promedio_accidentes)) +
geom_line() +
geom_point()+
geom_errorbar(aes(ymin=promedio_accidentes-sd_accidentes, ymax=promedio_accidentes+sd_accidentes), width=.2,
position=position_dodge(0.05)) +
scale_x_discrete(name ="Día del mes", limits=factor(1:31)) +
theme_classic() + labs(y="Promedio de accidentes") +
ggtitle("Promedio de accidentes por día del mes") +
theme(plot.title = element_text(hjust = 0.5))
df %>%
group_by(PERIODO, HORA) %>%
summarise(
n_accidentes=n(),
.groups="drop"
) %>%
group_by(HORA) %>%
summarise(
accidentes=sum(n_accidentes),
promedio_accidentes=mean(n_accidentes, na.rm = T),
sd_accidentes=sd(n_accidentes, na.rm = T),
.groups="drop"
) %>%
ggplot(aes(x=HORA, y=promedio_accidentes)) +
geom_line() +
geom_point()+
geom_errorbar(aes(ymin=promedio_accidentes-sd_accidentes, ymax=promedio_accidentes+sd_accidentes), width=.2,
position=position_dodge(0.05)) +
scale_x_discrete(name ="Hora del día", limits=factor(1:24)) +
theme_classic() + labs(y="Promedio de accidentes") +
ggtitle("Promedio de accidentes por hora del día") +
theme(plot.title = element_text(hjust = 0.5))
df %>%
group_by(PERIODO, HORA) %>%
summarise(
n_accidentes=n(),
.groups="drop"
) %>%
ggplot(aes(PERIODO, HORA, fill= n_accidentes)) +
geom_tile()
Se ve un cambio importante en el patrón de accidentes en el año 2015, el cual por la leyenda de colores, se invierte el comportamiento de los accidentes en la tarde y la mañana, donde se evidenció que a nivel general, se dieron más accidentes en la mañana que en la tarde, veamoslo a nivel de serie.
df %>%
group_by(PERIODO, HORA) %>%
summarise(
n_accidentes=n(),
.groups="drop"
) %>%
ggplot() +
geom_line(aes(x=HORA, y=n_accidentes, colour=factor(PERIODO))) +
scale_x_discrete(name ="Hora del día", limits=factor(1:24)) +
labs(colour="Hora", y="Número accidentes", title="Número de accidentes por año y hora") +
theme_classic() +
theme(plot.title = element_text(hjust = 0.5))
La difrenciación del 2015 respecto al resto de los años amerita hacer una clusterización específica a ver si se encuentran características diferenciadoras respecto a los demás años, el cual se hará máas adelante.
Vale la pena hacer una diferenciación por año y barrio para evaluar si hay cambios de los niveles de accidentalidad por año, para esto, la próxima tabla presenta el total de accidentes rankeados de forma descendente por año, es decir, el #1 se refiere al barrio con mayor accidentalidad en un año específico.
df %>%
filter(BARRIO != "") %>%
group_by(BARRIO, PERIODO) %>%
summarise(
total_accidentes = n(),
.groups="drop"
) %>%
mutate(PERIODO=paste0("periodo_", PERIODO)) %>%
pivot_wider(names_from = PERIODO, values_from=total_accidentes) %>%
mutate(
periodo_2014=rank(desc(periodo_2014), na.last = T, ties.method = "min"),
periodo_2015=rank(desc(periodo_2015), na.last = T, ties.method = "min"),
periodo_2016=rank(desc(periodo_2016), na.last = T, ties.method = "min"),
periodo_2017=rank(desc(periodo_2017), na.last = T, ties.method = "min"),
periodo_2018=rank(desc(periodo_2018), na.last = T, ties.method = "min"),
) %>%
arrange(periodo_2018) %>%
kable() %>% kable_styling(bootstrap_options = c("striped", "hover"), position = "left") %>%
scroll_box(height = "300px")
| BARRIO | periodo_2014 | periodo_2015 | periodo_2016 | periodo_2017 | periodo_2018 |
|---|---|---|---|---|---|
| campo amor | 3 | 8 | 4 | 4 | 1 |
| la candelaria | 1 | 1 | 1 | 1 | 2 |
| caribe | 2 | 2 | 3 | 2 | 3 |
| perpetuo socorro | 4 | 5 | 2 | 3 | 4 |
| barrio colon | 8 | 7 | 8 | 5 | 5 |
| santa fe | 9 | 13 | 9 | 6 | 6 |
| los conquistadores | 5 | 6 | 5 | 7 | 7 |
| cabecera san antonio de prado | 91 | 52 | 57 | 16 | 8 |
| san benito | 7 | 4 | 7 | 15 | 9 |
| villa nueva | 11 | 9 | 13 | 14 | 10 |
| carlos e. restrepo | 12 | 11 | 10 | 8 | 11 |
| san diego | 13 | 12 | 12 | 11 | 12 |
| guayaquil | 6 | 3 | 6 | 10 | 13 |
| castilla | 18 | 20 | 11 | 12 | 14 |
| terminal de transporte | 10 | 14 | 16 | 9 | 15 |
| la alpujarra | 125 | 69 | 110 | 25 | 16 |
| villa carlota | 23 | 24 | 20 | 21 | 17 |
| naranjal | 14 | 10 | 19 | 19 | 18 |
| los colores | 30 | 36 | 27 | 18 | 19 |
| belen | 19 | 16 | 13 | 20 | 20 |
| corazon de jesus | 15 | 15 | 15 | 24 | 21 |
| boston | 19 | 18 | 17 | 23 | 22 |
| el progreso | 27 | 33 | 29 | 29 | 23 |
| jesus nazareno | 22 | 22 | 26 | 26 | 24 |
| manila | 31 | 26 | 28 | 27 | 25 |
| prado | 17 | 21 | 25 | 28 | 26 |
| guayabal | 21 | 19 | 18 | 13 | 27 |
| la aguacatala | 26 | 25 | 22 | 17 | 28 |
| el chagualo | 16 | 17 | 23 | 30 | 29 |
| calle nueva | 33 | 32 | 32 | 32 | 30 |
| el poblado | 48 | 38 | 46 | 36 | 31 |
| rosales | 36 | 35 | 33 | 34 | 32 |
| suramericana | 28 | 27 | 35 | 31 | 33 |
| cristo rey | 25 | 28 | 21 | 22 | 34 |
| laureles | 35 | 30 | 30 | 35 | 35 |
| universidad nacional | 24 | 23 | 24 | 33 | 36 |
| las acacias | 29 | 31 | 31 | 38 | 37 |
| estacion villa | 44 | 55 | 52 | 42 | 38 |
| castropol | 72 | 58 | 72 | 49 | 39 |
| cerro nutibara | 98 | 124 | 111 | 69 | 39 |
| moravia | 32 | 34 | 37 | 63 | 41 |
| sevilla | 40 | 44 | 50 | 37 | 42 |
| campo valdes no. 1 | 39 | 39 | 41 | 53 | 43 |
| toscana | 117 | 103 | 105 | 62 | 44 |
| barrio colombia | 42 | 63 | 42 | 41 | 45 |
| manrique central no. 1 | 47 | 55 | 39 | 73 | 45 |
| facultad de minas u. nacional | 48 | 40 | 48 | 51 | 47 |
| cuarta brigada | 54 | 54 | 44 | 39 | 48 |
| hector abad gomez | 77 | 91 | 77 | 63 | 49 |
| fatima | 51 | 47 | 54 | 51 | 50 |
| san isidro | 84 | 73 | 53 | 48 | 51 |
| tricentenario | 73 | 77 | 67 | 55 | 52 |
| patio bonito | 68 | 79 | 80 | 55 | 53 |
| universidad de antioquia | 86 | 93 | 99 | 45 | 54 |
| el estadio | 34 | 29 | 34 | 46 | 55 |
| lopez de mesa | 68 | 64 | 67 | 89 | 55 |
| la america | 43 | 57 | 59 | 44 | 57 |
| los angeles | 52 | 37 | 42 | 47 | 58 |
| bombona no. 1 | 36 | 41 | 40 | 65 | 59 |
| robledo | 75 | 58 | 61 | 43 | 60 |
| san bernardo | 71 | 67 | 47 | 59 | 60 |
| kennedy | 65 | 74 | 77 | 75 | 62 |
| alfonso lopez | 46 | 43 | 36 | 70 | 63 |
| trinidad | 50 | 47 | 51 | 67 | 63 |
| pedregal | 70 | 77 | 81 | 77 | 65 |
| la florida | 81 | 88 | 87 | 74 | 66 |
| los pinos | 44 | 41 | 49 | 50 | 67 |
| las brisas | 62 | 70 | 58 | 58 | 68 |
| bolivariana | 59 | 75 | 74 | 71 | 69 |
| las granjas | 38 | 47 | 38 | 72 | 69 |
| tenche | 73 | 53 | 45 | 80 | 69 |
| el diamante | 57 | 62 | 63 | 61 | 72 |
| alejandro echavarria | 82 | 91 | 70 | 77 | 73 |
| san pedro | 60 | 71 | 62 | 79 | 73 |
| villa flora | 89 | 75 | 90 | 91 | 75 |
| san german | 132 | 114 | 111 | 103 | 76 |
| santa maria de los angeles | 80 | 80 | 71 | 40 | 76 |
| cucaracho | 41 | 47 | 65 | 87 | 78 |
| la gloria | 89 | 71 | 56 | 55 | 78 |
| miranda | 52 | 45 | 60 | 59 | 78 |
| oleoducto | 189 | 163 | 205 | 108 | 81 |
| lorena | 67 | 60 | 64 | 85 | 82 |
| buenos aires | 56 | 46 | 66 | 76 | 83 |
| manrique oriental | 64 | 67 | 86 | 83 | 84 |
| girardot | 57 | 47 | 55 | 67 | 85 |
| tejelo | 102 | 109 | 77 | 102 | 86 |
| florida nueva | 86 | 98 | 74 | 81 | 87 |
| barrio caicedo | 61 | 65 | 67 | 85 | 88 |
| campo valdes no. 2 | 63 | 61 | 76 | 100 | 89 |
| calasanz | 78 | 81 | 84 | 89 | 90 |
| el rincon | 84 | 87 | 73 | 66 | 90 |
| parque juan pablo ii | 108 | 123 | 83 | 91 | 92 |
| berlin | 78 | 82 | 89 | 81 | 93 |
| boyaca | 138 | 129 | 118 | 118 | 93 |
| picacho | 93 | 89 | 82 | 91 | 95 |
| el tesoro | 119 | 136 | 100 | 107 | 96 |
| san miguel | 66 | 83 | 93 | 88 | 96 |
| area de expansion pajarito | 96 | 84 | 98 | 84 | 98 |
| la floresta | 86 | 104 | 88 | 96 | 99 |
| el velodromo | 105 | 97 | 102 | 97 | 100 |
| san martin de porres | 112 | 110 | 122 | 109 | 100 |
| alejandria | 162 | 179 | 131 | 110 | 102 |
| san joaquin | 102 | 100 | 85 | 127 | 102 |
| asomadera no. 1 | 199 | 204 | 199 | 101 | 104 |
| aures no. 2 | 138 | 114 | 117 | 119 | 104 |
| loreto | 104 | 100 | 100 | 94 | 106 |
| enciso | 95 | 98 | 105 | 115 | 107 |
| las palmas | 122 | 112 | 118 | 114 | 107 |
| san javier no.1 | 82 | 96 | 93 | 94 | 109 |
| la esperanza | 105 | 95 | 90 | 103 | 110 |
| sucre | 94 | 90 | 96 | 115 | 111 |
| altamira | 55 | 86 | 103 | 99 | 112 |
| la pilarica | 147 | 146 | 170 | 143 | 112 |
| las lomas no.1 | 120 | 118 | 141 | 135 | 112 |
| doce de octubre no.1 | 115 | 144 | 132 | 144 | 115 |
| los balsos no.2 | 111 | 105 | 95 | 53 | 115 |
| belalcazar | 134 | 131 | 121 | 112 | 117 |
| doce de octubre no.2 | 101 | 94 | 116 | 123 | 117 |
| santa ines | 100 | 135 | 125 | 149 | 119 |
| cordoba | 129 | 126 | 159 | 127 | 120 |
| villa hermosa | 110 | 118 | 126 | 141 | 120 |
| la castellana | 98 | 66 | 109 | 98 | 122 |
| campo alegre | 126 | 129 | 127 | 115 | 123 |
| palermo | 211 | 197 | 178 | 150 | 123 |
| cabecera urbana san cristobal | 113 | 108 | 104 | 133 | 125 |
| asomadera no. 2 | 151 | 148 | 148 | 112 | 126 |
| la salle | 122 | 111 | 114 | 127 | 126 |
| santander | 137 | 144 | 123 | 106 | 126 |
| el salvador | 126 | 117 | 105 | 122 | 129 |
| aures no.1 | 147 | 131 | 148 | 130 | 130 |
| miraflores | 92 | 105 | 96 | 145 | 130 |
| brasilia | 131 | 120 | 159 | 131 | 132 |
| villatina | 150 | 139 | 135 | 153 | 132 |
| el raizal | 132 | 152 | 127 | 151 | 134 |
| los naranjos | 141 | 138 | 170 | 135 | 134 |
| la palma | 97 | 102 | 90 | 125 | 136 |
| manrique central no. 2 | 105 | 84 | 113 | 105 | 137 |
| francisco antonio zea | 108 | 105 | 114 | 110 | 138 |
| la milagrosa | 126 | 142 | 132 | 139 | 139 |
| los mangos | 129 | 121 | 137 | 138 | 140 |
| santo domingo savio no. 1 | 116 | 133 | 124 | 155 | 140 |
| las playas | 135 | 122 | 105 | 121 | 142 |
| el pinal | 117 | 113 | 132 | 126 | 143 |
| nueva villa de la iguana | 154 | 161 | 155 | 148 | 143 |
| santa margarita | 238 | 233 | 228 | 184 | 145 |
| villa del socorro | 152 | 158 | 139 | 162 | 145 |
| gerona | 154 | 139 | 129 | 157 | 147 |
| granada | 157 | 128 | 135 | 146 | 148 |
| popular | 113 | 139 | 154 | 157 | 149 |
| villa guadalupe | 162 | 175 | 183 | 165 | 149 |
| calasanz parte alta | 169 | 182 | 129 | 123 | 151 |
| los alpes | 142 | 156 | 141 | 157 | 152 |
| el nogal-los almendros | 162 | 143 | 155 | 141 | 153 |
| los alcazares | 144 | 146 | 148 | 133 | 153 |
| simon bolivar | 179 | 133 | 148 | 157 | 153 |
| versalles no. 1 | 122 | 114 | 137 | 139 | 156 |
| la colina | 138 | 126 | 118 | 119 | 157 |
| playon de los comuneros | 185 | 177 | 194 | 175 | 158 |
| el pomar | 178 | 157 | 186 | 172 | 159 |
| diego echavarria | 146 | 168 | 165 | 132 | 160 |
| palenque | 135 | 152 | 148 | 186 | 160 |
| santa cruz | 159 | 197 | 194 | 181 | 160 |
| moscu no. 1 | 166 | 176 | 167 | 187 | 163 |
| aranjuez | 173 | 148 | 170 | 154 | 164 |
| el danubio | 158 | 189 | 157 | 135 | 165 |
| la pinuela | 194 | 152 | 177 | 180 | 165 |
| las mercedes | 179 | 188 | 157 | 166 | 165 |
| florencia | 159 | 172 | 180 | 155 | 168 |
| bombona no. 2 | 187 | 167 | 167 | 181 | 169 |
| las lomas no.2 | 175 | 209 | 192 | 184 | 169 |
| loma de los bernal | 166 | 168 | 145 | 152 | 169 |
| santa monica | 156 | 158 | 141 | 164 | 169 |
| las violetas | 144 | 171 | 162 | 167 | 173 |
| barrio de jesus | 206 | 204 | 197 | 178 | 174 |
| granizal | 159 | 177 | 173 | 178 | 174 |
| la libertad | 174 | 166 | 183 | 191 | 174 |
| la mota | 182 | 165 | 148 | 147 | 174 |
| bosques de san pablo | 179 | 155 | 162 | 162 | 178 |
| veinte de julio | 147 | 168 | 173 | 172 | 178 |
| bello horizonte | 166 | 158 | 202 | 167 | 180 |
| cementerio universal | 213 | 215 | 207 | 230 | 180 |
| san pablo | 169 | 148 | 165 | 169 | 180 |
| suburbano la loma | 214 | 204 | 194 | 221 | 183 |
| la pradera | 152 | 172 | 144 | 161 | 184 |
| santa teresita | 195 | 191 | 191 | 183 | 184 |
| astorga | 171 | 183 | 185 | 193 | 186 |
| el castillo | 208 | 187 | 175 | 191 | 187 |
| los balsos no.1 | 172 | 172 | 145 | 187 | 187 |
| san lucas | 219 | 241 | 228 | 193 | 189 |
| u.d. atanasio girardot | 176 | 186 | 175 | 190 | 189 |
| altavista | 162 | 163 | 159 | 175 | 191 |
| la mansion | 199 | 193 | 179 | 170 | 191 |
| la rosa | 199 | 203 | 207 | 221 | 191 |
| cataluna | 187 | 179 | 187 | 205 | 194 |
| centro administrativo | 192 | 183 | 181 | 171 | 194 |
| las estancias | 197 | 197 | 192 | 197 | 196 |
| moscu no. 2 | 193 | 161 | 187 | 172 | 196 |
| san javier no.2 | 177 | 202 | 167 | 197 | 196 |
| el pesebre | 233 | 230 | 204 | 202 | 199 |
| ferrini | 189 | 197 | 187 | 207 | 199 |
| la hondonada | 229 | 230 | 224 | 201 | 199 |
| olaya herrera | 222 | 222 | 230 | 200 | 199 |
| santa lucia | 206 | 189 | 210 | 175 | 199 |
| la francia | 189 | 193 | 205 | 193 | 204 |
| andalucia | 202 | 207 | 199 | 197 | 205 |
| altos del poblado | 202 | 193 | 162 | 209 | 206 |
| las esmeraldas | 121 | 125 | 147 | 213 | 207 |
|
212 | 241 | 217 | 224 | 208 |
| la frontera | 182 | 209 | 212 | 213 | 208 |
| jardin botanico | 210 | 212 | 215 | 202 | 210 |
| la isla | 208 | 211 | 210 | 233 | 210 |
| villa niza | 216 | 219 | 237 | 218 | 210 |
| los cerros el vergel | 182 | 201 | 201 | 219 | 213 |
| el compromiso | 241 | 268 | 253 | 241 | 214 |
| hospital san vicente de paul | 241 | 226 | 221 | 244 | 215 |
| inst | 224 | 213 | 209 | 231 | 215 |
| la avanzada | 256 | 259 | 234 | 237 | 215 |
| asomadera no. 3 | 227 | 233 | 224 | 228 | 218 |
| el rodeo | 222 | 223 | 232 | 207 | 218 |
| pajarito | 274 | 248 | 245 | 233 | 218 |
| parque norte | 143 | 136 | 139 | 209 | 218 |
| belencito | 240 | 217 | 226 | 213 | 222 |
| bermejal-los alamos | 205 | 191 | 187 | 213 | 222 |
| el diamante no. 2 | 197 | 179 | 181 | 196 | 224 |
| fuente clara | 274 | 259 | 232 | 244 | 224 |
| nueva villa de aburra | 218 | 220 | 221 | 209 | 224 |
| el salado | 221 | 207 | 214 | 223 | 227 |
| antonio narino | 196 | 193 | 202 | 187 | 228 |
| barrio cristobal | 233 | 220 | 218 | 220 | 229 |
| la esperanza no. 2 | 233 | 244 | 242 | 237 | 229 |
| u.p.b. | 260 | 239 | 249 | 202 | 229 |
| santo domingo savio no. 2 | 215 | 217 | 213 | 224 | 232 |
| villa liliam | 241 | 236 | 243 | 246 | 232 |
| facultad veterinaria y zootecnia u.de.a. | 185 | 183 | 197 | 229 | 234 |
| lalinde | 231 | 230 | 221 | 209 | 234 |
| area de expansion altos de calasanz | 265 | 244 | 254 | 226 | 236 |
| juan xxiii la quiebra | 217 | 216 | 237 | 213 | 237 |
| monteclaro | 252 | 254 | 254 | 233 | 237 |
| el progreso no.2 | 225 | 228 | 234 | 205 | 239 |
| oriente | 254 | 248 | 245 | 254 | 239 |
| picachito | 265 | 271 | 267 | 249 | 239 |
| suburbano mirador del poblado | 274 | 268 | 286 | 254 | 239 |
| piedras blancas | 260 | 237 | 260 | 233 | 243 |
| suburbano travesias | 256 | 276 | 245 | 262 | 243 |
| aldea pablo vi | 252 | 254 | 249 | 265 | 245 |
| betania | 229 | 254 | 230 | 239 | 246 |
| blanquizal | 260 | 248 | 243 | 250 | 246 |
| carpinelo | 248 | 225 | 237 | 254 | 246 |
| el corazon | 241 | 226 | 245 | 239 | 246 |
| la ladera | 256 | 259 | 254 | 253 | 250 |
| plaza de ferias | 225 | 241 | 215 | 231 | 250 |
| la verde | 296 | 295 | 300 | 250 | 252 |
| suburbano chacaltaya | 202 | 213 | 218 | 269 | 252 |
| area de expansion san antonio de prado | 274 | 259 | 263 | 274 | 254 |
| el triunfo | 269 | 281 | 275 | 269 | 255 |
| la cruz | 227 | 248 | 254 | 241 | 255 |
| nuevos conquistadores | 238 | 233 | 237 | 262 | 255 |
| ocho de marzo | 269 | 265 | 275 | 265 | 258 |
| pedregal alto | 287 | 276 | 274 | 269 | 258 |
| suburbano altavista | 248 | 237 | 263 | 247 | 258 |
| yolombo | 308 | 331 | 303 | 302 | 258 |
| altavista sector central | 237 | 223 | 226 | 226 | 262 |
| pablo vi | 246 | 239 | 249 | 247 | 262 |
| suburbano el llano | 280 | 295 | 300 | 269 | 262 |
| trece de noviembre | 272 | 284 | 266 | 254 | 262 |
| auc1 | 272 | 271 | 279 | 289 | 266 |
| campo valdes no.2 | 246 | 248 | 259 | 274 | 266 |
| la loma oriental | 308 | 288 | 291 | 293 | 266 |
| las independencias | 241 | 247 | 263 | 274 | 266 |
| miravalle | 248 | 259 | 234 | 254 | 266 |
| versalles no. 2 | 268 | 274 | 279 | 259 | 266 |
| bombona no.1 | 233 | 248 | 254 | 309 | 272 |
| llanaditas | 254 | 284 | 268 | 250 | 272 |
| area de expansion altavista | 263 | 265 | 268 | 285 | 274 |
| el socorro | 248 | 268 | 260 | 267 | 274 |
| media luna | 256 | 284 | 279 | 296 | 276 |
| villa turbay | 269 | 274 | 271 | 293 | 276 |
| aguas frias | 231 | 244 | 249 | 259 | 278 |
| buga patio bonito | 280 | 254 | 268 | 279 | 278 |
| manrique central no.1 | 287 | 295 | 279 | 279 | 278 |
| mirador del doce | 280 | 276 | 279 | 267 | 278 |
| suburbano el tesoro | 293 | 276 | 296 | 296 | 278 |
| suburbano palma patio | 287 | 291 | 286 | 279 | 278 |
| eduardo santos | 263 | 259 | 275 | 269 | 284 |
| juan pablo ii | 287 | 280 | 275 | 279 | 284 |
| maria cano carambolas | 265 | 254 | 260 | 259 | 284 |
| piedras blancas represa | 274 | 288 | 296 | 302 | 284 |
| santa rosa de lima | 280 | 291 | 303 | 274 | 284 |
| la loma de los bernal | 285 | 288 | 279 | 274 | 289 |
| metropolitano | 293 | 265 | 271 | 285 | 289 |
| san jose la cima no. 1 | 287 | 271 | 279 | 279 | 289 |
| el picacho | 308 | 281 | 291 | 289 | 292 |
| la oculta | 300 | 305 | 303 | 289 | 292 |
| la sierra | 296 | 305 | 286 | 296 | 292 |
| manrique central no.2 | 285 | 284 | 291 | 285 | 292 |
| pedregal bajo | 219 | 228 | 237 | 264 | 292 |
| suburbano palmitas | 327 | 300 | 291 | 296 | 292 |
| aures no.2 | 300 | 305 | 303 | 323 | 298 |
| moscu no.2 | 308 | 300 | 296 | 309 | 298 |
| san jose la cima no.2 | 274 | 291 | 300 | 296 | 298 |
| area de expansion belen rincon | 300 | 300 | 290 | 309 | 301 |
| batallon girardot | 315 | 295 | 296 | 296 | 301 |
| corregimiento de santa elena | 296 | 305 | 315 | 309 | 301 |
| el corazon el morro | 293 | 295 | 291 | 302 | 301 |
| el uvito | 318 | 322 | 317 | 327 | 301 |
| el vergel | 319 | 305 | 318 | 302 | 301 |
| santo domingo savio no.1 | 300 | 305 | 327 | 302 | 301 |
| suburbano pedregal alto | 287 | 291 | 271 | 309 | 301 |
| versalles no.1 | 296 | 305 | 303 | 293 | 301 |
| barrios de jesus | 314 | 305 | 313 | 325 | 310 |
| el plan | 317 | 321 | 316 | 326 | 310 |
| potrerito | 300 | 305 | 324 | 309 | 310 |
| san antonio | 280 | 281 | 286 | 302 | 310 |
| san jose de la montana | 326 | 327 | 326 | 309 | 310 |
| sin nombre | 300 | 300 | 328 | 330 | 310 |
| villa lilliam | 300 | 300 | 303 | 309 | 310 |
| volcana guayabal | 331 | 330 | 331 | 331 | 310 |
| asomadera no.1 | 308 | 317 | 311 | 321 | 318 |
| auc2 | 300 | 318 | 312 | 322 | 319 |
|
313 | 319 | 303 | 324 | 320 |
| corregimiento de san antonio de prado | 316 | 320 | 314 | 289 | 321 |
| laureles estadio | 320 | 323 | 319 | 279 | 322 |
| manrique | 321 | 324 | 320 | 285 | 323 |
| moscu no.1 | 322 | 305 | 321 | 328 | 324 |
| piedra gorda | 323 | 325 | 322 | 309 | 325 |
| piedras blancas - matasano | 324 | 305 | 323 | 329 | 326 |
| san javier | 325 | 326 | 325 | 302 | 327 |
| suburbano el plan | 76 | 148 | 218 | 241 | 328 |
| suburbano potrerito | 328 | 328 | 329 | 309 | 329 |
| travesias | 329 | 329 | 330 | 309 | 330 |
| versalles no.2 | 330 | 305 | 303 | 309 | 331 |
Lo primero que se observa, es la permanencia de la candelaria y caribe en el top 3 de los barrios con mayor accidentalidad en todos los años de análisis, por lo que puede dar un indicio interesante de que estos barrios pueden pertenecer a los barrios de alta accidentalidad.
df %>%
filter(PERIODO==2014, DISENO=="") %>%
mutate(lng=LONGITUD, lat=LATITUD) %>%
select(lng, lat) %>%
leaflet() %>%
addTiles() %>%
addMarkers(
clusterOptions = markerClusterOptions(),
)
Para el agrupamiento de los barrios por año, se proponen las siguientes variables:
- Promedio de accidentes por mes
- Desviación estandar de accidentes por mes
- Total de accidentes por tipo de gravedad
- Total de accidentes por clase de accidente
- Total de accidentes por diseño de la vía donde ocurrió el accidente
metricas_accidentes_mes <- df %>%
filter(BARRIO != "") %>%
group_by(BARRIO, PERIODO, MES) %>%
summarise(
total_accidentes = n(),
.groups="drop"
) %>%
group_by(BARRIO, PERIODO) %>%
summarise(
promedio_accidente_mes = mean(total_accidentes, na.rm = T),
std_accidentes_mes = sd(total_accidentes, na.rm = T),
.groups="drop"
)
metricas_variables_dummies <- df %>%
fastDummies::dummy_cols(select_columns = c("CLASE", "GRAVEDAD", "DISENO")) %>%
mutate(
DISENO_TUNEL_PUENTE = `DISENO_paso a nivel` + `DISENO_paso elevado` + `DISENO_paso inferior` + `DISENO_tunel` + `DISENO_puente` + `DISENO_ponton`
) %>%
filter(BARRIO!="") %>%
rename(
OTRO_ACCIDENTE=CLASE_otro,
ATROPELLOS=CLASE_atropello,
CAIDA_OCUPANTE=`CLASE_caida ocupante`,
CHOQUE=CLASE_choque,
INCENDIO=CLASE_incendio,
VOLCAMIENTOS=CLASE_volcamiento,
HERIDO=GRAVEDAD_herido,
MUERTO=GRAVEDAD_muerto,
SOLO_DANOS=`GRAVEDAD_solo danos`,
SIN_DISENO=DISENO_,
CICLO_RUTA=`DISENO_ciclo ruta`,
GLORIETA=DISENO_glorieta,
INTERSECCION=DISENO_interseccion,
LOTE_PREDIO=`DISENO_lote o predio`,
TRAMO_VIDA=`DISENO_tramo de via`,
VIA_PEATOLNAL=`DISENO_via peatonal`
) %>%
group_by(BARRIO, PERIODO, MES) %>%
summarise(
TOTAL_OTRO_ACCIDENTE = sum(OTRO_ACCIDENTE),
TOTAL_ATROPELLOS=sum(ATROPELLOS),
TOTAL_CAIDA_OCUPANTE=sum(CAIDA_OCUPANTE),
TOTAL_CHOQUE=sum(CHOQUE),
TOTAL_INCENDIO=sum(INCENDIO),
TOTAL_VOLCAMIENTOS=sum(VOLCAMIENTOS),
TOTAL_HERIDO=sum(HERIDO),
TOTAL_MUERTO=sum(MUERTO),
TOTAL_SOLO_DANOS=sum(SOLO_DANOS),
TOTAL_SIN_DISENO=sum(SIN_DISENO),
TOTAL_CICLO_RUTA=sum(CICLO_RUTA),
TOTAL_GLORIETA=sum(GLORIETA),
TOTAL_INTERSECCION=sum(INTERSECCION),
TOTAL_LOTE_PREDIO=sum(LOTE_PREDIO),
TOTAL_TRAMO_VIDA=sum(TRAMO_VIDA),
TOTAL_VIA_PEATOLNAL=sum(VIA_PEATOLNAL),
TOTAL_DISENO_TUNEL_PUENTE = sum(DISENO_TUNEL_PUENTE),
.groups="drop"
) %>%
group_by(BARRIO, PERIODO) %>%
summarise(
AVG_OTRO_ACCIDENTE = sum(TOTAL_OTRO_ACCIDENTE),
AVG_ATROPELLOS=sum(TOTAL_ATROPELLOS),
AVG_CAIDA_OCUPANTE=sum(TOTAL_CAIDA_OCUPANTE),
AVG_CHOQUE=sum(TOTAL_CHOQUE),
AVG_INCENDIO=sum(TOTAL_INCENDIO),
AVG_VOLCAMIENTOS=sum(TOTAL_VOLCAMIENTOS),
AVG_HERIDO=sum(TOTAL_HERIDO),
AVG_MUERTO=sum(TOTAL_MUERTO),
AVG_SOLO_DANOS=sum(TOTAL_SOLO_DANOS),
AVG_SIN_DISENO=sum(TOTAL_SIN_DISENO),
AVG_CICLO_RUTA=sum(TOTAL_CICLO_RUTA),
AVG_GLORIETA=sum(TOTAL_GLORIETA),
AVG_INTERSECCION=sum(TOTAL_INTERSECCION),
AVG_LOTE_PREDIO=sum(TOTAL_LOTE_PREDIO),
AVG_TRAMO_VIDA=sum(TOTAL_TRAMO_VIDA),
AVG_VIA_PEATOLNAL=sum(TOTAL_VIA_PEATOLNAL),
AVG_DISENO_TUNEL_PUENTE = sum(TOTAL_DISENO_TUNEL_PUENTE),
.groups="drop"
)
cluster_df <- merge(metricas_accidentes_mes, metricas_variables_dummies, by = c("BARRIO", "PERIODO"))
cluster_df_dim <- dim(cluster_df)
De la construcción de variables del conjunto de datos inicial, resultamos con un conjunto de datos de 1575 observaciones por 21 variables, sin embargo, al ser de nuestro interes hacer un clustering por año, el resultado son 5 conjuntos de datos con aproximadamente 315 observaciones por conjinto de datos. A continuación se puede visualizar la tabla resultante.
cluster_df %>%
kable() %>%
kable_styling(bootstrap_options = c("striped", "hover"), position = "left") %>%
scroll_box(height = "300px")
| BARRIO | PERIODO | promedio_accidente_mes | std_accidentes_mes | AVG_OTRO_ACCIDENTE | AVG_ATROPELLOS | AVG_CAIDA_OCUPANTE | AVG_CHOQUE | AVG_INCENDIO | AVG_VOLCAMIENTOS | AVG_HERIDO | AVG_MUERTO | AVG_SOLO_DANOS | AVG_SIN_DISENO | AVG_CICLO_RUTA | AVG_GLORIETA | AVG_INTERSECCION | AVG_LOTE_PREDIO | AVG_TRAMO_VIDA | AVG_VIA_PEATOLNAL | AVG_DISENO_TUNEL_PUENTE |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| aguas frias | 2014 | 2.272727 | 1.1037127 | 3 | 5 | 6 | 10 | 0 | 1 | 22 | 0 | 3 | 0 | 0 | 0 | 1 | 1 | 23 | 0 | 0 |
| aguas frias | 2015 | 1.900000 | 0.7378648 | 2 | 3 | 1 | 13 | 0 | 0 | 10 | 0 | 9 | 0 | 0 | 1 | 2 | 0 | 16 | 0 | 0 |
| aguas frias | 2016 | 2.222222 | 1.0929064 | 3 | 3 | 2 | 10 | 0 | 2 | 14 | 0 | 6 | 0 | 0 | 0 | 0 | 1 | 19 | 0 | 0 |
| aguas frias | 2017 | 1.555556 | 0.8819171 | 5 | 3 | 2 | 3 | 0 | 1 | 12 | 0 | 2 | 0 | 0 | 0 | 0 | 9 | 5 | 0 | 0 |
| aguas frias | 2018 | 1.750000 | 0.5000000 | 1 | 2 | 1 | 3 | 0 | 0 | 5 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 5 | 0 | 0 |
| aldea pablo vi | 2014 | 1.700000 | 0.6749486 | 4 | 4 | 2 | 7 | 0 | 0 | 14 | 0 | 3 | 0 | 0 | 0 | 2 | 0 | 15 | 0 | 0 |
| aldea pablo vi | 2015 | 1.363636 | 0.6741999 | 0 | 7 | 0 | 7 | 0 | 1 | 12 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 14 | 0 | 0 |
| aldea pablo vi | 2016 | 1.818182 | 0.8738629 | 2 | 9 | 5 | 4 | 0 | 0 | 17 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 19 | 0 | 0 |
| aldea pablo vi | 2017 | 1.571429 | 0.7867958 | 1 | 4 | 1 | 5 | 0 | 0 | 9 | 1 | 1 | 1 | 0 | 0 | 0 | 3 | 7 | 0 | 0 |
| aldea pablo vi | 2018 | 2.000000 | 0.8164966 | 1 | 3 | 4 | 12 | 0 | 0 | 12 | 1 | 7 | 0 | 0 | 0 | 0 | 4 | 16 | 0 | 0 |
| alejandria | 2014 | 6.500000 | 3.3439226 | 3 | 2 | 2 | 70 | 0 | 1 | 18 | 0 | 60 | 0 | 0 | 0 | 10 | 5 | 63 | 0 | 0 |
| alejandria | 2015 | 5.333333 | 2.6400184 | 1 | 1 | 4 | 58 | 0 | 0 | 18 | 0 | 46 | 0 | 0 | 1 | 6 | 8 | 49 | 0 | 0 |
| alejandria | 2016 | 8.750000 | 2.7010099 | 6 | 1 | 3 | 93 | 0 | 2 | 35 | 0 | 70 | 0 | 0 | 0 | 20 | 6 | 79 | 0 | 0 |
| alejandria | 2017 | 10.250000 | 2.0504988 | 7 | 4 | 3 | 108 | 0 | 1 | 24 | 1 | 98 | 1 | 0 | 1 | 21 | 27 | 73 | 0 | 0 |
| alejandria | 2018 | 10.750000 | 2.5271256 | 8 | 6 | 6 | 105 | 0 | 4 | 37 | 0 | 92 | 0 | 1 | 1 | 20 | 21 | 85 | 0 | 1 |
| alejandro echavarria | 2014 | 13.500000 | 2.0225996 | 28 | 29 | 18 | 76 | 0 | 11 | 126 | 1 | 35 | 1 | 0 | 1 | 22 | 5 | 133 | 0 | 0 |
| alejandro echavarria | 2015 | 12.166667 | 3.9733964 | 24 | 17 | 12 | 85 | 0 | 8 | 103 | 0 | 43 | 0 | 0 | 3 | 17 | 9 | 117 | 0 | 0 |
| alejandro echavarria | 2016 | 15.583333 | 3.3698755 | 31 | 20 | 22 | 101 | 0 | 13 | 145 | 1 | 41 | 1 | 1 | 1 | 28 | 11 | 145 | 0 | 0 |
| alejandro echavarria | 2017 | 15.000000 | 3.2473766 | 22 | 15 | 13 | 121 | 0 | 9 | 117 | 0 | 63 | 0 | 1 | 2 | 46 | 23 | 108 | 0 | 0 |
| alejandro echavarria | 2018 | 14.750000 | 4.7505980 | 21 | 17 | 25 | 104 | 0 | 10 | 114 | 0 | 63 | 0 | 1 | 2 | 38 | 35 | 100 | 0 | 1 |
| alfonso lopez | 2014 | 19.500000 | 6.2885177 | 42 | 20 | 39 | 129 | 0 | 4 | 152 | 3 | 79 | 3 | 1 | 0 | 19 | 9 | 202 | 0 | 0 |
| alfonso lopez | 2015 | 20.416667 | 5.3675512 | 35 | 33 | 30 | 138 | 0 | 9 | 160 | 0 | 85 | 0 | 2 | 0 | 27 | 3 | 213 | 0 | 0 |
| alfonso lopez | 2016 | 24.083333 | 3.9876704 | 50 | 37 | 42 | 145 | 0 | 15 | 204 | 1 | 84 | 1 | 1 | 0 | 39 | 7 | 241 | 0 | 0 |
| alfonso lopez | 2017 | 16.250000 | 4.4746762 | 34 | 20 | 25 | 103 | 0 | 13 | 132 | 1 | 62 | 1 | 4 | 0 | 21 | 27 | 142 | 0 | 0 |
| alfonso lopez | 2018 | 15.500000 | 4.9267360 | 21 | 22 | 42 | 93 | 0 | 8 | 124 | 1 | 61 | 1 | 1 | 0 | 32 | 58 | 94 | 0 | 0 |
| altamira | 2014 | 18.000000 | 3.3303017 | 34 | 19 | 39 | 121 | 0 | 3 | 145 | 1 | 70 | 1 | 2 | 0 | 25 | 13 | 175 | 0 | 0 |
| altamira | 2015 | 13.500000 | 4.2103768 | 22 | 12 | 25 | 101 | 0 | 2 | 100 | 0 | 62 | 0 | 1 | 0 | 16 | 12 | 133 | 0 | 0 |
| altamira | 2016 | 11.416667 | 3.7769236 | 18 | 7 | 22 | 87 | 0 | 3 | 88 | 0 | 49 | 0 | 0 | 2 | 14 | 8 | 113 | 0 | 0 |
| altamira | 2017 | 11.833333 | 4.8210397 | 11 | 4 | 35 | 86 | 0 | 6 | 97 | 1 | 44 | 1 | 4 | 3 | 18 | 26 | 90 | 0 | 0 |
| altamira | 2018 | 9.916667 | 2.5746433 | 15 | 8 | 23 | 71 | 0 | 2 | 74 | 0 | 45 | 0 | 0 | 2 | 21 | 31 | 65 | 0 | 0 |
| altavista | 2014 | 6.500000 | 2.3931721 | 10 | 15 | 7 | 43 | 0 | 3 | 47 | 0 | 31 | 0 | 2 | 0 | 13 | 6 | 57 | 0 | 0 |
| altavista | 2015 | 6.416667 | 1.8809250 | 5 | 15 | 2 | 54 | 0 | 1 | 39 | 0 | 38 | 0 | 0 | 0 | 11 | 6 | 60 | 0 | 0 |
| altavista | 2016 | 6.833333 | 2.0375267 | 10 | 15 | 9 | 46 | 0 | 2 | 51 | 0 | 31 | 0 | 0 | 0 | 12 | 1 | 69 | 0 | 0 |
| altavista | 2017 | 5.250000 | 2.2207697 | 12 | 7 | 7 | 33 | 0 | 4 | 44 | 0 | 19 | 0 | 0 | 0 | 13 | 11 | 39 | 0 | 0 |
| altavista | 2018 | 4.416667 | 2.3532698 | 7 | 10 | 4 | 30 | 0 | 2 | 33 | 2 | 18 | 2 | 0 | 0 | 8 | 7 | 36 | 0 | 0 |
| altavista sector central | 2014 | 1.916667 | 0.9962049 | 4 | 5 | 6 | 8 | 0 | 0 | 18 | 0 | 5 | 0 | 1 | 0 | 0 | 3 | 19 | 0 | 0 |
| altavista sector central | 2015 | 2.727273 | 1.6180797 | 4 | 8 | 5 | 12 | 0 | 1 | 22 | 3 | 5 | 3 | 0 | 0 | 2 | 3 | 22 | 0 | 0 |
| altavista sector central | 2016 | 2.727273 | 1.4206273 | 9 | 1 | 6 | 10 | 0 | 4 | 23 | 1 | 6 | 1 | 0 | 0 | 4 | 3 | 22 | 0 | 0 |
| altavista sector central | 2017 | 2.500000 | 0.7977240 | 10 | 4 | 4 | 10 | 0 | 2 | 24 | 1 | 5 | 1 | 1 | 0 | 0 | 5 | 23 | 0 | 0 |
| altavista sector central | 2018 | 2.000000 | 1.5491933 | 1 | 4 | 0 | 7 | 0 | 0 | 9 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 11 | 0 | 0 |
| altos del poblado | 2014 | 4.083333 | 2.0207259 | 1 | 1 | 3 | 44 | 0 | 0 | 19 | 0 | 30 | 0 | 0 | 1 | 5 | 1 | 42 | 0 | 0 |
| altos del poblado | 2015 | 4.500000 | 1.8829377 | 3 | 2 | 4 | 43 | 0 | 2 | 23 | 0 | 31 | 0 | 0 | 0 | 6 | 5 | 43 | 0 | 0 |
| altos del poblado | 2016 | 6.666667 | 2.3094011 | 5 | 8 | 8 | 52 | 0 | 7 | 48 | 0 | 32 | 0 | 0 | 0 | 14 | 6 | 60 | 0 | 0 |
| altos del poblado | 2017 | 3.727273 | 1.6180797 | 6 | 1 | 2 | 31 | 0 | 1 | 19 | 0 | 22 | 0 | 1 | 0 | 4 | 7 | 27 | 0 | 2 |
| altos del poblado | 2018 | 3.818182 | 1.9908883 | 8 | 3 | 2 | 29 | 0 | 0 | 17 | 0 | 25 | 0 | 0 | 0 | 2 | 10 | 30 | 0 | 0 |
| andalucia | 2014 | 4.083333 | 2.1933094 | 1 | 14 | 6 | 26 | 0 | 2 | 31 | 1 | 17 | 1 | 0 | 0 | 5 | 0 | 43 | 0 | 0 |
| andalucia | 2015 | 3.916667 | 1.4433757 | 8 | 12 | 5 | 21 | 0 | 1 | 32 | 1 | 14 | 1 | 1 | 0 | 1 | 1 | 43 | 0 | 0 |
| andalucia | 2016 | 4.727273 | 1.9021519 | 10 | 13 | 3 | 24 | 0 | 2 | 31 | 1 | 20 | 1 | 0 | 0 | 2 | 4 | 45 | 0 | 0 |
| andalucia | 2017 | 4.083333 | 1.9286516 | 5 | 14 | 5 | 20 | 0 | 5 | 36 | 0 | 13 | 0 | 1 | 0 | 4 | 6 | 38 | 0 | 0 |
| andalucia | 2018 | 3.583333 | 1.7298625 | 6 | 5 | 6 | 24 | 0 | 2 | 29 | 0 | 14 | 0 | 0 | 0 | 10 | 12 | 21 | 0 | 0 |
| antonio narino | 2014 | 4.416667 | 1.7298625 | 10 | 9 | 10 | 22 | 0 | 2 | 45 | 0 | 8 | 0 | 1 | 0 | 4 | 3 | 45 | 0 | 0 |
| antonio narino | 2015 | 4.909091 | 1.7002674 | 9 | 8 | 16 | 17 | 0 | 4 | 43 | 0 | 11 | 0 | 0 | 0 | 4 | 0 | 50 | 0 | 0 |
| antonio narino | 2016 | 4.545454 | 2.0670576 | 8 | 9 | 7 | 22 | 0 | 4 | 39 | 0 | 11 | 0 | 0 | 0 | 5 | 3 | 42 | 0 | 0 |
| antonio narino | 2017 | 4.500000 | 2.5045413 | 6 | 9 | 9 | 25 | 0 | 5 | 42 | 0 | 12 | 0 | 0 | 0 | 7 | 14 | 33 | 0 | 0 |
| antonio narino | 2018 | 2.636364 | 1.2060454 | 5 | 5 | 4 | 13 | 0 | 2 | 21 | 0 | 8 | 0 | 0 | 0 | 6 | 13 | 10 | 0 | 0 |
| aranjuez | 2014 | 6.000000 | 2.5584086 | 9 | 11 | 10 | 41 | 0 | 1 | 52 | 0 | 20 | 0 | 0 | 1 | 14 | 1 | 56 | 0 | 0 |
| aranjuez | 2015 | 7.166667 | 2.9180733 | 12 | 17 | 6 | 44 | 0 | 7 | 65 | 1 | 20 | 1 | 0 | 0 | 19 | 0 | 66 | 0 | 0 |
| aranjuez | 2016 | 6.083333 | 2.3143164 | 7 | 11 | 13 | 39 | 0 | 3 | 49 | 1 | 23 | 1 | 0 | 1 | 10 | 3 | 58 | 0 | 0 |
| aranjuez | 2017 | 6.916667 | 3.9186810 | 10 | 12 | 5 | 50 | 0 | 6 | 51 | 8 | 24 | 8 | 0 | 0 | 15 | 15 | 45 | 0 | 0 |
| aranjuez | 2018 | 5.583333 | 2.5030285 | 8 | 8 | 16 | 35 | 0 | 0 | 46 | 0 | 21 | 0 | 0 | 0 | 10 | 14 | 43 | 0 | 0 |
| area de expansion altavista | 2014 | 1.444444 | 0.5270463 | 0 | 2 | 5 | 5 | 0 | 1 | 10 | 0 | 3 | 0 | 0 | 0 | 1 | 0 | 12 | 0 | 0 |
| area de expansion altavista | 2015 | 1.857143 | 1.2149858 | 1 | 4 | 1 | 6 | 0 | 1 | 12 | 0 | 1 | 0 | 0 | 0 | 2 | 1 | 10 | 0 | 0 |
| area de expansion altavista | 2016 | 2.400000 | 1.3416408 | 3 | 4 | 4 | 1 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
| area de expansion altavista | 2017 | 1.200000 | 0.4472136 | 1 | 0 | 0 | 5 | 0 | 0 | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 5 | 0 | 0 |
| area de expansion altavista | 2018 | 1.285714 | 0.4879500 | 2 | 3 | 0 | 4 | 0 | 0 | 7 | 0 | 2 | 0 | 0 | 0 | 1 | 1 | 7 | 0 | 0 |
| area de expansion altos de calasanz | 2014 | 2.000000 | 0.8944272 | 0 | 3 | 1 | 8 | 0 | 0 | 6 | 0 | 6 | 0 | 0 | 0 | 0 | 1 | 11 | 0 | 0 |
| area de expansion altos de calasanz | 2015 | 1.900000 | 1.4491377 | 1 | 1 | 1 | 15 | 0 | 1 | 10 | 0 | 9 | 0 | 0 | 0 | 0 | 1 | 18 | 0 | 0 |
| area de expansion altos de calasanz | 2016 | 1.800000 | 1.2292726 | 3 | 0 | 1 | 14 | 0 | 0 | 8 | 1 | 9 | 1 | 0 | 0 | 1 | 3 | 13 | 0 | 0 |
| area de expansion altos de calasanz | 2017 | 2.727273 | 1.3483997 | 4 | 4 | 4 | 17 | 0 | 1 | 17 | 0 | 13 | 0 | 0 | 0 | 1 | 9 | 20 | 0 | 0 |
| area de expansion altos de calasanz | 2018 | 2.181818 | 1.3280197 | 1 | 1 | 1 | 20 | 0 | 1 | 10 | 0 | 14 | 0 | 0 | 0 | 1 | 4 | 19 | 0 | 0 |
| area de expansion belen rincon | 2014 | 1.000000 | 0.0000000 | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
| area de expansion belen rincon | 2015 | 1.000000 | 0.0000000 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| area de expansion belen rincon | 2016 | 1.250000 | 0.5000000 | 1 | 0 | 0 | 4 | 0 | 0 | 3 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 |
| area de expansion belen rincon | 2017 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| area de expansion belen rincon | 2018 | 1.000000 | 0.0000000 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| area de expansion pajarito | 2014 | 11.750000 | 4.2879323 | 22 | 24 | 23 | 68 | 0 | 4 | 108 | 2 | 31 | 2 | 0 | 0 | 7 | 4 | 128 | 0 | 0 |
| area de expansion pajarito | 2015 | 13.666667 | 3.0846639 | 24 | 19 | 34 | 78 | 0 | 9 | 129 | 0 | 35 | 0 | 0 | 0 | 17 | 8 | 139 | 0 | 0 |
| area de expansion pajarito | 2016 | 12.166667 | 4.3866188 | 36 | 19 | 23 | 61 | 1 | 6 | 113 | 1 | 32 | 1 | 1 | 0 | 11 | 14 | 118 | 0 | 1 |
| area de expansion pajarito | 2017 | 13.833333 | 5.5240521 | 31 | 16 | 31 | 78 | 0 | 10 | 117 | 3 | 46 | 3 | 0 | 0 | 21 | 35 | 105 | 0 | 2 |
| area de expansion pajarito | 2018 | 11.416667 | 3.6045006 | 17 | 14 | 23 | 72 | 0 | 11 | 102 | 3 | 32 | 2 | 0 | 0 | 15 | 44 | 75 | 0 | 1 |
| area de expansion san antonio de prado | 2014 | 1.000000 | 0.0000000 | 0 | 3 | 0 | 5 | 0 | 0 | 5 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 |
| area de expansion san antonio de prado | 2015 | 1.555556 | 0.7264832 | 1 | 1 | 3 | 8 | 0 | 1 | 11 | 0 | 3 | 0 | 0 | 0 | 1 | 1 | 12 | 0 | 0 |
| area de expansion san antonio de prado | 2016 | 1.500000 | 0.7071068 | 3 | 1 | 0 | 10 | 0 | 1 | 10 | 1 | 4 | 1 | 0 | 0 | 0 | 1 | 13 | 0 | 0 |
| area de expansion san antonio de prado | 2017 | 2.000000 | 1.4142136 | 1 | 0 | 1 | 6 | 0 | 0 | 4 | 1 | 3 | 1 | 0 | 0 | 1 | 0 | 6 | 0 | 0 |
| area de expansion san antonio de prado | 2018 | 2.142857 | 0.6900656 | 2 | 2 | 2 | 8 | 0 | 1 | 12 | 0 | 3 | 0 | 0 | 1 | 1 | 6 | 6 | 0 | 1 |
| asomadera no. 1 | 2014 | 4.166667 | 1.9462474 | 5 | 3 | 4 | 38 | 0 | 0 | 20 | 0 | 30 | 0 | 0 | 0 | 8 | 1 | 41 | 0 | 0 |
| asomadera no. 1 | 2015 | 4.000000 | 1.9069252 | 5 | 4 | 4 | 34 | 0 | 1 | 26 | 0 | 22 | 0 | 0 | 0 | 2 | 0 | 45 | 0 | 1 |
| asomadera no. 1 | 2016 | 4.727273 | 2.4120908 | 5 | 0 | 5 | 38 | 0 | 4 | 27 | 0 | 25 | 0 | 0 | 0 | 4 | 1 | 47 | 0 | 0 |
| asomadera no. 1 | 2017 | 11.500000 | 6.0527980 | 7 | 3 | 5 | 110 | 0 | 13 | 52 | 0 | 86 | 0 | 0 | 0 | 12 | 13 | 109 | 0 | 4 |
| asomadera no. 1 | 2018 | 10.583333 | 3.6296339 | 9 | 6 | 6 | 103 | 0 | 3 | 42 | 1 | 84 | 1 | 0 | 0 | 12 | 16 | 95 | 0 | 3 |
| asomadera no. 2 | 2014 | 7.333333 | 2.6400184 | 12 | 1 | 3 | 67 | 0 | 5 | 35 | 1 | 52 | 1 | 0 | 0 | 6 | 4 | 76 | 0 | 1 |
| asomadera no. 2 | 2015 | 7.166667 | 2.5524795 | 8 | 3 | 3 | 70 | 0 | 2 | 31 | 0 | 55 | 0 | 1 | 0 | 4 | 9 | 72 | 0 | 0 |
| asomadera no. 2 | 2016 | 7.416667 | 2.7784343 | 9 | 1 | 8 | 68 | 0 | 3 | 39 | 0 | 50 | 0 | 0 | 0 | 4 | 10 | 75 | 0 | 0 |
| asomadera no. 2 | 2017 | 10.166667 | 3.7859389 | 9 | 3 | 3 | 99 | 0 | 8 | 39 | 0 | 83 | 0 | 1 | 0 | 18 | 11 | 92 | 0 | 0 |
| asomadera no. 2 | 2018 | 8.666667 | 3.0846639 | 8 | 0 | 7 | 87 | 0 | 2 | 37 | 0 | 67 | 0 | 0 | 1 | 10 | 10 | 83 | 0 | 0 |
| asomadera no. 3 | 2014 | 2.454546 | 1.2933396 | 3 | 0 | 3 | 20 | 0 | 1 | 11 | 0 | 16 | 0 | 1 | 0 | 3 | 3 | 20 | 0 | 0 |
| asomadera no. 3 | 2015 | 2.500000 | 1.5092309 | 1 | 1 | 4 | 17 | 0 | 2 | 13 | 1 | 11 | 1 | 0 | 0 | 5 | 0 | 19 | 0 | 0 |
| asomadera no. 3 | 2016 | 2.583333 | 1.1645002 | 4 | 0 | 2 | 23 | 0 | 2 | 14 | 0 | 17 | 0 | 0 | 0 | 3 | 0 | 28 | 0 | 0 |
| asomadera no. 3 | 2017 | 2.900000 | 1.1005049 | 2 | 1 | 1 | 22 | 0 | 3 | 11 | 0 | 18 | 0 | 0 | 1 | 3 | 3 | 22 | 0 | 0 |
| asomadera no. 3 | 2018 | 2.750000 | 1.4847712 | 4 | 0 | 4 | 23 | 0 | 2 | 16 | 0 | 17 | 0 | 0 | 0 | 4 | 4 | 25 | 0 | 0 |
| asomadera no.1 | 2014 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| astorga | 2014 | 6.166667 | 3.0401356 | 2 | 4 | 3 | 65 | 0 | 0 | 29 | 0 | 45 | 0 | 1 | 0 | 20 | 0 | 53 | 0 | 0 |
| astorga | 2015 | 5.083333 | 2.4293034 | 1 | 2 | 0 | 58 | 0 | 0 | 16 | 0 | 45 | 0 | 0 | 0 | 24 | 3 | 34 | 0 | 0 |
| astorga | 2016 | 4.916667 | 2.1933094 | 3 | 3 | 1 | 52 | 0 | 0 | 20 | 0 | 39 | 0 | 0 | 0 | 12 | 0 | 47 | 0 | 0 |
| astorga | 2017 | 4.250000 | 2.4167973 | 4 | 2 | 1 | 42 | 0 | 2 | 18 | 0 | 33 | 0 | 0 | 0 | 27 | 2 | 22 | 0 | 0 |
| astorga | 2018 | 4.666667 | 2.1881222 | 4 | 0 | 1 | 49 | 0 | 2 | 21 | 0 | 35 | 0 | 0 | 0 | 31 | 4 | 21 | 0 | 0 |
| auc1 | 2014 | 1.500000 | 0.5477226 | 1 | 4 | 0 | 4 | 0 | 0 | 7 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 8 | 0 | 0 |
| auc1 | 2015 | 1.222222 | 0.4409586 | 1 | 2 | 3 | 5 | 0 | 0 | 7 | 1 | 3 | 1 | 0 | 0 | 0 | 0 | 10 | 0 | 0 |
| auc1 | 2016 | 1.142857 | 0.3779645 | 1 | 1 | 2 | 4 | 0 | 0 | 6 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 |
| auc1 | 2017 | 1.000000 | 0.0000000 | 1 | 0 | 1 | 3 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 4 | 0 | 0 |
| auc1 | 2018 | 1.833333 | 1.6020820 | 2 | 2 | 2 | 5 | 0 | 0 | 8 | 0 | 3 | 0 | 0 | 0 | 1 | 5 | 5 | 0 | 0 |
| auc2 | 2014 | 1.000000 | 0.0000000 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| aures no. 2 | 2014 | 8.083333 | 2.4664414 | 21 | 14 | 29 | 31 | 0 | 2 | 83 | 0 | 14 | 0 | 0 | 0 | 8 | 2 | 87 | 0 | 0 |
| aures no. 2 | 2015 | 9.583333 | 3.6545945 | 33 | 12 | 30 | 33 | 0 | 7 | 98 | 0 | 17 | 0 | 0 | 0 | 10 | 10 | 94 | 0 | 1 |
| aures no. 2 | 2016 | 10.000000 | 3.5419563 | 24 | 12 | 32 | 46 | 0 | 6 | 91 | 1 | 28 | 1 | 0 | 0 | 14 | 10 | 95 | 0 | 0 |
| aures no. 2 | 2017 | 9.750000 | 5.2070756 | 18 | 22 | 30 | 39 | 0 | 8 | 95 | 0 | 22 | 0 | 1 | 0 | 20 | 27 | 68 | 0 | 1 |
| aures no. 2 | 2018 | 10.583333 | 4.3995523 | 25 | 14 | 28 | 48 | 0 | 12 | 98 | 1 | 28 | 1 | 2 | 0 | 20 | 45 | 55 | 0 | 4 |
| aures no.1 | 2014 | 7.500000 | 2.8762349 | 26 | 15 | 26 | 22 | 0 | 1 | 77 | 0 | 13 | 0 | 0 | 0 | 4 | 5 | 81 | 0 | 0 |
| aures no.1 | 2015 | 8.416667 | 3.1754265 | 23 | 17 | 24 | 32 | 0 | 5 | 78 | 1 | 22 | 1 | 0 | 0 | 11 | 11 | 78 | 0 | 0 |
| aures no.1 | 2016 | 7.416667 | 2.3532698 | 25 | 12 | 18 | 31 | 0 | 3 | 74 | 1 | 14 | 1 | 0 | 0 | 9 | 4 | 75 | 0 | 0 |
| aures no.1 | 2017 | 8.750000 | 2.5628464 | 17 | 17 | 19 | 41 | 0 | 11 | 79 | 1 | 25 | 1 | 0 | 0 | 22 | 19 | 63 | 0 | 0 |
| aures no.1 | 2018 | 8.416667 | 2.5030285 | 17 | 14 | 23 | 44 | 0 | 3 | 78 | 0 | 23 | 0 | 0 | 0 | 12 | 33 | 56 | 0 | 0 |
| aures no.2 | 2014 | 1.000000 | 0.0000000 | 1 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| aures no.2 | 2015 | 1.000000 | NA | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| aures no.2 | 2016 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| aures no.2 | 2018 | 1.000000 | 0.0000000 | 1 | 0 | 0 | 2 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 |
|
2014 | 3.500000 | 1.8829377 | 7 | 6 | 4 | 25 | 0 | 0 | 22 | 0 | 20 | 0 | 0 | 0 | 7 | 1 | 34 | 0 | 0 |
|
2015 | 2.625000 | 0.9161254 | 3 | 4 | 0 | 14 | 0 | 0 | 11 | 0 | 10 | 0 | 0 | 0 | 1 | 0 | 20 | 0 | 0 |
|
2016 | 3.090909 | 1.2210279 | 7 | 7 | 6 | 14 | 0 | 0 | 25 | 0 | 9 | 0 | 0 | 0 | 2 | 1 | 31 | 0 | 0 |
|
2017 | 2.909091 | 1.3003496 | 1 | 6 | 3 | 21 | 0 | 1 | 20 | 0 | 12 | 0 | 0 | 0 | 4 | 3 | 25 | 0 | 0 |
|
2018 | 3.545454 | 1.1281521 | 4 | 4 | 3 | 27 | 0 | 1 | 21 | 1 | 17 | 1 | 0 | 0 | 4 | 6 | 28 | 0 | 0 |
|
2016 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| barrio caicedo | 2014 | 16.833333 | 3.7859389 | 31 | 25 | 25 | 110 | 0 | 11 | 126 | 2 | 74 | 2 | 0 | 1 | 47 | 7 | 145 | 0 | 0 |
| barrio caicedo | 2015 | 16.333333 | 5.0332230 | 19 | 31 | 30 | 103 | 0 | 13 | 135 | 2 | 59 | 2 | 1 | 5 | 39 | 6 | 143 | 0 | 0 |
| barrio caicedo | 2016 | 15.833333 | 4.2175679 | 36 | 27 | 18 | 100 | 0 | 9 | 125 | 1 | 64 | 1 | 1 | 5 | 31 | 8 | 144 | 0 | 0 |
| barrio caicedo | 2017 | 13.750000 | 2.8001623 | 24 | 15 | 18 | 98 | 0 | 10 | 93 | 1 | 71 | 1 | 2 | 6 | 39 | 24 | 91 | 0 | 2 |
| barrio caicedo | 2018 | 12.916667 | 3.2879486 | 14 | 18 | 17 | 97 | 0 | 9 | 94 | 1 | 60 | 1 | 2 | 6 | 43 | 26 | 75 | 0 | 2 |
| barrio colombia | 2014 | 20.166667 | 5.0781767 | 21 | 15 | 18 | 184 | 0 | 4 | 110 | 3 | 129 | 3 | 2 | 1 | 18 | 6 | 211 | 1 | 0 |
| barrio colombia | 2015 | 16.666667 | 3.2003788 | 20 | 12 | 13 | 151 | 0 | 4 | 97 | 0 | 103 | 0 | 0 | 3 | 13 | 6 | 178 | 0 | 0 |
| barrio colombia | 2016 | 20.750000 | 4.4338573 | 20 | 17 | 20 | 185 | 0 | 7 | 117 | 0 | 132 | 0 | 0 | 2 | 35 | 8 | 204 | 0 | 0 |
| barrio colombia | 2017 | 22.500000 | 6.8290822 | 17 | 9 | 9 | 231 | 0 | 4 | 100 | 1 | 169 | 1 | 0 | 7 | 42 | 17 | 203 | 0 | 0 |
| barrio colombia | 2018 | 19.083333 | 5.2476546 | 13 | 6 | 10 | 195 | 0 | 5 | 89 | 3 | 137 | 3 | 0 | 2 | 54 | 20 | 149 | 0 | 1 |
| barrio colon | 2014 | 57.083333 | 6.3023565 | 43 | 62 | 38 | 534 | 0 | 8 | 281 | 2 | 402 | 2 | 1 | 13 | 93 | 12 | 550 | 0 | 14 |
| barrio colon | 2015 | 62.250000 | 10.3671246 | 51 | 75 | 35 | 570 | 0 | 16 | 318 | 3 | 426 | 3 | 3 | 13 | 118 | 8 | 592 | 0 | 10 |
| barrio colon | 2016 | 58.583333 | 6.9603857 | 49 | 61 | 37 | 544 | 0 | 12 | 268 | 3 | 432 | 3 | 3 | 17 | 127 | 12 | 526 | 0 | 15 |
| barrio colon | 2017 | 62.333333 | 11.0891703 | 47 | 61 | 37 | 590 | 0 | 13 | 281 | 1 | 466 | 1 | 1 | 28 | 164 | 36 | 502 | 0 | 16 |
| barrio colon | 2018 | 62.250000 | 8.5930733 | 41 | 60 | 24 | 613 | 0 | 9 | 254 | 7 | 486 | 5 | 2 | 14 | 178 | 50 | 478 | 0 | 20 |
| barrio cristobal | 2014 | 2.181818 | 0.8738629 | 2 | 2 | 2 | 18 | 0 | 0 | 13 | 0 | 11 | 0 | 0 | 0 | 4 | 0 | 20 | 0 | 0 |
| barrio cristobal | 2015 | 3.400000 | 2.1705094 | 3 | 2 | 2 | 27 | 0 | 0 | 17 | 0 | 17 | 0 | 0 | 0 | 6 | 1 | 27 | 0 | 0 |
| barrio cristobal | 2016 | 3.300000 | 1.8287822 | 2 | 6 | 3 | 21 | 0 | 1 | 22 | 1 | 10 | 1 | 0 | 0 | 12 | 0 | 20 | 0 | 0 |
| barrio cristobal | 2017 | 2.916667 | 1.4433757 | 3 | 2 | 2 | 28 | 0 | 0 | 22 | 0 | 13 | 0 | 0 | 0 | 15 | 4 | 16 | 0 | 0 |
| barrio cristobal | 2018 | 2.333333 | 1.6143298 | 5 | 0 | 3 | 20 | 0 | 0 | 16 | 0 | 12 | 0 | 1 | 0 | 10 | 4 | 13 | 0 | 0 |
| barrio de jesus | 2014 | 4.181818 | 1.3280197 | 9 | 8 | 8 | 21 | 0 | 0 | 33 | 1 | 12 | 1 | 0 | 0 | 1 | 2 | 42 | 0 | 0 |
| barrio de jesus | 2015 | 4.000000 | 1.9069252 | 4 | 9 | 9 | 24 | 0 | 2 | 29 | 1 | 18 | 1 | 0 | 0 | 5 | 0 | 42 | 0 | 0 |
| barrio de jesus | 2016 | 4.416667 | 2.7122059 | 6 | 9 | 6 | 27 | 0 | 5 | 36 | 0 | 17 | 0 | 0 | 0 | 5 | 1 | 47 | 0 | 0 |
| barrio de jesus | 2017 | 5.166667 | 2.0375267 | 7 | 12 | 8 | 31 | 0 | 4 | 43 | 1 | 18 | 1 | 2 | 0 | 2 | 13 | 44 | 0 | 0 |
| barrio de jesus | 2018 | 5.166667 | 1.6966991 | 14 | 5 | 5 | 38 | 0 | 0 | 38 | 1 | 23 | 1 | 0 | 0 | 5 | 9 | 45 | 0 | 2 |
| barrios de jesus | 2015 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| barrios de jesus | 2018 | 1.000000 | NA | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| batallon girardot | 2015 | 1.500000 | 0.7071068 | 0 | 2 | 0 | 1 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 |
| batallon girardot | 2016 | 1.500000 | 0.7071068 | 0 | 2 | 0 | 1 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 |
| batallon girardot | 2017 | 1.000000 | 0.0000000 | 0 | 1 | 0 | 2 | 0 | 0 | 2 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
| batallon girardot | 2018 | 1.000000 | 0.0000000 | 0 | 1 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
| belalcazar | 2014 | 8.333333 | 2.9644357 | 20 | 4 | 11 | 63 | 0 | 2 | 62 | 3 | 35 | 3 | 0 | 0 | 11 | 1 | 84 | 0 | 1 |
| belalcazar | 2015 | 8.416667 | 3.6545945 | 14 | 7 | 3 | 76 | 0 | 1 | 56 | 0 | 45 | 0 | 1 | 0 | 4 | 2 | 94 | 0 | 0 |
| belalcazar | 2016 | 9.750000 | 3.0488448 | 13 | 9 | 10 | 80 | 0 | 5 | 66 | 1 | 50 | 1 | 0 | 0 | 6 | 5 | 105 | 0 | 0 |
| belalcazar | 2017 | 10.166667 | 2.8230652 | 9 | 8 | 8 | 94 | 0 | 3 | 59 | 0 | 63 | 0 | 0 | 0 | 6 | 8 | 108 | 0 | 0 |
| belalcazar | 2018 | 9.666667 | 3.2566947 | 17 | 5 | 6 | 85 | 0 | 3 | 63 | 0 | 53 | 0 | 2 | 0 | 5 | 12 | 97 | 0 | 0 |
| belen | 2014 | 37.333333 | 8.6058472 | 37 | 47 | 39 | 315 | 0 | 10 | 203 | 3 | 242 | 3 | 3 | 33 | 55 | 22 | 332 | 0 | 0 |
| belen | 2015 | 40.583333 | 9.0197595 | 36 | 45 | 28 | 362 | 0 | 16 | 214 | 0 | 273 | 0 | 0 | 39 | 62 | 16 | 370 | 0 | 0 |
| belen | 2016 | 46.000000 | 6.8357350 | 44 | 40 | 31 | 415 | 0 | 22 | 254 | 2 | 296 | 2 | 2 | 50 | 76 | 36 | 386 | 0 | 0 |
| belen | 2017 | 42.166667 | 6.2643774 | 46 | 33 | 25 | 392 | 0 | 10 | 213 | 9 | 284 | 9 | 3 | 78 | 85 | 69 | 258 | 0 | 4 |
| belen | 2018 | 37.916667 | 5.9154395 | 25 | 23 | 24 | 377 | 0 | 6 | 163 | 0 | 292 | 0 | 1 | 77 | 84 | 47 | 246 | 0 | 0 |
| belencito | 2014 | 2.333333 | 1.7320508 | 4 | 5 | 2 | 10 | 0 | 0 | 18 | 0 | 3 | 0 | 0 | 0 | 2 | 0 | 19 | 0 | 0 |
| belencito | 2015 | 3.272727 | 1.7372915 | 5 | 6 | 4 | 20 | 0 | 1 | 26 | 0 | 10 | 0 | 0 | 0 | 2 | 0 | 34 | 0 | 0 |
| belencito | 2016 | 2.500000 | 1.7837652 | 5 | 1 | 4 | 19 | 0 | 1 | 23 | 0 | 7 | 0 | 0 | 0 | 1 | 0 | 29 | 0 | 0 |
| belencito | 2017 | 3.333333 | 1.6696942 | 11 | 6 | 1 | 22 | 0 | 0 | 27 | 1 | 12 | 1 | 0 | 0 | 6 | 7 | 26 | 0 | 0 |
| belencito | 2018 | 2.666667 | 1.6696942 | 5 | 5 | 4 | 17 | 0 | 1 | 20 | 1 | 11 | 0 | 0 | 0 | 3 | 7 | 22 | 0 | 0 |
| bello horizonte | 2014 | 6.333333 | 2.2292817 | 14 | 8 | 6 | 48 | 0 | 0 | 47 | 0 | 29 | 0 | 0 | 0 | 17 | 4 | 55 | 0 | 0 |
| bello horizonte | 2015 | 6.583333 | 2.4664414 | 8 | 15 | 10 | 42 | 0 | 4 | 59 | 0 | 20 | 0 | 0 | 0 | 15 | 1 | 63 | 0 | 0 |
| bello horizonte | 2016 | 4.166667 | 1.7494588 | 4 | 9 | 5 | 29 | 0 | 3 | 36 | 1 | 13 | 1 | 0 | 0 | 10 | 3 | 36 | 0 | 0 |
| bello horizonte | 2017 | 5.833333 | 1.9924098 | 7 | 8 | 8 | 44 | 0 | 3 | 45 | 0 | 25 | 0 | 0 | 0 | 25 | 5 | 40 | 0 | 0 |
| bello horizonte | 2018 | 5.000000 | 2.2156468 | 4 | 11 | 12 | 30 | 0 | 3 | 40 | 0 | 20 | 0 | 0 | 0 | 13 | 13 | 34 | 0 | 0 |
| berlin | 2014 | 13.916667 | 3.8954130 | 17 | 46 | 24 | 77 | 0 | 3 | 115 | 3 | 49 | 3 | 2 | 0 | 25 | 4 | 133 | 0 | 0 |
| berlin | 2015 | 14.083333 | 4.1000739 | 18 | 35 | 21 | 88 | 0 | 7 | 131 | 1 | 37 | 1 | 0 | 0 | 37 | 4 | 127 | 0 | 0 |
| berlin | 2016 | 12.833333 | 3.9504507 | 22 | 30 | 17 | 80 | 0 | 5 | 102 | 0 | 52 | 0 | 0 | 0 | 29 | 9 | 116 | 0 | 0 |
| berlin | 2017 | 14.333333 | 4.0526834 | 24 | 31 | 17 | 94 | 0 | 6 | 109 | 1 | 62 | 1 | 0 | 0 | 51 | 15 | 105 | 0 | 0 |
| berlin | 2018 | 12.333333 | 3.3933982 | 19 | 20 | 17 | 88 | 0 | 4 | 86 | 0 | 62 | 0 | 1 | 0 | 42 | 23 | 82 | 0 | 0 |
| bermejal-los alamos | 2014 | 4.000000 | 2.6628761 | 3 | 14 | 3 | 25 | 0 | 3 | 28 | 0 | 20 | 0 | 0 | 0 | 3 | 1 | 44 | 0 | 0 |
| bermejal-los alamos | 2015 | 5.000000 | 2.4899799 | 7 | 14 | 8 | 25 | 0 | 1 | 45 | 1 | 9 | 1 | 0 | 0 | 2 | 2 | 50 | 0 | 0 |
| bermejal-los alamos | 2016 | 4.750000 | 1.9128750 | 8 | 16 | 4 | 28 | 0 | 1 | 38 | 1 | 18 | 1 | 0 | 0 | 2 | 1 | 53 | 0 | 0 |
| bermejal-los alamos | 2017 | 3.333333 | 2.0150946 | 5 | 10 | 3 | 20 | 0 | 2 | 26 | 0 | 14 | 0 | 0 | 0 | 5 | 7 | 27 | 0 | 1 |
| bermejal-los alamos | 2018 | 2.666667 | 1.2309149 | 6 | 9 | 4 | 12 | 0 | 1 | 24 | 0 | 8 | 0 | 0 | 0 | 5 | 10 | 17 | 0 | 0 |
| betania | 2014 | 2.363636 | 1.1200649 | 8 | 8 | 7 | 2 | 0 | 1 | 25 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 24 | 0 | 0 |
| betania | 2015 | 1.500000 | 0.8498366 | 2 | 5 | 2 | 6 | 0 | 0 | 13 | 0 | 2 | 0 | 0 | 0 | 1 | 1 | 13 | 0 | 0 |
| betania | 2016 | 2.454546 | 0.9341987 | 2 | 2 | 7 | 14 | 0 | 2 | 16 | 1 | 10 | 1 | 0 | 0 | 3 | 3 | 20 | 0 | 0 |
| betania | 2017 | 2.555556 | 1.6666667 | 5 | 3 | 6 | 7 | 0 | 2 | 18 | 0 | 5 | 0 | 0 | 0 | 3 | 8 | 12 | 0 | 0 |
| betania | 2018 | 1.727273 | 1.1037127 | 1 | 2 | 4 | 11 | 0 | 1 | 9 | 1 | 9 | 1 | 0 | 0 | 3 | 9 | 5 | 0 | 1 |
| blanquizal | 2014 | 1.555556 | 0.7264832 | 5 | 2 | 2 | 4 | 0 | 1 | 10 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 14 | 0 | 0 |
| blanquizal | 2015 | 2.666667 | 1.8618987 | 2 | 4 | 4 | 5 | 0 | 1 | 13 | 1 | 2 | 1 | 0 | 0 | 1 | 0 | 14 | 0 | 0 |
| blanquizal | 2016 | 2.200000 | 1.3984118 | 4 | 3 | 4 | 10 | 0 | 1 | 18 | 0 | 4 | 0 | 1 | 0 | 2 | 0 | 18 | 0 | 1 |
| blanquizal | 2017 | 2.428571 | 0.9759001 | 2 | 3 | 1 | 9 | 0 | 2 | 10 | 0 | 7 | 0 | 0 | 0 | 1 | 3 | 13 | 0 | 0 |
| blanquizal | 2018 | 1.900000 | 0.8755950 | 2 | 4 | 0 | 11 | 0 | 2 | 11 | 0 | 8 | 0 | 0 | 0 | 1 | 2 | 15 | 0 | 1 |
| bolivariana | 2014 | 17.250000 | 6.0771554 | 15 | 9 | 12 | 165 | 0 | 6 | 106 | 0 | 101 | 0 | 1 | 1 | 55 | 7 | 142 | 1 | 0 |
| bolivariana | 2015 | 14.916667 | 4.0104031 | 12 | 12 | 10 | 140 | 0 | 5 | 95 | 1 | 83 | 1 | 0 | 1 | 43 | 4 | 130 | 0 | 0 |
| bolivariana | 2016 | 14.750000 | 5.0654803 | 14 | 7 | 8 | 145 | 0 | 3 | 88 | 0 | 89 | 0 | 0 | 2 | 43 | 8 | 124 | 0 | 0 |
| bolivariana | 2017 | 16.083333 | 2.9682665 | 13 | 10 | 11 | 157 | 0 | 2 | 87 | 0 | 106 | 0 | 1 | 1 | 61 | 22 | 108 | 0 | 0 |
| bolivariana | 2018 | 14.916667 | 4.5218326 | 12 | 11 | 13 | 138 | 0 | 5 | 81 | 0 | 98 | 0 | 1 | 2 | 58 | 28 | 90 | 0 | 0 |
| bombona no. 1 | 2014 | 22.333333 | 7.3772788 | 16 | 18 | 12 | 218 | 0 | 4 | 116 | 2 | 150 | 2 | 0 | 0 | 75 | 0 | 191 | 0 | 0 |
| bombona no. 1 | 2015 | 20.666667 | 3.9157800 | 17 | 22 | 8 | 195 | 0 | 6 | 118 | 1 | 129 | 1 | 0 | 0 | 70 | 4 | 172 | 0 | 1 |
| bombona no. 1 | 2016 | 21.000000 | 3.4902461 | 31 | 13 | 17 | 181 | 0 | 10 | 126 | 1 | 125 | 1 | 2 | 0 | 77 | 1 | 171 | 0 | 0 |
| bombona no. 1 | 2017 | 16.833333 | 3.1285586 | 15 | 8 | 12 | 164 | 0 | 3 | 77 | 1 | 124 | 1 | 0 | 0 | 69 | 9 | 123 | 0 | 0 |
| bombona no. 1 | 2018 | 16.166667 | 4.2175679 | 9 | 18 | 8 | 154 | 0 | 5 | 84 | 2 | 108 | 1 | 1 | 0 | 68 | 23 | 101 | 0 | 0 |
| bombona no. 2 | 2014 | 5.083333 | 1.0836247 | 6 | 5 | 6 | 40 | 0 | 4 | 37 | 0 | 24 | 0 | 0 | 0 | 5 | 1 | 55 | 0 | 0 |
| bombona no. 2 | 2015 | 6.083333 | 3.1466673 | 13 | 11 | 7 | 37 | 0 | 5 | 46 | 1 | 26 | 1 | 0 | 0 | 7 | 3 | 62 | 0 | 0 |
| bombona no. 2 | 2016 | 6.250000 | 1.9598237 | 13 | 4 | 12 | 40 | 0 | 6 | 45 | 1 | 29 | 1 | 0 | 0 | 7 | 6 | 61 | 0 | 0 |
| bombona no. 2 | 2017 | 5.000000 | 2.5226249 | 8 | 10 | 3 | 33 | 0 | 6 | 40 | 0 | 20 | 0 | 0 | 0 | 7 | 9 | 44 | 0 | 0 |
| bombona no. 2 | 2018 | 5.333333 | 1.9694639 | 7 | 6 | 6 | 41 | 0 | 4 | 34 | 0 | 30 | 0 | 0 | 0 | 14 | 14 | 36 | 0 | 0 |
| bombona no.1 | 2014 | 2.000000 | 1.0444659 | 2 | 2 | 0 | 20 | 0 | 0 | 13 | 0 | 11 | 0 | 1 | 0 | 7 | 0 | 16 | 0 | 0 |
| bombona no.1 | 2015 | 1.777778 | 0.6666667 | 1 | 1 | 0 | 14 | 0 | 0 | 8 | 0 | 8 | 0 | 0 | 0 | 8 | 0 | 8 | 0 | 0 |
| bombona no.1 | 2016 | 2.250000 | 1.1649647 | 2 | 0 | 2 | 14 | 0 | 0 | 14 | 0 | 4 | 0 | 0 | 0 | 3 | 1 | 14 | 0 | 0 |
| bombona no.1 | 2017 | 1.000000 | NA | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| bombona no.1 | 2018 | 1.428571 | 0.5345225 | 0 | 2 | 1 | 7 | 0 | 0 | 3 | 0 | 7 | 0 | 0 | 0 | 2 | 0 | 8 | 0 | 0 |
| bosques de san pablo | 2014 | 5.500000 | 1.8829377 | 5 | 6 | 16 | 39 | 0 | 0 | 34 | 0 | 32 | 0 | 1 | 0 | 3 | 3 | 59 | 0 | 0 |
| bosques de san pablo | 2015 | 7.000000 | 4.4107307 | 12 | 7 | 11 | 51 | 0 | 3 | 46 | 0 | 38 | 0 | 0 | 0 | 7 | 7 | 70 | 0 | 0 |
| bosques de san pablo | 2016 | 6.666667 | 1.9227506 | 12 | 4 | 7 | 55 | 0 | 2 | 44 | 0 | 36 | 0 | 0 | 0 | 8 | 8 | 64 | 0 | 0 |
| bosques de san pablo | 2017 | 6.416667 | 3.5280263 | 8 | 3 | 7 | 57 | 0 | 2 | 40 | 1 | 36 | 1 | 0 | 0 | 17 | 10 | 49 | 0 | 0 |
| bosques de san pablo | 2018 | 5.083333 | 2.2746961 | 3 | 4 | 6 | 47 | 0 | 1 | 25 | 0 | 36 | 0 | 0 | 0 | 11 | 14 | 36 | 0 | 0 |
| boston | 2014 | 37.333333 | 6.0653012 | 39 | 48 | 26 | 326 | 0 | 9 | 239 | 2 | 207 | 2 | 3 | 3 | 123 | 6 | 310 | 1 | 0 |
| boston | 2015 | 38.583333 | 7.4401654 | 26 | 43 | 23 | 360 | 0 | 11 | 244 | 3 | 216 | 3 | 1 | 3 | 133 | 5 | 317 | 0 | 1 |
| boston | 2016 | 44.416667 | 5.3505876 | 40 | 49 | 23 | 402 | 0 | 19 | 283 | 3 | 247 | 3 | 0 | 10 | 167 | 16 | 336 | 1 | 0 |
| boston | 2017 | 35.333333 | 4.1194292 | 25 | 36 | 25 | 327 | 0 | 11 | 205 | 1 | 218 | 1 | 1 | 7 | 167 | 32 | 215 | 0 | 1 |
| boston | 2018 | 35.500000 | 6.6674242 | 25 | 44 | 23 | 322 | 0 | 12 | 215 | 1 | 210 | 1 | 2 | 8 | 175 | 41 | 199 | 0 | 0 |
| boyaca | 2014 | 8.083333 | 2.6784776 | 12 | 14 | 22 | 47 | 0 | 2 | 62 | 1 | 34 | 1 | 1 | 0 | 11 | 4 | 80 | 0 | 0 |
| boyaca | 2015 | 8.583333 | 2.8109634 | 16 | 9 | 14 | 57 | 0 | 7 | 71 | 0 | 32 | 0 | 1 | 0 | 22 | 4 | 76 | 0 | 0 |
| boyaca | 2016 | 9.916667 | 2.9063671 | 17 | 13 | 19 | 65 | 0 | 5 | 79 | 0 | 40 | 0 | 0 | 0 | 26 | 4 | 89 | 0 | 0 |
| boyaca | 2017 | 9.833333 | 2.6911753 | 14 | 12 | 6 | 83 | 0 | 3 | 71 | 1 | 46 | 1 | 0 | 1 | 37 | 11 | 68 | 0 | 0 |
| boyaca | 2018 | 12.333333 | 3.2003788 | 17 | 10 | 27 | 84 | 0 | 10 | 95 | 0 | 53 | 0 | 0 | 2 | 41 | 47 | 58 | 0 | 0 |
| brasilia | 2014 | 8.500000 | 2.1532217 | 8 | 24 | 11 | 57 | 0 | 2 | 78 | 1 | 23 | 1 | 0 | 0 | 27 | 2 | 72 | 0 | 0 |
| brasilia | 2015 | 9.333333 | 3.2844906 | 12 | 18 | 9 | 70 | 0 | 3 | 82 | 0 | 30 | 0 | 0 | 0 | 41 | 1 | 70 | 0 | 0 |
| brasilia | 2016 | 6.833333 | 2.4802248 | 12 | 14 | 5 | 47 | 0 | 4 | 66 | 1 | 15 | 1 | 1 | 0 | 21 | 5 | 54 | 0 | 0 |
| brasilia | 2017 | 8.666667 | 2.7743413 | 12 | 18 | 9 | 62 | 0 | 3 | 69 | 3 | 32 | 3 | 3 | 1 | 34 | 15 | 48 | 0 | 0 |
| brasilia | 2018 | 8.333333 | 1.8748737 | 11 | 5 | 16 | 61 | 0 | 7 | 64 | 0 | 36 | 0 | 0 | 1 | 28 | 19 | 52 | 0 | 0 |
| buenos aires | 2014 | 17.916667 | 6.8285275 | 27 | 26 | 16 | 143 | 0 | 3 | 147 | 0 | 68 | 0 | 1 | 0 | 67 | 5 | 142 | 0 | 0 |
| buenos aires | 2015 | 19.916667 | 2.2746961 | 30 | 21 | 16 | 165 | 0 | 7 | 159 | 0 | 80 | 0 | 0 | 1 | 74 | 7 | 157 | 0 | 0 |
| buenos aires | 2016 | 16.250000 | 3.2787193 | 17 | 13 | 18 | 136 | 0 | 11 | 114 | 0 | 81 | 0 | 1 | 0 | 60 | 5 | 129 | 0 | 0 |
| buenos aires | 2017 | 15.083333 | 3.1754265 | 23 | 13 | 10 | 128 | 0 | 7 | 99 | 1 | 81 | 1 | 1 | 0 | 68 | 20 | 91 | 0 | 0 |
| buenos aires | 2018 | 13.583333 | 3.6296339 | 12 | 11 | 14 | 124 | 0 | 2 | 89 | 0 | 74 | 0 | 0 | 0 | 78 | 22 | 63 | 0 | 0 |
| buga patio bonito | 2014 | 1.400000 | 0.8944272 | 0 | 0 | 0 | 6 | 0 | 1 | 2 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 |
| buga patio bonito | 2015 | 1.500000 | 0.7071068 | 1 | 2 | 1 | 10 | 0 | 1 | 9 | 0 | 6 | 0 | 0 | 0 | 1 | 0 | 14 | 0 | 0 |
| buga patio bonito | 2016 | 1.500000 | 0.7559289 | 3 | 2 | 0 | 6 | 0 | 1 | 10 | 0 | 2 | 0 | 0 | 0 | 1 | 1 | 10 | 0 | 0 |
| buga patio bonito | 2017 | 1.400000 | 0.5477226 | 2 | 1 | 0 | 3 | 0 | 1 | 5 | 0 | 2 | 0 | 0 | 0 | 0 | 3 | 4 | 0 | 0 |
| buga patio bonito | 2018 | 1.750000 | 0.9574271 | 0 | 0 | 2 | 5 | 0 | 0 | 3 | 0 | 4 | 0 | 0 | 0 | 0 | 1 | 6 | 0 | 0 |
| cabecera san antonio de prado | 2014 | 12.583333 | 3.9876704 | 12 | 35 | 20 | 83 | 0 | 1 | 100 | 6 | 45 | 6 | 0 | 0 | 10 | 5 | 129 | 0 | 1 |
| cabecera san antonio de prado | 2015 | 19.000000 | 3.0451153 | 29 | 45 | 29 | 117 | 0 | 8 | 167 | 4 | 57 | 4 | 1 | 0 | 29 | 9 | 185 | 0 | 0 |
| cabecera san antonio de prado | 2016 | 18.333333 | 3.1718458 | 18 | 40 | 26 | 133 | 0 | 3 | 139 | 0 | 81 | 0 | 0 | 0 | 35 | 8 | 175 | 1 | 1 |
| cabecera san antonio de prado | 2017 | 46.083333 | 15.7448885 | 55 | 64 | 38 | 367 | 0 | 29 | 328 | 2 | 223 | 2 | 2 | 1 | 54 | 49 | 440 | 0 | 5 |
| cabecera san antonio de prado | 2018 | 49.666667 | 10.4475602 | 43 | 68 | 41 | 421 | 1 | 22 | 309 | 12 | 275 | 9 | 3 | 4 | 69 | 65 | 434 | 0 | 12 |
| cabecera urbana san cristobal | 2014 | 10.083333 | 3.4234043 | 29 | 20 | 22 | 45 | 0 | 5 | 91 | 0 | 30 | 0 | 0 | 0 | 14 | 5 | 102 | 0 | 0 |
| cabecera urbana san cristobal | 2015 | 10.416667 | 2.9682665 | 19 | 28 | 16 | 58 | 0 | 4 | 93 | 1 | 31 | 1 | 0 | 0 | 7 | 7 | 109 | 0 | 1 |
| cabecera urbana san cristobal | 2016 | 11.166667 | 2.2495791 | 23 | 24 | 22 | 58 | 0 | 7 | 93 | 1 | 40 | 1 | 0 | 0 | 6 | 5 | 122 | 0 | 0 |
| cabecera urbana san cristobal | 2017 | 8.500000 | 3.9657626 | 18 | 13 | 23 | 43 | 0 | 5 | 77 | 2 | 23 | 2 | 0 | 0 | 4 | 21 | 74 | 0 | 1 |
| cabecera urbana san cristobal | 2018 | 9.000000 | 1.7056057 | 9 | 23 | 13 | 58 | 0 | 5 | 70 | 2 | 36 | 1 | 1 | 0 | 8 | 20 | 78 | 0 | 0 |
| calasanz | 2014 | 13.916667 | 4.6408920 | 19 | 11 | 9 | 127 | 0 | 1 | 70 | 1 | 96 | 1 | 0 | 7 | 41 | 2 | 116 | 0 | 0 |
| calasanz | 2015 | 14.166667 | 4.8586069 | 18 | 8 | 18 | 122 | 0 | 4 | 95 | 0 | 75 | 0 | 0 | 6 | 45 | 6 | 113 | 0 | 0 |
| calasanz | 2016 | 13.583333 | 3.4498573 | 21 | 8 | 10 | 122 | 0 | 2 | 79 | 0 | 84 | 0 | 0 | 12 | 52 | 4 | 94 | 0 | 1 |
| calasanz | 2017 | 13.166667 | 3.5887028 | 11 | 7 | 13 | 123 | 0 | 4 | 71 | 0 | 87 | 0 | 0 | 20 | 51 | 10 | 77 | 0 | 0 |
| calasanz | 2018 | 12.666667 | 4.7736651 | 9 | 13 | 12 | 118 | 0 | 0 | 67 | 2 | 83 | 1 | 0 | 10 | 60 | 15 | 64 | 1 | 1 |
| calasanz parte alta | 2014 | 6.250000 | 1.9598237 | 10 | 4 | 13 | 45 | 0 | 3 | 49 | 0 | 26 | 0 | 0 | 0 | 14 | 3 | 58 | 0 | 0 |
| calasanz parte alta | 2015 | 5.250000 | 2.0504988 | 9 | 3 | 7 | 42 | 0 | 2 | 37 | 0 | 26 | 0 | 0 | 0 | 8 | 1 | 54 | 0 | 0 |
| calasanz parte alta | 2016 | 8.833333 | 2.5878504 | 10 | 8 | 10 | 77 | 0 | 1 | 51 | 0 | 55 | 0 | 0 | 0 | 22 | 5 | 79 | 0 | 0 |
| calasanz parte alta | 2017 | 9.166667 | 3.3257489 | 14 | 6 | 7 | 80 | 0 | 3 | 56 | 1 | 53 | 1 | 0 | 0 | 25 | 12 | 72 | 0 | 0 |
| calasanz parte alta | 2018 | 6.666667 | 2.6400184 | 9 | 2 | 10 | 57 | 0 | 2 | 44 | 0 | 36 | 0 | 0 | 0 | 19 | 19 | 42 | 0 | 0 |
| calle nueva | 2014 | 25.833333 | 5.4076265 | 13 | 30 | 17 | 242 | 0 | 8 | 114 | 1 | 195 | 1 | 1 | 26 | 44 | 2 | 231 | 0 | 5 |
| calle nueva | 2015 | 25.916667 | 5.1249538 | 15 | 25 | 19 | 247 | 0 | 5 | 138 | 0 | 173 | 0 | 1 | 26 | 35 | 10 | 236 | 0 | 3 |
| calle nueva | 2016 | 27.583333 | 5.0893531 | 15 | 25 | 17 | 266 | 0 | 8 | 122 | 2 | 207 | 2 | 1 | 39 | 49 | 10 | 224 | 1 | 5 |
| calle nueva | 2017 | 28.666667 | 7.8778554 | 15 | 22 | 19 | 283 | 0 | 5 | 121 | 0 | 223 | 0 | 1 | 74 | 47 | 14 | 192 | 0 | 16 |
| calle nueva | 2018 | 26.833333 | 5.7340028 | 20 | 22 | 14 | 261 | 0 | 5 | 115 | 0 | 207 | 0 | 2 | 79 | 57 | 23 | 136 | 1 | 24 |
| campo alegre | 2014 | 8.750000 | 2.7010099 | 10 | 10 | 16 | 65 | 0 | 4 | 67 | 0 | 38 | 0 | 2 | 3 | 11 | 8 | 81 | 0 | 0 |
| campo alegre | 2015 | 8.583333 | 3.3427896 | 14 | 11 | 14 | 60 | 0 | 4 | 77 | 1 | 25 | 1 | 0 | 1 | 16 | 4 | 80 | 0 | 1 |
| campo alegre | 2016 | 8.916667 | 3.4761089 | 17 | 16 | 8 | 60 | 0 | 6 | 75 | 0 | 32 | 0 | 0 | 2 | 15 | 5 | 85 | 0 | 0 |
| campo alegre | 2017 | 9.916667 | 3.3427896 | 18 | 8 | 15 | 77 | 0 | 1 | 78 | 0 | 41 | 0 | 0 | 11 | 24 | 19 | 65 | 0 | 0 |
| campo alegre | 2018 | 9.083333 | 3.5791907 | 11 | 11 | 12 | 73 | 0 | 2 | 68 | 2 | 39 | 1 | 0 | 11 | 20 | 13 | 64 | 0 | 0 |
| campo amor | 2014 | 65.500000 | 13.2287566 | 77 | 50 | 67 | 567 | 0 | 25 | 379 | 4 | 403 | 4 | 4 | 92 | 31 | 20 | 626 | 0 | 9 |
| campo amor | 2015 | 62.000000 | 10.1623190 | 59 | 33 | 52 | 579 | 0 | 21 | 341 | 5 | 398 | 5 | 1 | 98 | 54 | 8 | 572 | 0 | 6 |
| campo amor | 2016 | 70.416667 | 11.6732665 | 102 | 38 | 55 | 621 | 0 | 29 | 427 | 9 | 409 | 9 | 2 | 118 | 49 | 32 | 618 | 0 | 17 |
| campo amor | 2017 | 64.500000 | 5.9006933 | 67 | 38 | 43 | 597 | 0 | 29 | 361 | 4 | 409 | 4 | 5 | 153 | 63 | 58 | 472 | 1 | 18 |
| campo amor | 2018 | 83.166667 | 11.6215578 | 74 | 46 | 59 | 796 | 0 | 23 | 436 | 1 | 561 | 1 | 2 | 126 | 119 | 71 | 639 | 1 | 39 |
| campo valdes no. 1 | 2014 | 21.166667 | 3.9733964 | 29 | 34 | 38 | 146 | 0 | 7 | 187 | 2 | 65 | 2 | 1 | 0 | 63 | 6 | 182 | 0 | 0 |
| campo valdes no. 1 | 2015 | 20.916667 | 4.8328108 | 31 | 44 | 30 | 130 | 0 | 16 | 196 | 2 | 53 | 2 | 0 | 0 | 64 | 11 | 174 | 0 | 0 |
| campo valdes no. 1 | 2016 | 20.916667 | 3.3154825 | 32 | 41 | 13 | 154 | 0 | 11 | 189 | 2 | 60 | 2 | 0 | 0 | 66 | 7 | 176 | 0 | 0 |
| campo valdes no. 1 | 2017 | 18.333333 | 3.9389277 | 32 | 31 | 16 | 133 | 0 | 8 | 156 | 0 | 64 | 0 | 0 | 0 | 94 | 17 | 109 | 0 | 0 |
| campo valdes no. 1 | 2018 | 19.500000 | 4.5427265 | 33 | 34 | 28 | 134 | 0 | 5 | 173 | 0 | 61 | 0 | 0 | 0 | 79 | 48 | 107 | 0 | 0 |
| campo valdes no. 2 | 2014 | 16.500000 | 3.5547663 | 25 | 54 | 24 | 89 | 0 | 6 | 174 | 0 | 24 | 0 | 1 | 0 | 41 | 6 | 150 | 0 | 0 |
| campo valdes no. 2 | 2015 | 17.000000 | 4.4312937 | 27 | 46 | 23 | 98 | 0 | 10 | 165 | 3 | 36 | 3 | 0 | 0 | 48 | 4 | 149 | 0 | 0 |
| campo valdes no. 2 | 2016 | 14.583333 | 2.9682665 | 22 | 44 | 20 | 79 | 0 | 10 | 149 | 0 | 26 | 0 | 1 | 0 | 32 | 6 | 136 | 0 | 0 |
| campo valdes no. 2 | 2017 | 11.583333 | 3.6296339 | 19 | 21 | 13 | 80 | 0 | 6 | 102 | 0 | 37 | 0 | 1 | 1 | 52 | 21 | 64 | 0 | 0 |
| campo valdes no. 2 | 2018 | 12.833333 | 4.0861926 | 19 | 31 | 27 | 74 | 0 | 3 | 121 | 3 | 30 | 2 | 1 | 0 | 40 | 48 | 62 | 0 | 1 |
| campo valdes no.2 | 2014 | 1.900000 | 0.7378648 | 2 | 4 | 4 | 9 | 0 | 0 | 15 | 0 | 4 | 0 | 0 | 0 | 4 | 2 | 13 | 0 | 0 |
| campo valdes no.2 | 2015 | 1.777778 | 0.8333333 | 2 | 4 | 2 | 8 | 0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 | 6 | 1 | 9 | 0 | 0 |
| campo valdes no.2 | 2016 | 1.700000 | 0.9486833 | 4 | 5 | 0 | 8 | 0 | 0 | 11 | 0 | 6 | 0 | 0 | 0 | 3 | 1 | 13 | 0 | 0 |
| campo valdes no.2 | 2017 | 2.666667 | 2.0816660 | 1 | 2 | 2 | 3 | 0 | 0 | 6 | 0 | 2 | 0 | 0 | 0 | 3 | 2 | 3 | 0 | 0 |
| campo valdes no.2 | 2018 | 1.571429 | 0.9759001 | 1 | 1 | 4 | 5 | 0 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 6 | 1 | 4 | 0 | 0 |
| caribe | 2014 | 81.666667 | 9.9483515 | 88 | 49 | 90 | 739 | 0 | 14 | 465 | 6 | 509 | 6 | 2 | 2 | 58 | 38 | 851 | 0 | 23 |
| caribe | 2015 | 74.916667 | 10.2199300 | 90 | 36 | 56 | 684 | 0 | 33 | 436 | 5 | 458 | 5 | 4 | 2 | 38 | 35 | 796 | 0 | 19 |
| caribe | 2016 | 71.750000 | 10.4805014 | 94 | 35 | 40 | 668 | 0 | 24 | 406 | 1 | 454 | 1 | 2 | 3 | 75 | 32 | 730 | 0 | 18 |
| caribe | 2017 | 73.333333 | 12.1380943 | 113 | 42 | 74 | 600 | 0 | 51 | 511 | 4 | 365 | 4 | 2 | 1 | 76 | 105 | 664 | 0 | 28 |
| caribe | 2018 | 68.000000 | 10.0543975 | 83 | 31 | 67 | 611 | 0 | 24 | 439 | 6 | 371 | 4 | 2 | 4 | 68 | 128 | 581 | 0 | 29 |
| carlos e. restrepo | 2014 | 49.666667 | 7.7146064 | 52 | 31 | 52 | 453 | 0 | 8 | 274 | 0 | 322 | 0 | 1 | 1 | 82 | 9 | 498 | 0 | 5 |
| carlos e. restrepo | 2015 | 49.416667 | 12.5586503 | 54 | 28 | 42 | 455 | 0 | 14 | 262 | 6 | 325 | 6 | 0 | 0 | 89 | 16 | 472 | 0 | 10 |
| carlos e. restrepo | 2016 | 51.583333 | 9.1100178 | 73 | 27 | 37 | 462 | 0 | 20 | 280 | 1 | 338 | 1 | 1 | 1 | 83 | 19 | 507 | 0 | 7 |
| carlos e. restrepo | 2017 | 52.750000 | 8.9556990 | 58 | 26 | 48 | 480 | 0 | 21 | 303 | 0 | 330 | 0 | 5 | 1 | 144 | 50 | 416 | 0 | 17 |
| carlos e. restrepo | 2018 | 45.500000 | 7.0000000 | 38 | 27 | 54 | 415 | 0 | 12 | 242 | 0 | 304 | 0 | 3 | 0 | 123 | 64 | 338 | 0 | 18 |
| carpinelo | 2014 | 2.000000 | 0.7071068 | 5 | 7 | 2 | 4 | 0 | 0 | 15 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 18 | 0 | 0 |
| carpinelo | 2015 | 2.636364 | 1.4333686 | 2 | 10 | 4 | 9 | 0 | 4 | 22 | 1 | 6 | 1 | 0 | 0 | 0 | 1 | 27 | 0 | 0 |
| carpinelo | 2016 | 2.400000 | 1.5776213 | 4 | 11 | 2 | 7 | 0 | 0 | 20 | 0 | 4 | 0 | 0 | 0 | 2 | 0 | 22 | 0 | 0 |
| carpinelo | 2017 | 1.666667 | 0.7071068 | 1 | 7 | 2 | 4 | 0 | 1 | 11 | 0 | 4 | 0 | 0 | 0 | 1 | 5 | 9 | 0 | 0 |
| carpinelo | 2018 | 1.583333 | 0.6685579 | 3 | 4 | 4 | 6 | 0 | 2 | 15 | 0 | 4 | 0 | 0 | 0 | 1 | 6 | 12 | 0 | 0 |
| castilla | 2014 | 37.916667 | 6.2879153 | 82 | 67 | 58 | 239 | 0 | 9 | 323 | 1 | 131 | 1 | 5 | 0 | 49 | 11 | 388 | 0 | 1 |
| castilla | 2015 | 37.083333 | 5.1603089 | 71 | 66 | 67 | 209 | 0 | 32 | 334 | 5 | 106 | 5 | 0 | 0 | 65 | 10 | 365 | 0 | 0 |
| castilla | 2016 | 50.083333 | 8.3932693 | 111 | 60 | 81 | 326 | 0 | 23 | 437 | 4 | 160 | 4 | 2 | 0 | 83 | 21 | 489 | 0 | 2 |
| castilla | 2017 | 47.833333 | 8.1333582 | 106 | 67 | 74 | 297 | 0 | 30 | 416 | 11 | 147 | 11 | 1 | 0 | 131 | 95 | 331 | 0 | 5 |
| castilla | 2018 | 43.666667 | 4.5593726 | 89 | 66 | 83 | 259 | 0 | 27 | 398 | 4 | 122 | 3 | 2 | 0 | 124 | 145 | 246 | 0 | 4 |
| castropol | 2014 | 15.083333 | 2.9063671 | 10 | 10 | 10 | 149 | 0 | 2 | 75 | 0 | 106 | 0 | 0 | 1 | 15 | 7 | 158 | 0 | 0 |
| castropol | 2015 | 17.500000 | 5.5185637 | 13 | 6 | 11 | 172 | 0 | 8 | 90 | 0 | 120 | 0 | 1 | 1 | 15 | 13 | 180 | 0 | 0 |
| castropol | 2016 | 15.333333 | 2.9336088 | 17 | 16 | 10 | 136 | 0 | 5 | 86 | 2 | 96 | 2 | 0 | 0 | 24 | 9 | 149 | 0 | 0 |
| castropol | 2017 | 18.833333 | 3.7376058 | 20 | 8 | 17 | 174 | 0 | 7 | 110 | 0 | 116 | 0 | 1 | 0 | 33 | 21 | 170 | 0 | 1 |
| castropol | 2018 | 20.833333 | 4.9512778 | 19 | 10 | 13 | 202 | 0 | 6 | 94 | 0 | 156 | 0 | 2 | 1 | 35 | 16 | 196 | 0 | 0 |
| cataluna | 2014 | 5.083333 | 2.3532698 | 12 | 9 | 8 | 31 | 0 | 1 | 44 | 1 | 16 | 1 | 1 | 0 | 4 | 2 | 53 | 0 | 0 |
| cataluna | 2015 | 5.333333 | 2.9949452 | 8 | 6 | 6 | 38 | 0 | 6 | 32 | 0 | 32 | 0 | 0 | 0 | 5 | 1 | 58 | 0 | 0 |
| cataluna | 2016 | 4.750000 | 2.1794495 | 8 | 10 | 7 | 29 | 0 | 3 | 37 | 0 | 20 | 0 | 0 | 0 | 3 | 6 | 48 | 0 | 0 |
| cataluna | 2017 | 3.909091 | 1.9725387 | 9 | 2 | 3 | 23 | 0 | 6 | 23 | 0 | 20 | 0 | 2 | 0 | 4 | 18 | 19 | 0 | 0 |
| cataluna | 2018 | 4.250000 | 2.0504988 | 13 | 3 | 1 | 32 | 0 | 2 | 22 | 0 | 29 | 0 | 0 | 0 | 8 | 12 | 31 | 0 | 0 |
| cementerio universal | 2014 | 3.416667 | 2.5746433 | 7 | 1 | 4 | 29 | 0 | 0 | 19 | 0 | 22 | 0 | 0 | 0 | 5 | 1 | 35 | 0 | 0 |
| cementerio universal | 2015 | 3.454546 | 1.7529196 | 7 | 1 | 2 | 27 | 0 | 1 | 22 | 0 | 16 | 0 | 0 | 0 | 7 | 2 | 29 | 0 | 0 |
| cementerio universal | 2016 | 4.090909 | 1.6403991 | 5 | 1 | 4 | 34 | 0 | 1 | 21 | 0 | 24 | 0 | 0 | 1 | 4 | 0 | 40 | 0 | 0 |
| cementerio universal | 2017 | 2.250000 | 1.2154311 | 4 | 2 | 0 | 20 | 0 | 1 | 13 | 0 | 14 | 0 | 0 | 1 | 7 | 3 | 16 | 0 | 0 |
| cementerio universal | 2018 | 5.000000 | 2.0449494 | 7 | 1 | 9 | 42 | 0 | 1 | 31 | 0 | 29 | 0 | 0 | 0 | 12 | 9 | 39 | 0 | 0 |
| centro administrativo | 2014 | 4.916667 | 3.0289012 | 7 | 5 | 5 | 40 | 0 | 2 | 27 | 2 | 30 | 2 | 0 | 0 | 10 | 2 | 45 | 0 | 0 |
| centro administrativo | 2015 | 5.083333 | 2.4293034 | 7 | 7 | 7 | 37 | 0 | 3 | 32 | 0 | 29 | 0 | 0 | 0 | 6 | 2 | 53 | 0 | 0 |
| centro administrativo | 2016 | 5.166667 | 2.6227443 | 8 | 5 | 2 | 45 | 0 | 2 | 27 | 0 | 35 | 0 | 0 | 0 | 8 | 6 | 48 | 0 | 0 |
| centro administrativo | 2017 | 5.416667 | 2.0652243 | 6 | 1 | 4 | 51 | 0 | 3 | 31 | 0 | 34 | 0 | 0 | 0 | 10 | 4 | 50 | 0 | 1 |
| centro administrativo | 2018 | 4.250000 | 1.6583124 | 4 | 3 | 5 | 37 | 0 | 2 | 27 | 0 | 24 | 0 | 0 | 0 | 13 | 7 | 29 | 0 | 2 |
| cerro nutibara | 2014 | 11.500000 | 2.8123106 | 13 | 9 | 15 | 98 | 0 | 3 | 70 | 0 | 68 | 0 | 0 | 0 | 11 | 2 | 111 | 0 | 14 |
| cerro nutibara | 2015 | 9.000000 | 2.7633971 | 8 | 4 | 3 | 88 | 0 | 5 | 64 | 0 | 44 | 0 | 0 | 0 | 12 | 3 | 83 | 0 | 10 |
| cerro nutibara | 2016 | 10.583333 | 2.9987371 | 21 | 9 | 11 | 80 | 0 | 6 | 80 | 1 | 46 | 1 | 0 | 0 | 11 | 5 | 98 | 0 | 12 |
| cerro nutibara | 2017 | 16.416667 | 4.7185964 | 20 | 9 | 7 | 150 | 0 | 11 | 103 | 2 | 92 | 2 | 2 | 0 | 21 | 19 | 131 | 0 | 22 |
| cerro nutibara | 2018 | 20.833333 | 5.7656244 | 26 | 10 | 11 | 190 | 0 | 13 | 117 | 4 | 129 | 4 | 2 | 3 | 29 | 19 | 161 | 0 | 32 |
| corazon de jesus | 2014 | 39.916667 | 8.1848900 | 49 | 28 | 31 | 361 | 0 | 10 | 205 | 4 | 270 | 4 | 2 | 24 | 54 | 5 | 379 | 0 | 11 |
| corazon de jesus | 2015 | 47.166667 | 8.8506120 | 36 | 50 | 44 | 420 | 0 | 16 | 249 | 10 | 307 | 10 | 2 | 34 | 47 | 4 | 461 | 0 | 8 |
| corazon de jesus | 2016 | 45.333333 | 9.9574854 | 34 | 39 | 33 | 429 | 0 | 9 | 215 | 4 | 325 | 4 | 1 | 32 | 63 | 9 | 421 | 0 | 14 |
| corazon de jesus | 2017 | 35.083333 | 7.3169583 | 29 | 31 | 21 | 332 | 0 | 8 | 152 | 1 | 268 | 1 | 1 | 16 | 75 | 25 | 295 | 0 | 8 |
| corazon de jesus | 2018 | 36.750000 | 8.6563167 | 21 | 34 | 15 | 363 | 0 | 8 | 150 | 6 | 285 | 4 | 1 | 0 | 61 | 22 | 344 | 0 | 9 |
| cordoba | 2014 | 8.583333 | 3.1754265 | 21 | 11 | 21 | 48 | 0 | 2 | 70 | 0 | 33 | 0 | 0 | 11 | 11 | 2 | 79 | 0 | 0 |
| cordoba | 2015 | 8.833333 | 4.1742355 | 21 | 10 | 16 | 57 | 0 | 2 | 71 | 0 | 35 | 0 | 0 | 15 | 12 | 2 | 77 | 0 | 0 |
| cordoba | 2016 | 6.833333 | 2.8550858 | 15 | 9 | 11 | 43 | 0 | 4 | 63 | 1 | 18 | 1 | 0 | 5 | 15 | 4 | 57 | 0 | 0 |
| cordoba | 2017 | 8.833333 | 2.9797295 | 20 | 11 | 18 | 52 | 0 | 5 | 69 | 0 | 37 | 0 | 0 | 11 | 16 | 13 | 66 | 0 | 0 |
| cordoba | 2018 | 9.416667 | 3.2321772 | 16 | 9 | 28 | 56 | 0 | 4 | 78 | 1 | 34 | 1 | 1 | 8 | 21 | 41 | 41 | 0 | 0 |
| corregimiento de san antonio de prado | 2017 | 1.666667 | 0.5773503 | 0 | 2 | 0 | 3 | 0 | 0 | 0 | 5 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| corregimiento de santa elena | 2014 | 1.000000 | 0.0000000 | 0 | 1 | 1 | 1 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 |
| corregimiento de santa elena | 2015 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| corregimiento de santa elena | 2017 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| corregimiento de santa elena | 2018 | 1.000000 | 0.0000000 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| cristo rey | 2014 | 33.666667 | 5.4827553 | 26 | 32 | 25 | 306 | 0 | 15 | 199 | 4 | 201 | 4 | 3 | 0 | 53 | 14 | 319 | 0 | 11 |
| cristo rey | 2015 | 28.666667 | 6.4713822 | 33 | 34 | 23 | 236 | 0 | 18 | 208 | 5 | 131 | 5 | 0 | 0 | 38 | 9 | 287 | 0 | 5 |
| cristo rey | 2016 | 37.666667 | 6.7464918 | 45 | 35 | 21 | 339 | 0 | 12 | 232 | 1 | 219 | 1 | 1 | 0 | 55 | 8 | 369 | 0 | 18 |
| cristo rey | 2017 | 35.750000 | 3.9109404 | 41 | 27 | 22 | 327 | 0 | 12 | 218 | 1 | 210 | 1 | 2 | 0 | 74 | 41 | 293 | 0 | 18 |
| cristo rey | 2018 | 24.500000 | 7.2801099 | 18 | 19 | 10 | 242 | 0 | 5 | 118 | 6 | 170 | 4 | 2 | 0 | 54 | 19 | 200 | 0 | 15 |
| cuarta brigada | 2014 | 18.250000 | 4.1805828 | 24 | 17 | 21 | 153 | 1 | 3 | 124 | 0 | 95 | 0 | 1 | 0 | 57 | 10 | 151 | 0 | 0 |
| cuarta brigada | 2015 | 18.583333 | 4.3371196 | 15 | 22 | 16 | 165 | 0 | 5 | 108 | 0 | 115 | 0 | 1 | 0 | 59 | 9 | 154 | 0 | 0 |
| cuarta brigada | 2016 | 20.416667 | 5.6802422 | 20 | 22 | 15 | 182 | 0 | 6 | 136 | 1 | 108 | 1 | 0 | 0 | 58 | 14 | 172 | 0 | 0 |
| cuarta brigada | 2017 | 23.000000 | 4.7863442 | 19 | 21 | 23 | 205 | 0 | 8 | 141 | 1 | 134 | 1 | 3 | 0 | 91 | 25 | 156 | 0 | 0 |
| cuarta brigada | 2018 | 18.250000 | 4.0254870 | 16 | 19 | 24 | 156 | 0 | 4 | 105 | 3 | 111 | 2 | 0 | 0 | 67 | 32 | 118 | 0 | 0 |
| cucaracho | 2014 | 20.500000 | 3.8494392 | 46 | 18 | 57 | 120 | 0 | 5 | 189 | 0 | 57 | 0 | 2 | 0 | 10 | 6 | 226 | 0 | 2 |
| cucaracho | 2015 | 19.083333 | 4.5016832 | 48 | 14 | 37 | 118 | 0 | 12 | 174 | 0 | 55 | 0 | 1 | 0 | 20 | 11 | 197 | 0 | 0 |
| cucaracho | 2016 | 16.333333 | 5.0512525 | 32 | 11 | 37 | 106 | 0 | 10 | 147 | 1 | 48 | 1 | 0 | 0 | 17 | 10 | 168 | 0 | 0 |
| cucaracho | 2017 | 13.583333 | 5.0535016 | 31 | 12 | 36 | 81 | 0 | 3 | 115 | 0 | 48 | 0 | 1 | 0 | 11 | 23 | 127 | 0 | 1 |
| cucaracho | 2018 | 14.166667 | 3.2145503 | 28 | 8 | 30 | 96 | 0 | 8 | 114 | 0 | 56 | 0 | 3 | 0 | 22 | 52 | 93 | 0 | 0 |
| diego echavarria | 2014 | 7.583333 | 2.9374799 | 7 | 3 | 9 | 69 | 0 | 3 | 37 | 0 | 54 | 0 | 0 | 3 | 11 | 5 | 72 | 0 | 0 |
| diego echavarria | 2015 | 6.000000 | 3.0748245 | 5 | 5 | 3 | 56 | 0 | 3 | 31 | 1 | 40 | 1 | 0 | 3 | 6 | 3 | 58 | 1 | 0 |
| diego echavarria | 2016 | 6.333333 | 4.0301891 | 8 | 4 | 5 | 58 | 0 | 1 | 41 | 0 | 35 | 0 | 1 | 1 | 4 | 4 | 66 | 0 | 0 |
| diego echavarria | 2017 | 8.583333 | 3.5537006 | 12 | 3 | 8 | 71 | 0 | 9 | 55 | 0 | 48 | 0 | 1 | 10 | 13 | 20 | 59 | 0 | 0 |
| diego echavarria | 2018 | 5.916667 | 1.7816404 | 9 | 3 | 7 | 50 | 0 | 2 | 32 | 0 | 39 | 0 | 1 | 7 | 10 | 12 | 41 | 0 | 0 |
| doce de octubre no.1 | 2014 | 10.000000 | 2.6967994 | 22 | 22 | 37 | 38 | 0 | 1 | 99 | 1 | 20 | 1 | 1 | 0 | 3 | 4 | 111 | 0 | 0 |
| doce de octubre no.1 | 2015 | 7.583333 | 3.2321772 | 12 | 21 | 21 | 33 | 0 | 4 | 80 | 0 | 11 | 0 | 0 | 0 | 6 | 5 | 80 | 0 | 0 |
| doce de octubre no.1 | 2016 | 8.666667 | 2.0597146 | 19 | 27 | 13 | 42 | 0 | 3 | 83 | 2 | 19 | 2 | 2 | 1 | 7 | 6 | 86 | 0 | 0 |
| doce de octubre no.1 | 2017 | 7.916667 | 2.6443192 | 17 | 24 | 12 | 36 | 0 | 6 | 72 | 1 | 22 | 1 | 0 | 0 | 7 | 19 | 68 | 0 | 0 |
| doce de octubre no.1 | 2018 | 9.750000 | 3.5451632 | 18 | 17 | 27 | 53 | 0 | 2 | 84 | 1 | 32 | 0 | 0 | 0 | 15 | 38 | 64 | 0 | 0 |
| doce de octubre no.2 | 2014 | 11.083333 | 2.2343733 | 28 | 27 | 16 | 56 | 0 | 6 | 107 | 2 | 24 | 2 | 0 | 1 | 14 | 4 | 112 | 0 | 0 |
| doce de octubre no.2 | 2015 | 12.000000 | 4.6514905 | 26 | 22 | 25 | 64 | 0 | 7 | 110 | 2 | 32 | 2 | 1 | 2 | 12 | 5 | 121 | 1 | 0 |
| doce de octubre no.2 | 2016 | 10.083333 | 2.3532698 | 24 | 24 | 20 | 50 | 0 | 3 | 97 | 0 | 24 | 0 | 1 | 4 | 12 | 7 | 97 | 0 | 0 |
| doce de octubre no.2 | 2017 | 9.166667 | 3.4597250 | 16 | 18 | 20 | 51 | 0 | 5 | 83 | 1 | 26 | 1 | 1 | 2 | 16 | 27 | 63 | 0 | 0 |
| doce de octubre no.2 | 2018 | 9.666667 | 4.0075686 | 15 | 18 | 27 | 52 | 0 | 4 | 95 | 0 | 21 | 0 | 0 | 1 | 16 | 37 | 62 | 0 | 0 |
| eduardo santos | 2014 | 1.625000 | 0.7440238 | 4 | 1 | 2 | 6 | 0 | 0 | 8 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 13 | 0 | 0 |
| eduardo santos | 2015 | 1.750000 | 0.8864053 | 3 | 2 | 3 | 6 | 0 | 0 | 13 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 13 | 0 | 0 |
| eduardo santos | 2016 | 1.125000 | 0.3535534 | 3 | 1 | 2 | 2 | 0 | 1 | 7 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 8 | 0 | 0 |
| eduardo santos | 2017 | 1.285714 | 0.4879500 | 1 | 0 | 1 | 5 | 0 | 2 | 5 | 0 | 4 | 0 | 0 | 0 | 2 | 0 | 7 | 0 | 0 |
| eduardo santos | 2018 | 1.200000 | 0.4472136 | 0 | 1 | 1 | 4 | 0 | 0 | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 3 | 3 | 0 | 0 |
| el castillo | 2014 | 3.750000 | 1.9128750 | 1 | 1 | 0 | 41 | 0 | 2 | 14 | 0 | 31 | 0 | 0 | 0 | 6 | 0 | 39 | 0 | 0 |
| el castillo | 2015 | 4.916667 | 2.0207259 | 1 | 2 | 1 | 54 | 0 | 1 | 19 | 0 | 40 | 0 | 0 | 1 | 9 | 2 | 47 | 0 | 0 |
| el castillo | 2016 | 5.916667 | 1.9752253 | 6 | 2 | 0 | 62 | 0 | 1 | 20 | 1 | 50 | 1 | 0 | 1 | 11 | 3 | 55 | 0 | 0 |
| el castillo | 2017 | 4.333333 | 2.2292817 | 1 | 1 | 1 | 47 | 0 | 2 | 10 | 0 | 42 | 0 | 0 | 0 | 9 | 2 | 40 | 0 | 1 |
| el castillo | 2018 | 4.583333 | 3.4234043 | 1 | 4 | 3 | 46 | 0 | 1 | 23 | 0 | 32 | 0 | 1 | 1 | 9 | 2 | 41 | 0 | 1 |
| el chagualo | 2014 | 38.750000 | 10.1186147 | 48 | 58 | 41 | 315 | 0 | 3 | 219 | 2 | 244 | 2 | 2 | 31 | 37 | 10 | 371 | 0 | 12 |
| el chagualo | 2015 | 40.083333 | 7.3788190 | 42 | 55 | 33 | 340 | 0 | 11 | 239 | 5 | 237 | 5 | 0 | 30 | 56 | 12 | 368 | 1 | 9 |
| el chagualo | 2016 | 34.666667 | 7.2026931 | 47 | 44 | 23 | 292 | 0 | 10 | 226 | 7 | 183 | 7 | 0 | 35 | 60 | 12 | 293 | 0 | 9 |
| el chagualo | 2017 | 31.000000 | 5.0990195 | 28 | 30 | 24 | 277 | 0 | 13 | 194 | 2 | 176 | 2 | 1 | 38 | 73 | 21 | 218 | 0 | 19 |
| el chagualo | 2018 | 26.916667 | 8.0617879 | 35 | 28 | 34 | 215 | 0 | 11 | 176 | 2 | 145 | 1 | 0 | 20 | 44 | 43 | 193 | 0 | 22 |
| el compromiso | 2014 | 2.000000 | 1.0540926 | 0 | 9 | 2 | 9 | 0 | 0 | 16 | 0 | 4 | 0 | 0 | 0 | 1 | 0 | 19 | 0 | 0 |
| el compromiso | 2015 | 2.000000 | 0.8944272 | 2 | 6 | 1 | 3 | 0 | 0 | 9 | 0 | 3 | 0 | 0 | 0 | 1 | 0 | 11 | 0 | 0 |
| el compromiso | 2016 | 1.900000 | 0.9944289 | 1 | 5 | 1 | 11 | 0 | 1 | 12 | 0 | 7 | 0 | 0 | 0 | 0 | 1 | 18 | 0 | 0 |
| el compromiso | 2017 | 2.200000 | 1.6865481 | 2 | 5 | 2 | 11 | 0 | 2 | 15 | 0 | 7 | 0 | 0 | 0 | 5 | 2 | 15 | 0 | 0 |
| el compromiso | 2018 | 3.181818 | 1.4012981 | 1 | 11 | 1 | 21 | 0 | 1 | 26 | 0 | 9 | 0 | 0 | 0 | 3 | 8 | 24 | 0 | 0 |
| el corazon | 2014 | 1.818182 | 0.8738629 | 3 | 3 | 4 | 10 | 0 | 0 | 17 | 0 | 3 | 0 | 0 | 0 | 1 | 0 | 19 | 0 | 0 |
| el corazon | 2015 | 2.545454 | 1.1281521 | 3 | 4 | 4 | 16 | 0 | 1 | 20 | 0 | 8 | 0 | 0 | 0 | 3 | 0 | 25 | 0 | 0 |
| el corazon | 2016 | 2.100000 | 1.4491377 | 1 | 6 | 1 | 11 | 0 | 2 | 14 | 0 | 7 | 0 | 0 | 0 | 1 | 0 | 20 | 0 | 0 |
| el corazon | 2017 | 2.090909 | 0.8312094 | 5 | 2 | 3 | 12 | 0 | 1 | 19 | 0 | 4 | 0 | 0 | 0 | 2 | 3 | 18 | 0 | 0 |
| el corazon | 2018 | 2.111111 | 1.1666667 | 1 | 4 | 5 | 9 | 0 | 0 | 13 | 2 | 4 | 2 | 0 | 0 | 1 | 3 | 13 | 0 | 0 |
| el corazon el morro | 2014 | 1.000000 | 0.0000000 | 1 | 2 | 0 | 0 | 0 | 1 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
| el corazon el morro | 2015 | 1.000000 | 0.0000000 | 0 | 3 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 |
| el corazon el morro | 2016 | 1.000000 | 0.0000000 | 1 | 2 | 0 | 0 | 0 | 1 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
| el corazon el morro | 2017 | 1.000000 | 0.0000000 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| el corazon el morro | 2018 | 1.000000 | 0.0000000 | 0 | 1 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| el danubio | 2014 | 6.666667 | 1.7232809 | 4 | 11 | 7 | 57 | 0 | 1 | 46 | 1 | 33 | 1 | 0 | 0 | 22 | 1 | 56 | 0 | 0 |
| el danubio | 2015 | 4.666667 | 1.8748737 | 2 | 4 | 7 | 40 | 0 | 3 | 33 | 0 | 23 | 0 | 0 | 0 | 18 | 1 | 37 | 0 | 0 |
| el danubio | 2016 | 7.166667 | 2.4058011 | 12 | 4 | 10 | 56 | 0 | 4 | 60 | 1 | 25 | 1 | 1 | 0 | 23 | 6 | 55 | 0 | 0 |
| el danubio | 2017 | 9.181818 | 2.0889319 | 15 | 6 | 11 | 66 | 0 | 3 | 71 | 1 | 29 | 1 | 2 | 0 | 38 | 13 | 47 | 0 | 0 |
| el danubio | 2018 | 5.500000 | 2.6111648 | 8 | 4 | 5 | 47 | 0 | 2 | 40 | 0 | 26 | 0 | 0 | 0 | 30 | 10 | 26 | 0 | 0 |
| el diamante | 2014 | 17.750000 | 4.2022721 | 52 | 35 | 44 | 79 | 0 | 3 | 168 | 0 | 45 | 0 | 0 | 1 | 21 | 8 | 183 | 0 | 0 |
| el diamante | 2015 | 16.916667 | 4.9443877 | 39 | 30 | 38 | 88 | 0 | 8 | 159 | 1 | 43 | 1 | 1 | 3 | 24 | 7 | 167 | 0 | 0 |
| el diamante | 2016 | 16.833333 | 3.8098755 | 59 | 23 | 43 | 72 | 0 | 5 | 160 | 0 | 42 | 0 | 0 | 4 | 17 | 8 | 173 | 0 | 0 |
| el diamante | 2017 | 17.250000 | 4.4133063 | 43 | 18 | 43 | 93 | 0 | 10 | 153 | 0 | 54 | 0 | 1 | 5 | 31 | 40 | 130 | 0 | 0 |
| el diamante | 2018 | 14.833333 | 4.7831776 | 25 | 20 | 40 | 91 | 0 | 2 | 120 | 0 | 58 | 0 | 2 | 9 | 33 | 52 | 82 | 0 | 0 |
| el diamante no. 2 | 2014 | 4.333333 | 2.0150946 | 2 | 6 | 1 | 41 | 0 | 2 | 15 | 1 | 36 | 1 | 0 | 0 | 5 | 2 | 44 | 0 | 0 |
| el diamante no. 2 | 2015 | 5.333333 | 2.3868326 | 3 | 1 | 1 | 56 | 0 | 3 | 23 | 0 | 41 | 0 | 0 | 0 | 5 | 1 | 58 | 0 | 0 |
| el diamante no. 2 | 2016 | 5.636364 | 1.9632996 | 5 | 0 | 6 | 50 | 0 | 1 | 21 | 0 | 41 | 0 | 0 | 0 | 6 | 2 | 54 | 0 | 0 |
| el diamante no. 2 | 2017 | 4.166667 | 2.1248886 | 6 | 3 | 2 | 36 | 0 | 3 | 25 | 0 | 25 | 0 | 0 | 0 | 13 | 6 | 31 | 0 | 0 |
| el diamante no. 2 | 2018 | 3.100000 | 1.5238839 | 1 | 1 | 0 | 29 | 0 | 0 | 9 | 0 | 22 | 0 | 0 | 0 | 5 | 4 | 22 | 0 | 0 |
| el estadio | 2014 | 25.416667 | 7.3045233 | 39 | 22 | 31 | 211 | 0 | 2 | 147 | 2 | 156 | 2 | 1 | 33 | 28 | 1 | 240 | 0 | 0 |
| el estadio | 2015 | 27.166667 | 4.6871843 | 36 | 27 | 17 | 240 | 0 | 6 | 157 | 1 | 168 | 1 | 0 | 44 | 34 | 7 | 240 | 0 | 0 |
| el estadio | 2016 | 26.000000 | 6.8357350 | 34 | 26 | 30 | 210 | 0 | 12 | 168 | 0 | 144 | 0 | 1 | 41 | 29 | 6 | 235 | 0 | 0 |
| el estadio | 2017 | 20.000000 | 8.6339710 | 36 | 26 | 14 | 160 | 0 | 4 | 145 | 0 | 95 | 0 | 1 | 10 | 49 | 24 | 156 | 0 | 0 |
| el estadio | 2018 | 16.583333 | 2.3532698 | 13 | 24 | 19 | 133 | 0 | 10 | 110 | 0 | 89 | 0 | 0 | 1 | 51 | 27 | 119 | 0 | 1 |
| el nogal-los almendros | 2014 | 6.500000 | 2.6457513 | 3 | 7 | 0 | 68 | 0 | 0 | 33 | 1 | 44 | 1 | 1 | 0 | 11 | 2 | 63 | 0 | 0 |
| el nogal-los almendros | 2015 | 7.666667 | 3.0846639 | 7 | 3 | 5 | 76 | 0 | 1 | 48 | 2 | 42 | 2 | 0 | 0 | 20 | 1 | 68 | 0 | 1 |
| el nogal-los almendros | 2016 | 7.250000 | 3.6212755 | 5 | 3 | 2 | 72 | 0 | 5 | 43 | 0 | 44 | 0 | 0 | 0 | 25 | 1 | 60 | 0 | 1 |
| el nogal-los almendros | 2017 | 8.166667 | 4.3658454 | 6 | 6 | 5 | 79 | 0 | 2 | 41 | 0 | 57 | 0 | 0 | 6 | 30 | 2 | 58 | 0 | 2 |
| el nogal-los almendros | 2018 | 6.500000 | 2.8123106 | 6 | 4 | 6 | 62 | 0 | 0 | 32 | 1 | 45 | 1 | 0 | 6 | 26 | 6 | 38 | 0 | 1 |
| el pesebre | 2014 | 2.400000 | 1.7763883 | 3 | 7 | 6 | 8 | 0 | 0 | 19 | 0 | 5 | 0 | 0 | 0 | 4 | 2 | 18 | 0 | 0 |
| el pesebre | 2015 | 2.363636 | 1.1200649 | 7 | 3 | 3 | 13 | 0 | 0 | 17 | 0 | 9 | 0 | 0 | 0 | 2 | 2 | 22 | 0 | 0 |
| el pesebre | 2016 | 3.916667 | 1.2401124 | 8 | 8 | 9 | 21 | 0 | 1 | 36 | 0 | 11 | 0 | 0 | 0 | 5 | 2 | 37 | 0 | 3 |
| el pesebre | 2017 | 3.666667 | 1.7232809 | 6 | 5 | 5 | 26 | 0 | 2 | 24 | 0 | 20 | 0 | 0 | 0 | 4 | 6 | 34 | 0 | 0 |
| el pesebre | 2018 | 3.916667 | 1.8319554 | 4 | 7 | 9 | 25 | 0 | 2 | 32 | 0 | 15 | 0 | 0 | 0 | 1 | 11 | 31 | 0 | 4 |
| el picacho | 2014 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| el picacho | 2015 | 1.166667 | 0.4082483 | 2 | 1 | 2 | 2 | 0 | 0 | 6 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 |
| el picacho | 2016 | 1.333333 | 0.5773503 | 1 | 2 | 0 | 1 | 0 | 0 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 3 | 0 | 0 |
| el picacho | 2017 | 1.250000 | 0.5000000 | 2 | 0 | 2 | 1 | 0 | 0 | 4 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 3 | 0 | 0 |
| el picacho | 2018 | 1.000000 | 0.0000000 | 0 | 1 | 2 | 1 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 0 | 0 |
| el pinal | 2014 | 9.583333 | 3.2039275 | 17 | 33 | 15 | 46 | 0 | 4 | 82 | 2 | 31 | 2 | 0 | 0 | 8 | 3 | 102 | 0 | 0 |
| el pinal | 2015 | 9.666667 | 4.3969687 | 20 | 27 | 14 | 50 | 0 | 5 | 79 | 0 | 37 | 0 | 0 | 0 | 7 | 2 | 107 | 0 | 0 |
| el pinal | 2016 | 8.666667 | 2.1881222 | 13 | 15 | 11 | 57 | 0 | 8 | 71 | 1 | 32 | 1 | 0 | 0 | 10 | 2 | 91 | 0 | 0 |
| el pinal | 2017 | 8.916667 | 2.8109634 | 11 | 21 | 9 | 62 | 0 | 4 | 55 | 1 | 51 | 1 | 1 | 0 | 12 | 13 | 80 | 0 | 0 |
| el pinal | 2018 | 7.500000 | 1.8340219 | 13 | 12 | 13 | 49 | 0 | 3 | 53 | 0 | 37 | 0 | 0 | 0 | 8 | 17 | 65 | 0 | 0 |
| el plan | 2018 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| el poblado | 2014 | 19.000000 | 3.1622777 | 14 | 12 | 7 | 190 | 0 | 5 | 61 | 1 | 166 | 1 | 0 | 0 | 32 | 6 | 187 | 1 | 1 |
| el poblado | 2015 | 21.166667 | 4.4072942 | 19 | 14 | 9 | 209 | 0 | 3 | 82 | 1 | 171 | 1 | 1 | 0 | 40 | 0 | 211 | 1 | 0 |
| el poblado | 2016 | 20.000000 | 3.5929223 | 16 | 13 | 11 | 192 | 0 | 8 | 81 | 0 | 159 | 0 | 0 | 0 | 50 | 5 | 183 | 1 | 1 |
| el poblado | 2017 | 25.166667 | 2.6571801 | 24 | 15 | 12 | 245 | 0 | 6 | 105 | 4 | 193 | 4 | 1 | 0 | 71 | 16 | 210 | 0 | 0 |
| el poblado | 2018 | 26.333333 | 4.9051612 | 23 | 12 | 12 | 262 | 0 | 7 | 94 | 1 | 221 | 1 | 2 | 0 | 62 | 29 | 221 | 0 | 1 |
| el pomar | 2014 | 5.583333 | 2.1514618 | 5 | 16 | 10 | 33 | 1 | 2 | 58 | 1 | 8 | 1 | 0 | 0 | 10 | 1 | 55 | 0 | 0 |
| el pomar | 2015 | 6.750000 | 2.7344602 | 12 | 16 | 11 | 37 | 0 | 5 | 70 | 0 | 11 | 0 | 0 | 0 | 13 | 1 | 67 | 0 | 0 |
| el pomar | 2016 | 4.833333 | 2.2896341 | 9 | 11 | 6 | 31 | 0 | 1 | 42 | 0 | 16 | 0 | 0 | 0 | 10 | 4 | 44 | 0 | 0 |
| el pomar | 2017 | 5.333333 | 1.8748737 | 7 | 8 | 6 | 41 | 0 | 2 | 44 | 0 | 20 | 0 | 0 | 0 | 15 | 9 | 40 | 0 | 0 |
| el pomar | 2018 | 6.000000 | 1.9069252 | 9 | 12 | 7 | 42 | 0 | 2 | 49 | 0 | 23 | 0 | 0 | 0 | 20 | 10 | 41 | 0 | 1 |
| el progreso | 2014 | 28.166667 | 7.3464071 | 34 | 19 | 41 | 239 | 0 | 5 | 180 | 0 | 158 | 0 | 4 | 3 | 35 | 16 | 280 | 0 | 0 |
| el progreso | 2015 | 25.750000 | 6.0471631 | 25 | 18 | 27 | 231 | 0 | 8 | 151 | 0 | 158 | 0 | 0 | 3 | 42 | 10 | 254 | 0 | 0 |
| el progreso | 2016 | 28.750000 | 4.0926764 | 41 | 27 | 32 | 239 | 0 | 6 | 190 | 0 | 155 | 0 | 1 | 0 | 50 | 18 | 276 | 0 | 0 |
| el progreso | 2017 | 31.500000 | 6.5017480 | 36 | 18 | 37 | 275 | 0 | 12 | 197 | 1 | 180 | 1 | 1 | 5 | 71 | 46 | 254 | 0 | 0 |
| el progreso | 2018 | 34.166667 | 5.3399580 | 28 | 22 | 50 | 299 | 0 | 11 | 209 | 1 | 200 | 1 | 1 | 8 | 79 | 77 | 241 | 0 | 3 |
| el progreso no.2 | 2014 | 2.545454 | 0.9341987 | 2 | 4 | 4 | 18 | 0 | 0 | 20 | 0 | 8 | 0 | 0 | 0 | 3 | 0 | 25 | 0 | 0 |
| el progreso no.2 | 2015 | 2.454546 | 1.2933396 | 2 | 7 | 7 | 11 | 0 | 0 | 20 | 1 | 6 | 1 | 0 | 0 | 0 | 1 | 25 | 0 | 0 |
| el progreso no.2 | 2016 | 2.272727 | 1.4893562 | 6 | 5 | 4 | 10 | 0 | 0 | 20 | 1 | 4 | 1 | 0 | 0 | 4 | 2 | 18 | 0 | 0 |
| el progreso no.2 | 2017 | 3.909091 | 1.8683975 | 10 | 6 | 5 | 21 | 0 | 1 | 28 | 1 | 14 | 1 | 0 | 0 | 5 | 9 | 28 | 0 | 0 |
| el progreso no.2 | 2018 | 1.833333 | 1.0298573 | 2 | 3 | 7 | 10 | 0 | 0 | 15 | 0 | 7 | 0 | 0 | 0 | 1 | 7 | 14 | 0 | 0 |
| el raizal | 2014 | 8.416667 | 4.5418925 | 12 | 21 | 19 | 46 | 0 | 3 | 74 | 0 | 27 | 0 | 1 | 0 | 10 | 0 | 90 | 0 | 0 |
| el raizal | 2015 | 7.083333 | 2.7455198 | 16 | 17 | 9 | 38 | 0 | 5 | 61 | 1 | 23 | 1 | 0 | 0 | 8 | 1 | 75 | 0 | 0 |
| el raizal | 2016 | 8.916667 | 2.9063671 | 20 | 14 | 19 | 47 | 0 | 7 | 83 | 1 | 23 | 1 | 0 | 0 | 14 | 5 | 87 | 0 | 0 |
| el raizal | 2017 | 7.166667 | 2.6227443 | 5 | 21 | 14 | 40 | 0 | 6 | 61 | 0 | 25 | 0 | 0 | 0 | 14 | 14 | 58 | 0 | 0 |
| el raizal | 2018 | 8.250000 | 2.8001623 | 17 | 13 | 15 | 48 | 0 | 6 | 73 | 0 | 26 | 0 | 0 | 0 | 17 | 31 | 51 | 0 | 0 |
| el rincon | 2014 | 13.166667 | 3.9504507 | 25 | 25 | 19 | 80 | 1 | 8 | 104 | 0 | 54 | 0 | 1 | 6 | 8 | 7 | 136 | 0 | 0 |
| el rincon | 2015 | 13.250000 | 4.0480074 | 25 | 20 | 18 | 89 | 0 | 7 | 96 | 0 | 63 | 0 | 0 | 3 | 16 | 5 | 135 | 0 | 0 |
| el rincon | 2016 | 14.833333 | 3.9733964 | 38 | 15 | 27 | 87 | 0 | 11 | 111 | 0 | 67 | 0 | 1 | 10 | 7 | 14 | 146 | 0 | 0 |
| el rincon | 2017 | 16.666667 | 3.6762959 | 48 | 13 | 19 | 104 | 0 | 16 | 128 | 0 | 72 | 0 | 2 | 15 | 17 | 46 | 120 | 0 | 0 |
| el rincon | 2018 | 12.666667 | 3.7739137 | 15 | 14 | 14 | 99 | 0 | 10 | 76 | 1 | 75 | 1 | 1 | 15 | 11 | 23 | 100 | 0 | 1 |
| el rodeo | 2014 | 2.500000 | 1.4459976 | 3 | 5 | 3 | 17 | 0 | 2 | 17 | 0 | 13 | 0 | 0 | 0 | 1 | 1 | 28 | 0 | 0 |
| el rodeo | 2015 | 2.727273 | 1.4893562 | 1 | 3 | 5 | 19 | 0 | 2 | 19 | 0 | 11 | 0 | 0 | 0 | 3 | 1 | 26 | 0 | 0 |
| el rodeo | 2016 | 2.600000 | 1.8378732 | 3 | 4 | 5 | 13 | 0 | 1 | 18 | 0 | 8 | 0 | 0 | 3 | 2 | 1 | 20 | 0 | 0 |
| el rodeo | 2017 | 3.500000 | 1.2431631 | 5 | 6 | 1 | 26 | 0 | 4 | 24 | 1 | 17 | 1 | 0 | 2 | 3 | 3 | 33 | 0 | 0 |
| el rodeo | 2018 | 2.750000 | 1.7122553 | 4 | 2 | 2 | 24 | 0 | 1 | 18 | 0 | 15 | 0 | 0 | 0 | 5 | 0 | 28 | 0 | 0 |
| el salado | 2014 | 2.909091 | 1.5135749 | 0 | 8 | 8 | 12 | 0 | 4 | 25 | 0 | 7 | 0 | 0 | 1 | 3 | 1 | 27 | 0 | 0 |
| el salado | 2015 | 3.916667 | 1.9752253 | 11 | 11 | 5 | 17 | 0 | 3 | 36 | 0 | 11 | 0 | 0 | 1 | 4 | 1 | 41 | 0 | 0 |
| el salado | 2016 | 3.333333 | 1.8748737 | 8 | 7 | 4 | 19 | 0 | 2 | 29 | 0 | 11 | 0 | 0 | 0 | 2 | 3 | 35 | 0 | 0 |
| el salado | 2017 | 2.750000 | 1.0552897 | 5 | 3 | 6 | 16 | 0 | 3 | 23 | 0 | 10 | 0 | 0 | 1 | 7 | 10 | 15 | 0 | 0 |
| el salado | 2018 | 3.000000 | 1.8257419 | 5 | 10 | 2 | 11 | 0 | 2 | 22 | 0 | 8 | 0 | 0 | 1 | 0 | 7 | 22 | 0 | 0 |
| el salvador | 2014 | 8.750000 | 3.6958207 | 21 | 17 | 20 | 42 | 0 | 5 | 79 | 1 | 25 | 1 | 2 | 2 | 19 | 5 | 76 | 0 | 0 |
| el salvador | 2015 | 9.500000 | 3.1478709 | 18 | 14 | 13 | 64 | 0 | 5 | 68 | 1 | 45 | 1 | 0 | 1 | 14 | 4 | 94 | 0 | 0 |
| el salvador | 2016 | 11.083333 | 3.8009170 | 17 | 13 | 11 | 84 | 0 | 8 | 81 | 0 | 52 | 0 | 0 | 2 | 25 | 4 | 102 | 0 | 0 |
| el salvador | 2017 | 9.500000 | 2.7468991 | 24 | 16 | 7 | 63 | 0 | 4 | 70 | 0 | 44 | 0 | 0 | 1 | 19 | 25 | 69 | 0 | 0 |
| el salvador | 2018 | 8.500000 | 2.8762349 | 16 | 9 | 9 | 65 | 0 | 3 | 57 | 1 | 44 | 1 | 0 | 1 | 20 | 20 | 60 | 0 | 0 |
| el socorro | 2014 | 2.571429 | 2.0701967 | 2 | 5 | 3 | 8 | 0 | 0 | 12 | 1 | 5 | 1 | 0 | 0 | 3 | 0 | 14 | 0 | 0 |
| el socorro | 2015 | 1.714286 | 0.9511897 | 1 | 3 | 3 | 4 | 0 | 1 | 10 | 0 | 2 | 0 | 0 | 0 | 1 | 1 | 10 | 0 | 0 |
| el socorro | 2016 | 1.777778 | 0.8333333 | 3 | 5 | 3 | 4 | 0 | 1 | 14 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
| el socorro | 2017 | 2.000000 | 1.0000000 | 2 | 3 | 0 | 5 | 0 | 0 | 8 | 0 | 2 | 0 | 0 | 0 | 6 | 1 | 3 | 0 | 0 |
| el socorro | 2018 | 1.500000 | 0.8366600 | 0 | 5 | 0 | 4 | 0 | 0 | 5 | 0 | 4 | 0 | 0 | 0 | 2 | 1 | 6 | 0 | 0 |
| el tesoro | 2014 | 9.500000 | 3.5032452 | 4 | 3 | 12 | 90 | 0 | 5 | 41 | 0 | 73 | 0 | 0 | 0 | 8 | 9 | 97 | 0 | 0 |
| el tesoro | 2015 | 8.083333 | 3.2321772 | 5 | 3 | 7 | 78 | 0 | 4 | 36 | 0 | 61 | 0 | 0 | 1 | 15 | 4 | 77 | 0 | 0 |
| el tesoro | 2016 | 11.750000 | 3.9800640 | 5 | 2 | 6 | 121 | 0 | 7 | 52 | 1 | 88 | 1 | 0 | 0 | 21 | 9 | 109 | 0 | 1 |
| el tesoro | 2017 | 10.666667 | 4.5193188 | 11 | 4 | 6 | 103 | 0 | 4 | 43 | 0 | 85 | 0 | 0 | 3 | 16 | 20 | 87 | 0 | 2 |
| el tesoro | 2018 | 11.583333 | 2.9374799 | 8 | 2 | 5 | 119 | 0 | 5 | 43 | 0 | 96 | 0 | 0 | 1 | 19 | 26 | 92 | 0 | 1 |
| el triunfo | 2014 | 1.428571 | 0.7867958 | 5 | 2 | 3 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 8 | 0 | 0 |
| el triunfo | 2015 | 1.000000 | 0.0000000 | 1 | 2 | 2 | 1 | 0 | 1 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 6 | 0 | 0 |
| el triunfo | 2016 | 1.285714 | 0.4879500 | 3 | 4 | 0 | 1 | 0 | 1 | 8 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 0 |
| el triunfo | 2017 | 1.500000 | 0.8366600 | 3 | 1 | 2 | 3 | 0 | 0 | 7 | 0 | 2 | 0 | 0 | 0 | 0 | 4 | 5 | 0 | 0 |
| el triunfo | 2018 | 1.400000 | 0.5163978 | 4 | 3 | 1 | 6 | 0 | 0 | 9 | 0 | 5 | 0 | 0 | 0 | 1 | 4 | 9 | 0 | 0 |
| el uvito | 2018 | 1.000000 | 0.0000000 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| el velodromo | 2014 | 10.583333 | 4.8328108 | 13 | 9 | 17 | 88 | 0 | 0 | 71 | 0 | 56 | 0 | 1 | 1 | 20 | 0 | 105 | 0 | 0 |
| el velodromo | 2015 | 11.500000 | 4.7958315 | 9 | 7 | 11 | 109 | 0 | 2 | 82 | 0 | 56 | 0 | 0 | 0 | 23 | 2 | 113 | 0 | 0 |
| el velodromo | 2016 | 11.500000 | 3.2613438 | 12 | 11 | 11 | 102 | 0 | 2 | 75 | 2 | 61 | 2 | 1 | 0 | 20 | 0 | 115 | 0 | 0 |
| el velodromo | 2017 | 12.166667 | 3.4333480 | 12 | 6 | 15 | 110 | 0 | 3 | 69 | 0 | 77 | 0 | 0 | 0 | 38 | 16 | 91 | 0 | 1 |
| el velodromo | 2018 | 10.916667 | 2.6097138 | 11 | 8 | 8 | 100 | 0 | 4 | 69 | 0 | 62 | 0 | 0 | 2 | 41 | 5 | 83 | 0 | 0 |
| el vergel | 2015 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| el vergel | 2017 | 1.000000 | 0.0000000 | 1 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
| el vergel | 2018 | 1.000000 | 0.0000000 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| enciso | 2014 | 11.916667 | 2.6443192 | 18 | 22 | 13 | 85 | 0 | 5 | 107 | 2 | 34 | 2 | 0 | 1 | 17 | 3 | 120 | 0 | 0 |
| enciso | 2015 | 11.416667 | 2.1933094 | 11 | 24 | 15 | 80 | 0 | 7 | 94 | 3 | 40 | 3 | 0 | 0 | 17 | 4 | 113 | 0 | 0 |
| enciso | 2016 | 11.083333 | 2.9063671 | 8 | 18 | 10 | 89 | 0 | 8 | 89 | 2 | 42 | 2 | 0 | 0 | 31 | 2 | 97 | 0 | 1 |
| enciso | 2017 | 9.916667 | 2.6443192 | 14 | 20 | 14 | 63 | 0 | 8 | 91 | 0 | 28 | 0 | 0 | 2 | 28 | 16 | 73 | 0 | 0 |
| enciso | 2018 | 10.333333 | 2.5702258 | 16 | 13 | 15 | 74 | 0 | 6 | 87 | 3 | 34 | 1 | 0 | 2 | 36 | 22 | 63 | 0 | 0 |
| estacion villa | 2014 | 19.583333 | 4.1878251 | 11 | 52 | 22 | 142 | 0 | 8 | 125 | 2 | 108 | 2 | 0 | 4 | 38 | 4 | 186 | 0 | 1 |
| estacion villa | 2015 | 18.083333 | 3.4761089 | 21 | 36 | 20 | 137 | 0 | 3 | 115 | 0 | 102 | 0 | 1 | 1 | 34 | 3 | 178 | 0 | 0 |
| estacion villa | 2016 | 19.250000 | 4.8453352 | 24 | 33 | 11 | 159 | 0 | 4 | 108 | 2 | 121 | 2 | 0 | 3 | 48 | 5 | 172 | 0 | 1 |
| estacion villa | 2017 | 21.416667 | 5.0173940 | 30 | 29 | 13 | 177 | 0 | 8 | 126 | 4 | 127 | 4 | 0 | 20 | 49 | 27 | 154 | 0 | 3 |
| estacion villa | 2018 | 22.083333 | 4.1000739 | 19 | 53 | 24 | 161 | 0 | 8 | 143 | 4 | 118 | 4 | 0 | 28 | 59 | 40 | 132 | 0 | 2 |
| facultad de minas u. nacional | 2014 | 19.000000 | 5.2742944 | 36 | 12 | 40 | 137 | 0 | 3 | 128 | 1 | 99 | 1 | 0 | 0 | 11 | 11 | 205 | 0 | 0 |
| facultad de minas u. nacional | 2015 | 20.833333 | 3.9504507 | 43 | 11 | 37 | 151 | 0 | 8 | 148 | 1 | 101 | 1 | 0 | 0 | 27 | 13 | 209 | 0 | 0 |
| facultad de minas u. nacional | 2016 | 19.833333 | 7.2842711 | 55 | 10 | 33 | 127 | 0 | 13 | 147 | 0 | 91 | 0 | 1 | 0 | 23 | 14 | 198 | 1 | 1 |
| facultad de minas u. nacional | 2017 | 18.500000 | 6.3746658 | 47 | 3 | 35 | 130 | 0 | 7 | 134 | 1 | 87 | 1 | 1 | 0 | 33 | 40 | 147 | 0 | 0 |
| facultad de minas u. nacional | 2018 | 18.916667 | 5.6158596 | 43 | 8 | 32 | 137 | 0 | 7 | 134 | 0 | 93 | 0 | 0 | 0 | 37 | 58 | 132 | 0 | 0 |
| facultad veterinaria y zootecnia u.de.a. | 2014 | 5.333333 | 1.6143298 | 7 | 3 | 1 | 53 | 0 | 0 | 32 | 0 | 32 | 0 | 1 | 0 | 10 | 0 | 53 | 0 | 0 |
| facultad veterinaria y zootecnia u.de.a. | 2015 | 5.545454 | 2.6594600 | 4 | 6 | 7 | 42 | 0 | 2 | 36 | 0 | 25 | 0 | 0 | 0 | 10 | 1 | 50 | 0 | 0 |
| facultad veterinaria y zootecnia u.de.a. | 2016 | 4.416667 | 2.2343733 | 2 | 3 | 3 | 44 | 0 | 1 | 28 | 0 | 25 | 0 | 0 | 0 | 14 | 0 | 39 | 0 | 0 |
| facultad veterinaria y zootecnia u.de.a. | 2017 | 2.333333 | 1.1547005 | 3 | 1 | 4 | 20 | 0 | 0 | 16 | 0 | 12 | 0 | 0 | 0 | 6 | 1 | 21 | 0 | 0 |
| facultad veterinaria y zootecnia u.de.a. | 2018 | 2.600000 | 1.7126977 | 7 | 2 | 4 | 12 | 0 | 1 | 22 | 0 | 4 | 0 | 0 | 0 | 5 | 3 | 18 | 0 | 0 |
| fatima | 2014 | 18.666667 | 3.4465617 | 18 | 20 | 14 | 167 | 0 | 5 | 127 | 1 | 96 | 1 | 2 | 0 | 48 | 8 | 163 | 0 | 2 |
| fatima | 2015 | 19.083333 | 5.2476546 | 13 | 12 | 8 | 189 | 0 | 7 | 114 | 0 | 115 | 0 | 0 | 0 | 67 | 3 | 158 | 0 | 1 |
| fatima | 2016 | 19.000000 | 4.8617243 | 22 | 9 | 8 | 184 | 0 | 5 | 120 | 0 | 108 | 0 | 1 | 0 | 56 | 7 | 164 | 0 | 0 |
| fatima | 2017 | 18.500000 | 4.0113475 | 14 | 7 | 13 | 182 | 0 | 6 | 112 | 1 | 109 | 1 | 1 | 0 | 76 | 21 | 122 | 0 | 1 |
| fatima | 2018 | 18.083333 | 4.6015478 | 13 | 9 | 15 | 175 | 0 | 5 | 116 | 0 | 101 | 0 | 0 | 1 | 79 | 21 | 113 | 0 | 3 |
| ferrini | 2014 | 5.000000 | 2.2563043 | 10 | 5 | 3 | 39 | 0 | 3 | 31 | 0 | 29 | 0 | 0 | 0 | 14 | 1 | 45 | 0 | 0 |
| ferrini | 2015 | 4.416667 | 1.8319554 | 4 | 5 | 6 | 36 | 0 | 2 | 31 | 0 | 22 | 0 | 0 | 0 | 12 | 4 | 36 | 0 | 1 |
| ferrini | 2016 | 4.750000 | 1.1381804 | 8 | 3 | 6 | 39 | 0 | 1 | 29 | 0 | 28 | 0 | 1 | 0 | 16 | 5 | 35 | 0 | 0 |
| ferrini | 2017 | 3.818182 | 1.7786614 | 4 | 7 | 5 | 26 | 0 | 0 | 21 | 0 | 21 | 0 | 0 | 0 | 10 | 6 | 26 | 0 | 0 |
| ferrini | 2018 | 3.916667 | 1.6764862 | 3 | 4 | 4 | 33 | 0 | 3 | 24 | 0 | 23 | 0 | 0 | 0 | 14 | 7 | 26 | 0 | 0 |
| florencia | 2014 | 6.583333 | 2.2746961 | 15 | 8 | 17 | 37 | 0 | 2 | 60 | 0 | 19 | 0 | 1 | 0 | 18 | 1 | 59 | 0 | 0 |
| florencia | 2015 | 5.833333 | 2.4432963 | 6 | 9 | 14 | 35 | 0 | 6 | 48 | 1 | 21 | 1 | 0 | 0 | 14 | 1 | 54 | 0 | 0 |
| florencia | 2016 | 5.250000 | 2.3788844 | 10 | 8 | 10 | 35 | 0 | 0 | 47 | 0 | 16 | 0 | 0 | 0 | 10 | 3 | 50 | 0 | 0 |
| florencia | 2017 | 6.666667 | 2.8391206 | 10 | 10 | 6 | 51 | 0 | 3 | 47 | 0 | 33 | 0 | 0 | 0 | 26 | 15 | 39 | 0 | 0 |
| florencia | 2018 | 5.416667 | 2.1933094 | 6 | 7 | 17 | 33 | 0 | 2 | 44 | 0 | 21 | 0 | 0 | 0 | 17 | 15 | 33 | 0 | 0 |
| florida nueva | 2014 | 13.083333 | 4.1660606 | 13 | 13 | 8 | 121 | 0 | 2 | 81 | 1 | 75 | 1 | 0 | 0 | 16 | 1 | 139 | 0 | 0 |
| florida nueva | 2015 | 11.416667 | 3.1466673 | 14 | 14 | 12 | 95 | 0 | 2 | 71 | 0 | 66 | 0 | 1 | 0 | 20 | 2 | 113 | 0 | 1 |
| florida nueva | 2016 | 14.750000 | 4.0028399 | 10 | 29 | 6 | 128 | 0 | 4 | 90 | 0 | 87 | 0 | 0 | 1 | 27 | 4 | 145 | 0 | 0 |
| florida nueva | 2017 | 14.333333 | 3.9389277 | 18 | 16 | 10 | 121 | 0 | 7 | 86 | 1 | 85 | 1 | 2 | 0 | 48 | 15 | 106 | 0 | 0 |
| florida nueva | 2018 | 13.000000 | 2.1742292 | 17 | 17 | 8 | 113 | 0 | 1 | 74 | 4 | 78 | 2 | 1 | 0 | 42 | 11 | 100 | 0 | 0 |
| francisco antonio zea | 2014 | 10.416667 | 3.8484550 | 14 | 13 | 14 | 82 | 0 | 2 | 78 | 0 | 47 | 0 | 1 | 0 | 11 | 2 | 111 | 0 | 0 |
| francisco antonio zea | 2015 | 10.500000 | 3.0600059 | 11 | 15 | 15 | 76 | 0 | 9 | 82 | 0 | 44 | 0 | 0 | 0 | 15 | 2 | 109 | 0 | 0 |
| francisco antonio zea | 2016 | 10.250000 | 3.3337121 | 19 | 19 | 9 | 71 | 0 | 5 | 95 | 0 | 28 | 0 | 0 | 0 | 15 | 5 | 103 | 0 | 0 |
| francisco antonio zea | 2017 | 10.250000 | 2.8324419 | 27 | 18 | 17 | 55 | 0 | 6 | 91 | 0 | 32 | 0 | 0 | 0 | 23 | 17 | 83 | 0 | 0 |
| francisco antonio zea | 2018 | 7.916667 | 2.6097138 | 20 | 11 | 10 | 54 | 0 | 0 | 57 | 0 | 38 | 0 | 0 | 0 | 20 | 15 | 59 | 0 | 1 |
| fuente clara | 2014 | 1.600000 | 0.8944272 | 1 | 2 | 2 | 3 | 0 | 0 | 8 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 5 | 0 | 0 |
| fuente clara | 2015 | 2.333333 | 1.0327956 | 1 | 4 | 1 | 8 | 0 | 0 | 8 | 2 | 4 | 2 | 0 | 0 | 2 | 1 | 9 | 0 | 0 |
| fuente clara | 2016 | 3.250000 | 1.3887301 | 6 | 2 | 5 | 13 | 0 | 0 | 22 | 0 | 4 | 0 | 0 | 0 | 1 | 2 | 23 | 0 | 0 |
| fuente clara | 2017 | 3.000000 | 2.4494897 | 5 | 1 | 1 | 11 | 0 | 3 | 18 | 0 | 3 | 0 | 0 | 0 | 4 | 4 | 13 | 0 | 0 |
| fuente clara | 2018 | 3.100000 | 1.9692074 | 3 | 3 | 2 | 20 | 0 | 3 | 26 | 0 | 5 | 0 | 0 | 0 | 1 | 10 | 18 | 0 | 2 |
| gerona | 2014 | 6.916667 | 3.2879486 | 16 | 15 | 6 | 45 | 0 | 1 | 60 | 0 | 23 | 0 | 1 | 0 | 21 | 2 | 58 | 1 | 0 |
| gerona | 2015 | 7.916667 | 3.6045006 | 15 | 15 | 16 | 46 | 0 | 3 | 71 | 0 | 24 | 0 | 0 | 0 | 24 | 3 | 68 | 0 | 0 |
| gerona | 2016 | 8.833333 | 3.7859389 | 20 | 12 | 10 | 60 | 0 | 4 | 71 | 0 | 35 | 0 | 0 | 0 | 26 | 5 | 75 | 0 | 0 |
| gerona | 2017 | 6.583333 | 2.5030285 | 14 | 14 | 6 | 38 | 0 | 7 | 56 | 0 | 23 | 0 | 1 | 0 | 26 | 15 | 37 | 0 | 0 |
| gerona | 2018 | 6.916667 | 3.5791907 | 8 | 9 | 7 | 53 | 0 | 6 | 53 | 0 | 30 | 0 | 0 | 1 | 29 | 13 | 40 | 0 | 0 |
| girardot | 2014 | 17.750000 | 3.8641711 | 36 | 15 | 31 | 126 | 0 | 5 | 133 | 0 | 80 | 0 | 1 | 0 | 21 | 6 | 185 | 0 | 0 |
| girardot | 2015 | 19.083333 | 5.0714591 | 39 | 26 | 29 | 125 | 0 | 10 | 157 | 0 | 72 | 0 | 2 | 0 | 32 | 5 | 190 | 0 | 0 |
| girardot | 2016 | 18.916667 | 4.1878251 | 40 | 20 | 28 | 132 | 0 | 7 | 157 | 2 | 68 | 2 | 0 | 0 | 17 | 15 | 193 | 0 | 0 |
| girardot | 2017 | 16.583333 | 2.6097138 | 30 | 15 | 36 | 104 | 0 | 14 | 140 | 0 | 59 | 0 | 1 | 0 | 23 | 43 | 132 | 0 | 0 |
| girardot | 2018 | 13.166667 | 4.3658454 | 15 | 16 | 27 | 90 | 0 | 10 | 103 | 4 | 51 | 2 | 0 | 2 | 27 | 31 | 95 | 0 | 1 |
| granada | 2014 | 6.750000 | 3.4410622 | 8 | 4 | 6 | 62 | 0 | 1 | 40 | 0 | 41 | 0 | 2 | 0 | 17 | 1 | 61 | 0 | 0 |
| granada | 2015 | 8.750000 | 3.3337121 | 8 | 8 | 1 | 83 | 0 | 5 | 54 | 2 | 49 | 2 | 0 | 0 | 31 | 1 | 71 | 0 | 0 |
| granada | 2016 | 8.583333 | 2.6443192 | 9 | 7 | 10 | 74 | 0 | 3 | 54 | 0 | 49 | 0 | 1 | 0 | 28 | 2 | 72 | 0 | 0 |
| granada | 2017 | 7.750000 | 3.3878124 | 5 | 12 | 0 | 71 | 0 | 5 | 41 | 0 | 52 | 0 | 0 | 0 | 27 | 4 | 62 | 0 | 0 |
| granada | 2018 | 6.833333 | 2.6571801 | 4 | 9 | 2 | 64 | 0 | 3 | 38 | 0 | 44 | 0 | 0 | 0 | 27 | 6 | 49 | 0 | 0 |
| granizal | 2014 | 6.583333 | 2.6784776 | 7 | 21 | 6 | 42 | 0 | 3 | 43 | 1 | 35 | 1 | 0 | 0 | 7 | 1 | 70 | 0 | 0 |
| granizal | 2015 | 5.416667 | 2.3143164 | 8 | 17 | 7 | 30 | 0 | 3 | 41 | 1 | 23 | 1 | 0 | 0 | 3 | 2 | 59 | 0 | 0 |
| granizal | 2016 | 6.000000 | 2.4120908 | 14 | 17 | 9 | 30 | 0 | 2 | 48 | 2 | 22 | 2 | 0 | 0 | 3 | 2 | 65 | 0 | 0 |
| granizal | 2017 | 5.166667 | 2.0375267 | 10 | 14 | 2 | 34 | 0 | 2 | 34 | 1 | 27 | 1 | 0 | 0 | 7 | 11 | 43 | 0 | 0 |
| granizal | 2018 | 5.166667 | 3.0100841 | 1 | 20 | 5 | 35 | 0 | 1 | 32 | 2 | 28 | 2 | 0 | 0 | 8 | 10 | 41 | 0 | 1 |
| guayabal | 2014 | 35.500000 | 8.9898933 | 30 | 25 | 39 | 318 | 0 | 14 | 182 | 1 | 243 | 1 | 1 | 0 | 65 | 9 | 350 | 0 | 0 |
| guayabal | 2015 | 37.666667 | 8.3810754 | 40 | 20 | 39 | 331 | 0 | 22 | 217 | 0 | 235 | 0 | 0 | 0 | 62 | 15 | 374 | 0 | 1 |
| guayabal | 2016 | 44.000000 | 8.9137279 | 52 | 28 | 35 | 396 | 0 | 17 | 255 | 0 | 273 | 0 | 3 | 0 | 63 | 17 | 442 | 0 | 3 |
| guayabal | 2017 | 47.750000 | 8.4544233 | 70 | 50 | 33 | 396 | 0 | 24 | 298 | 12 | 263 | 12 | 4 | 1 | 90 | 51 | 408 | 1 | 6 |
| guayabal | 2018 | 28.833333 | 4.2817442 | 22 | 16 | 11 | 291 | 0 | 6 | 133 | 1 | 212 | 1 | 1 | 0 | 78 | 31 | 235 | 0 | 0 |
| guayaquil | 2014 | 61.083333 | 11.5872840 | 37 | 91 | 40 | 557 | 0 | 8 | 302 | 9 | 422 | 9 | 3 | 50 | 71 | 12 | 571 | 0 | 17 |
| guayaquil | 2015 | 73.583333 | 14.1064675 | 51 | 75 | 57 | 687 | 0 | 13 | 377 | 2 | 504 | 2 | 2 | 49 | 90 | 12 | 695 | 1 | 32 |
| guayaquil | 2016 | 63.750000 | 5.0113508 | 44 | 76 | 43 | 591 | 1 | 10 | 311 | 8 | 446 | 8 | 4 | 68 | 92 | 9 | 565 | 2 | 17 |
| guayaquil | 2017 | 49.750000 | 4.9931772 | 38 | 46 | 25 | 475 | 0 | 13 | 229 | 5 | 363 | 5 | 2 | 30 | 105 | 31 | 386 | 0 | 38 |
| guayaquil | 2018 | 44.583333 | 9.2092674 | 33 | 59 | 19 | 416 | 0 | 8 | 196 | 8 | 331 | 4 | 1 | 6 | 104 | 40 | 360 | 0 | 20 |
| hector abad gomez | 2014 | 14.083333 | 2.9987371 | 21 | 13 | 16 | 116 | 0 | 3 | 98 | 2 | 69 | 2 | 3 | 0 | 10 | 3 | 151 | 0 | 0 |
| hector abad gomez | 2015 | 12.166667 | 3.0100841 | 33 | 2 | 9 | 97 | 0 | 5 | 88 | 1 | 57 | 1 | 0 | 0 | 8 | 2 | 135 | 0 | 0 |
| hector abad gomez | 2016 | 14.500000 | 3.8494392 | 14 | 6 | 17 | 129 | 0 | 8 | 97 | 3 | 74 | 3 | 0 | 0 | 17 | 3 | 150 | 0 | 1 |
| hector abad gomez | 2017 | 16.916667 | 4.2737749 | 21 | 8 | 17 | 149 | 0 | 8 | 117 | 1 | 85 | 1 | 3 | 0 | 5 | 13 | 181 | 0 | 0 |
| hector abad gomez | 2018 | 18.166667 | 5.8749597 | 32 | 14 | 17 | 140 | 0 | 15 | 130 | 3 | 85 | 2 | 0 | 0 | 13 | 26 | 177 | 0 | 0 |
| hospital san vicente de paul | 2014 | 1.818182 | 0.9816498 | 1 | 4 | 1 | 14 | 0 | 0 | 12 | 0 | 8 | 0 | 0 | 0 | 1 | 1 | 18 | 0 | 0 |
| hospital san vicente de paul | 2015 | 2.333333 | 1.1547005 | 0 | 4 | 3 | 20 | 0 | 1 | 13 | 0 | 15 | 0 | 0 | 0 | 5 | 2 | 21 | 0 | 0 |
| hospital san vicente de paul | 2016 | 2.909091 | 2.0714510 | 5 | 2 | 3 | 21 | 0 | 1 | 17 | 0 | 15 | 0 | 1 | 0 | 2 | 2 | 27 | 0 | 0 |
| hospital san vicente de paul | 2017 | 1.909091 | 0.9438798 | 1 | 0 | 0 | 18 | 0 | 2 | 6 | 0 | 15 | 0 | 1 | 0 | 5 | 1 | 14 | 0 | 0 |
| hospital san vicente de paul | 2018 | 2.833333 | 1.1146409 | 0 | 5 | 3 | 25 | 0 | 1 | 16 | 0 | 18 | 0 | 1 | 1 | 7 | 7 | 18 | 0 | 0 |
| inst | 2014 | 2.636364 | 1.3618170 | 3 | 4 | 1 | 20 | 0 | 1 | 15 | 1 | 13 | 1 | 0 | 0 | 1 | 1 | 26 | 0 | 0 |
| inst | 2015 | 3.250000 | 1.6025548 | 8 | 6 | 4 | 21 | 0 | 0 | 21 | 0 | 18 | 0 | 0 | 0 | 1 | 0 | 38 | 0 | 0 |
| inst | 2016 | 3.666667 | 1.2309149 | 4 | 7 | 2 | 30 | 0 | 1 | 23 | 1 | 20 | 1 | 0 | 0 | 1 | 3 | 38 | 0 | 1 |
| inst | 2017 | 2.600000 | 1.2649111 | 2 | 2 | 2 | 20 | 0 | 0 | 9 | 2 | 15 | 2 | 0 | 0 | 3 | 0 | 20 | 0 | 1 |
| inst | 2018 | 3.090909 | 1.7580981 | 3 | 1 | 6 | 24 | 0 | 0 | 17 | 1 | 16 | 1 | 0 | 0 | 3 | 5 | 23 | 0 | 2 |
| jardin botanico | 2014 | 4.000000 | 1.7888544 | 5 | 6 | 3 | 29 | 0 | 1 | 22 | 0 | 22 | 0 | 0 | 0 | 5 | 0 | 39 | 0 | 0 |
| jardin botanico | 2015 | 3.727273 | 1.7939292 | 6 | 4 | 2 | 27 | 0 | 2 | 17 | 1 | 23 | 1 | 0 | 0 | 4 | 5 | 31 | 0 | 0 |
| jardin botanico | 2016 | 3.600000 | 1.7126977 | 2 | 4 | 5 | 24 | 0 | 1 | 21 | 0 | 15 | 0 | 1 | 0 | 5 | 2 | 28 | 0 | 0 |
| jardin botanico | 2017 | 3.666667 | 1.8748737 | 10 | 4 | 5 | 25 | 0 | 0 | 26 | 0 | 18 | 0 | 0 | 0 | 6 | 7 | 31 | 0 | 0 |
| jardin botanico | 2018 | 3.166667 | 1.5859229 | 3 | 4 | 3 | 27 | 0 | 1 | 19 | 2 | 17 | 1 | 0 | 0 | 11 | 3 | 23 | 0 | 0 |
| jesus nazareno | 2014 | 34.333333 | 5.7419245 | 39 | 45 | 28 | 291 | 0 | 9 | 210 | 5 | 197 | 5 | 0 | 19 | 56 | 9 | 306 | 0 | 17 |
| jesus nazareno | 2015 | 35.000000 | 6.0603030 | 40 | 42 | 27 | 294 | 0 | 17 | 203 | 3 | 214 | 3 | 1 | 18 | 58 | 8 | 322 | 1 | 9 |
| jesus nazareno | 2016 | 32.166667 | 3.7376058 | 38 | 40 | 39 | 258 | 0 | 11 | 239 | 7 | 140 | 7 | 2 | 16 | 62 | 8 | 275 | 0 | 16 |
| jesus nazareno | 2017 | 33.250000 | 5.6266412 | 49 | 23 | 26 | 287 | 0 | 14 | 222 | 4 | 173 | 4 | 2 | 20 | 92 | 23 | 226 | 0 | 32 |
| jesus nazareno | 2018 | 31.083333 | 7.1408980 | 44 | 28 | 42 | 240 | 1 | 18 | 222 | 6 | 145 | 4 | 2 | 25 | 96 | 42 | 170 | 0 | 34 |
| juan pablo ii | 2014 | 1.666667 | 1.1547005 | 0 | 3 | 1 | 1 | 0 | 0 | 4 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 |
| juan pablo ii | 2015 | 1.142857 | 0.3779645 | 1 | 2 | 1 | 2 | 0 | 2 | 7 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 7 | 0 | 0 |
| juan pablo ii | 2016 | 1.285714 | 0.4879500 | 1 | 3 | 2 | 2 | 0 | 1 | 8 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 7 | 0 | 0 |
| juan pablo ii | 2017 | 1.166667 | 0.4082483 | 0 | 2 | 2 | 2 | 0 | 1 | 5 | 0 | 2 | 0 | 0 | 0 | 1 | 2 | 4 | 0 | 0 |
| juan pablo ii | 2018 | 1.200000 | 0.4472136 | 1 | 1 | 0 | 3 | 0 | 1 | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 5 | 0 | 0 |
| juan xxiii la quiebra | 2014 | 3.363636 | 1.9632996 | 7 | 7 | 5 | 16 | 0 | 2 | 27 | 0 | 10 | 0 | 0 | 0 | 1 | 0 | 36 | 0 | 0 |
| juan xxiii la quiebra | 2015 | 3.363636 | 1.5666989 | 4 | 11 | 4 | 17 | 0 | 1 | 24 | 0 | 13 | 0 | 0 | 0 | 0 | 2 | 35 | 0 | 0 |
| juan xxiii la quiebra | 2016 | 2.181818 | 0.8738629 | 2 | 7 | 4 | 8 | 0 | 3 | 18 | 0 | 6 | 0 | 0 | 0 | 2 | 1 | 21 | 0 | 0 |
| juan xxiii la quiebra | 2017 | 3.636364 | 2.0626550 | 10 | 6 | 8 | 15 | 0 | 1 | 28 | 0 | 12 | 0 | 0 | 1 | 1 | 9 | 29 | 0 | 0 |
| juan xxiii la quiebra | 2018 | 2.875000 | 2.2320714 | 3 | 5 | 3 | 12 | 0 | 0 | 13 | 2 | 8 | 1 | 0 | 0 | 2 | 1 | 19 | 0 | 0 |
| kennedy | 2014 | 16.083333 | 4.7950416 | 39 | 50 | 30 | 70 | 0 | 4 | 149 | 2 | 42 | 2 | 2 | 0 | 17 | 5 | 167 | 0 | 0 |
| kennedy | 2015 | 15.250000 | 5.4626833 | 28 | 41 | 24 | 85 | 0 | 5 | 131 | 0 | 52 | 0 | 1 | 0 | 19 | 1 | 162 | 0 | 0 |
| kennedy | 2016 | 14.500000 | 4.8335946 | 32 | 30 | 22 | 85 | 0 | 5 | 124 | 0 | 50 | 0 | 0 | 0 | 21 | 14 | 139 | 0 | 0 |
| kennedy | 2017 | 15.416667 | 4.3161080 | 26 | 39 | 32 | 82 | 0 | 6 | 134 | 0 | 51 | 0 | 0 | 0 | 28 | 35 | 122 | 0 | 0 |
| kennedy | 2018 | 15.666667 | 4.8304589 | 21 | 32 | 40 | 88 | 0 | 7 | 130 | 0 | 58 | 0 | 0 | 0 | 41 | 48 | 99 | 0 | 0 |
| la aguacatala | 2014 | 30.166667 | 5.5894923 | 26 | 11 | 30 | 287 | 0 | 8 | 143 | 2 | 217 | 2 | 2 | 36 | 25 | 4 | 282 | 0 | 11 |
| la aguacatala | 2015 | 32.916667 | 8.6703081 | 33 | 13 | 26 | 312 | 0 | 11 | 160 | 1 | 234 | 1 | 0 | 28 | 26 | 12 | 313 | 0 | 15 |
| la aguacatala | 2016 | 34.916667 | 4.4201673 | 38 | 11 | 23 | 339 | 0 | 8 | 176 | 0 | 243 | 0 | 3 | 41 | 31 | 6 | 316 | 1 | 21 |
| la aguacatala | 2017 | 45.833333 | 8.7472940 | 49 | 14 | 27 | 439 | 0 | 21 | 222 | 1 | 327 | 1 | 3 | 75 | 61 | 42 | 341 | 0 | 27 |
| la aguacatala | 2018 | 28.000000 | 8.6234353 | 21 | 5 | 16 | 288 | 0 | 6 | 117 | 5 | 214 | 4 | 5 | 51 | 39 | 16 | 192 | 0 | 29 |
| la alpujarra | 2014 | 8.916667 | 2.1514618 | 3 | 11 | 11 | 78 | 0 | 4 | 49 | 1 | 57 | 1 | 1 | 5 | 4 | 3 | 88 | 0 | 5 |
| la alpujarra | 2015 | 15.833333 | 6.5064071 | 14 | 6 | 14 | 149 | 0 | 7 | 72 | 1 | 117 | 1 | 1 | 2 | 18 | 3 | 160 | 0 | 5 |
| la alpujarra | 2016 | 10.750000 | 3.1944554 | 10 | 9 | 7 | 101 | 0 | 2 | 56 | 1 | 72 | 1 | 0 | 8 | 10 | 5 | 98 | 0 | 7 |
| la alpujarra | 2017 | 33.583333 | 14.0871207 | 35 | 10 | 15 | 333 | 0 | 10 | 166 | 0 | 237 | 0 | 1 | 92 | 31 | 25 | 181 | 0 | 73 |
| la alpujarra | 2018 | 41.083333 | 7.0641004 | 31 | 19 | 16 | 417 | 0 | 10 | 169 | 0 | 324 | 0 | 4 | 159 | 33 | 30 | 193 | 0 | 74 |
| la america | 2014 | 19.666667 | 3.9157800 | 26 | 22 | 20 | 164 | 0 | 4 | 125 | 1 | 110 | 1 | 1 | 11 | 27 | 4 | 191 | 0 | 1 |
| la america | 2015 | 17.916667 | 4.6992907 | 20 | 29 | 17 | 139 | 0 | 10 | 107 | 1 | 107 | 1 | 0 | 16 | 32 | 3 | 163 | 0 | 0 |
| la america | 2016 | 17.666667 | 3.9157800 | 29 | 20 | 16 | 141 | 0 | 6 | 122 | 1 | 89 | 1 | 0 | 10 | 37 | 5 | 157 | 0 | 2 |
| la america | 2017 | 20.416667 | 4.4814432 | 26 | 31 | 22 | 152 | 0 | 14 | 134 | 4 | 107 | 4 | 0 | 24 | 51 | 30 | 135 | 0 | 1 |
| la america | 2018 | 16.500000 | 3.0000000 | 7 | 19 | 11 | 156 | 0 | 5 | 90 | 4 | 104 | 3 | 0 | 17 | 52 | 14 | 111 | 0 | 1 |
| la avanzada | 2014 | 1.875000 | 1.7268882 | 2 | 2 | 2 | 9 | 0 | 0 | 11 | 0 | 4 | 0 | 1 | 0 | 0 | 0 | 14 | 0 | 0 |
| la avanzada | 2015 | 1.750000 | 0.8864053 | 1 | 3 | 1 | 9 | 0 | 0 | 11 | 0 | 3 | 0 | 0 | 0 | 1 | 0 | 13 | 0 | 0 |
| la avanzada | 2016 | 2.500000 | 1.2692955 | 3 | 4 | 3 | 13 | 0 | 2 | 19 | 0 | 6 | 0 | 0 | 0 | 1 | 3 | 21 | 0 | 0 |
| la avanzada | 2017 | 2.181818 | 1.5374122 | 2 | 9 | 1 | 11 | 0 | 1 | 17 | 0 | 7 | 0 | 0 | 0 | 0 | 3 | 21 | 0 | 0 |
| la avanzada | 2018 | 3.090909 | 2.1191765 | 2 | 13 | 5 | 14 | 0 | 0 | 28 | 0 | 6 | 0 | 1 | 0 | 2 | 13 | 18 | 0 | 0 |
| la candelaria | 2014 | 95.916667 | 14.1450816 | 71 | 245 | 75 | 750 | 0 | 10 | 508 | 7 | 636 | 7 | 9 | 0 | 162 | 11 | 960 | 0 | 2 |
| la candelaria | 2015 | 89.083333 | 11.6810517 | 47 | 200 | 62 | 743 | 0 | 17 | 465 | 7 | 597 | 7 | 4 | 1 | 171 | 17 | 867 | 1 | 1 |
| la candelaria | 2016 | 79.000000 | 11.6619038 | 52 | 163 | 65 | 652 | 0 | 16 | 415 | 2 | 531 | 2 | 1 | 0 | 181 | 23 | 739 | 1 | 1 |
| la candelaria | 2017 | 78.666667 | 11.5784544 | 44 | 173 | 48 | 664 | 0 | 15 | 383 | 18 | 543 | 18 | 4 | 1 | 213 | 57 | 645 | 1 | 5 |
| la candelaria | 2018 | 82.416667 | 9.1100178 | 46 | 148 | 44 | 738 | 0 | 13 | 352 | 9 | 628 | 6 | 6 | 0 | 252 | 69 | 655 | 0 | 1 |
| la castellana | 2014 | 11.500000 | 3.2613438 | 9 | 9 | 7 | 113 | 0 | 0 | 62 | 0 | 76 | 0 | 0 | 2 | 39 | 5 | 92 | 0 | 0 |
| la castellana | 2015 | 16.166667 | 4.3029236 | 9 | 11 | 13 | 156 | 0 | 5 | 97 | 0 | 97 | 0 | 0 | 6 | 54 | 2 | 132 | 0 | 0 |
| la castellana | 2016 | 10.833333 | 4.2390679 | 7 | 5 | 8 | 107 | 0 | 3 | 72 | 0 | 58 | 0 | 0 | 4 | 54 | 1 | 71 | 0 | 0 |
| la castellana | 2017 | 11.916667 | 1.9286516 | 9 | 7 | 5 | 119 | 0 | 3 | 65 | 1 | 77 | 1 | 0 | 6 | 65 | 8 | 63 | 0 | 0 |
| la castellana | 2018 | 9.166667 | 4.3658454 | 4 | 10 | 4 | 90 | 0 | 2 | 52 | 1 | 57 | 1 | 0 | 11 | 41 | 7 | 50 | 0 | 0 |
| la colina | 2014 | 8.083333 | 2.7784343 | 14 | 11 | 13 | 52 | 0 | 7 | 57 | 1 | 39 | 1 | 0 | 0 | 7 | 2 | 87 | 0 | 0 |
| la colina | 2015 | 8.833333 | 3.8573032 | 11 | 8 | 16 | 63 | 0 | 8 | 57 | 0 | 49 | 0 | 0 | 0 | 12 | 4 | 90 | 0 | 0 |
| la colina | 2016 | 9.916667 | 4.1660606 | 23 | 16 | 19 | 61 | 0 | 0 | 81 | 1 | 37 | 1 | 0 | 0 | 18 | 6 | 94 | 0 | 0 |
| la colina | 2017 | 9.750000 | 5.2245052 | 22 | 9 | 11 | 70 | 0 | 5 | 68 | 0 | 49 | 0 | 0 | 0 | 28 | 19 | 70 | 0 | 0 |
| la colina | 2018 | 6.333333 | 2.1461735 | 6 | 6 | 9 | 53 | 0 | 2 | 36 | 1 | 39 | 1 | 0 | 0 | 21 | 5 | 49 | 0 | 0 |
| la cruz | 2014 | 3.375000 | 1.6850180 | 2 | 11 | 1 | 13 | 0 | 0 | 22 | 0 | 5 | 0 | 0 | 0 | 2 | 2 | 23 | 0 | 0 |
| la cruz | 2015 | 1.600000 | 0.8432740 | 0 | 8 | 2 | 5 | 0 | 1 | 12 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
| la cruz | 2016 | 2.000000 | 1.0000000 | 3 | 4 | 2 | 7 | 0 | 2 | 13 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 18 | 0 | 0 |
| la cruz | 2017 | 2.200000 | 1.1352924 | 2 | 4 | 1 | 13 | 0 | 2 | 14 | 1 | 7 | 1 | 0 | 0 | 3 | 2 | 16 | 0 | 0 |
| la cruz | 2018 | 1.750000 | 1.0350983 | 0 | 6 | 2 | 5 | 0 | 1 | 10 | 0 | 4 | 0 | 0 | 0 | 1 | 2 | 11 | 0 | 0 |
| la esperanza | 2014 | 10.583333 | 2.6784776 | 23 | 33 | 27 | 41 | 0 | 3 | 108 | 1 | 18 | 1 | 0 | 0 | 19 | 3 | 104 | 0 | 0 |
| la esperanza | 2015 | 11.750000 | 3.7688918 | 22 | 34 | 21 | 60 | 0 | 4 | 117 | 1 | 23 | 1 | 0 | 0 | 27 | 5 | 108 | 0 | 0 |
| la esperanza | 2016 | 12.750000 | 3.8641711 | 22 | 42 | 30 | 51 | 0 | 8 | 130 | 0 | 23 | 0 | 1 | 0 | 30 | 6 | 116 | 0 | 0 |
| la esperanza | 2017 | 11.083333 | 3.2601822 | 30 | 19 | 23 | 58 | 0 | 3 | 104 | 1 | 28 | 1 | 2 | 0 | 40 | 19 | 71 | 0 | 0 |
| la esperanza | 2018 | 10.166667 | 3.0993645 | 18 | 24 | 26 | 47 | 0 | 7 | 96 | 2 | 24 | 1 | 0 | 0 | 28 | 40 | 53 | 0 | 0 |
| la esperanza no. 2 | 2014 | 2.181818 | 1.1677484 | 1 | 10 | 2 | 11 | 0 | 0 | 19 | 0 | 5 | 0 | 0 | 0 | 1 | 1 | 22 | 0 | 0 |
| la esperanza no. 2 | 2015 | 1.900000 | 0.7378648 | 4 | 6 | 3 | 6 | 0 | 0 | 17 | 0 | 2 | 0 | 1 | 0 | 1 | 1 | 16 | 0 | 0 |
| la esperanza no. 2 | 2016 | 1.916667 | 0.9962049 | 3 | 6 | 2 | 9 | 0 | 3 | 16 | 0 | 7 | 0 | 0 | 0 | 2 | 2 | 19 | 0 | 0 |
| la esperanza no. 2 | 2017 | 2.400000 | 1.5055453 | 2 | 6 | 3 | 11 | 0 | 2 | 17 | 0 | 7 | 0 | 0 | 0 | 1 | 4 | 19 | 0 | 0 |
| la esperanza no. 2 | 2018 | 2.800000 | 1.5491933 | 4 | 8 | 4 | 11 | 0 | 1 | 25 | 0 | 3 | 0 | 0 | 0 | 1 | 6 | 21 | 0 | 0 |
| la floresta | 2014 | 13.083333 | 2.8431204 | 17 | 20 | 13 | 106 | 0 | 1 | 83 | 0 | 74 | 0 | 0 | 0 | 37 | 3 | 117 | 0 | 0 |
| la floresta | 2015 | 10.583333 | 5.1954234 | 13 | 19 | 12 | 79 | 0 | 4 | 78 | 1 | 48 | 1 | 0 | 1 | 36 | 1 | 87 | 0 | 1 |
| la floresta | 2016 | 13.083333 | 4.6408920 | 22 | 9 | 20 | 101 | 0 | 5 | 92 | 1 | 64 | 1 | 0 | 0 | 36 | 8 | 112 | 0 | 0 |
| la floresta | 2017 | 12.333333 | 4.7161875 | 13 | 10 | 11 | 110 | 0 | 4 | 76 | 0 | 72 | 0 | 0 | 3 | 57 | 14 | 74 | 0 | 0 |
| la floresta | 2018 | 11.250000 | 2.5628464 | 13 | 12 | 8 | 100 | 0 | 2 | 76 | 1 | 58 | 1 | 0 | 3 | 56 | 19 | 56 | 0 | 0 |
| la florida | 2014 | 13.583333 | 4.1221868 | 9 | 10 | 8 | 134 | 0 | 2 | 54 | 1 | 108 | 1 | 2 | 0 | 20 | 6 | 134 | 0 | 0 |
| la florida | 2015 | 13.083333 | 5.5833899 | 7 | 7 | 1 | 138 | 0 | 4 | 59 | 0 | 98 | 0 | 0 | 0 | 21 | 4 | 132 | 0 | 0 |
| la florida | 2016 | 13.250000 | 4.0028399 | 3 | 6 | 3 | 143 | 0 | 4 | 36 | 0 | 123 | 0 | 1 | 0 | 17 | 10 | 131 | 0 | 0 |
| la florida | 2017 | 15.500000 | 2.9076701 | 7 | 10 | 5 | 161 | 0 | 3 | 50 | 0 | 136 | 0 | 1 | 0 | 37 | 17 | 130 | 0 | 1 |
| la florida | 2018 | 15.333333 | 4.9051612 | 10 | 5 | 13 | 151 | 0 | 5 | 75 | 0 | 109 | 0 | 0 | 0 | 34 | 16 | 132 | 0 | 2 |
| la francia | 2014 | 5.000000 | 2.4120908 | 4 | 20 | 9 | 27 | 0 | 0 | 44 | 0 | 16 | 0 | 1 | 0 | 3 | 2 | 54 | 0 | 0 |
| la francia | 2015 | 4.500000 | 2.1950357 | 7 | 7 | 7 | 29 | 0 | 4 | 33 | 0 | 21 | 0 | 0 | 1 | 9 | 3 | 41 | 0 | 0 |
| la francia | 2016 | 3.833333 | 1.9924098 | 6 | 10 | 3 | 24 | 0 | 3 | 33 | 0 | 13 | 0 | 0 | 0 | 6 | 3 | 37 | 0 | 0 |
| la francia | 2017 | 4.250000 | 2.1373305 | 3 | 17 | 5 | 25 | 0 | 1 | 38 | 0 | 13 | 0 | 1 | 0 | 3 | 9 | 38 | 0 | 0 |
| la francia | 2018 | 3.833333 | 2.1248886 | 4 | 7 | 8 | 25 | 0 | 2 | 26 | 0 | 20 | 0 | 1 | 0 | 6 | 7 | 32 | 0 | 0 |
| la frontera | 2014 | 5.416667 | 2.3143164 | 4 | 18 | 5 | 34 | 0 | 4 | 44 | 0 | 21 | 0 | 0 | 0 | 3 | 2 | 60 | 0 | 0 |
| la frontera | 2015 | 4.600000 | 2.2705848 | 9 | 12 | 4 | 20 | 0 | 1 | 31 | 0 | 15 | 0 | 1 | 0 | 3 | 1 | 41 | 0 | 0 |
| la frontera | 2016 | 3.818182 | 2.6764970 | 3 | 12 | 3 | 19 | 0 | 5 | 30 | 0 | 12 | 0 | 1 | 0 | 2 | 3 | 36 | 0 | 0 |
| la frontera | 2017 | 3.333333 | 1.9227506 | 6 | 5 | 6 | 22 | 0 | 1 | 26 | 0 | 14 | 0 | 0 | 0 | 2 | 9 | 29 | 0 | 0 |
| la frontera | 2018 | 3.545454 | 1.8635255 | 6 | 7 | 6 | 19 | 0 | 1 | 27 | 0 | 12 | 0 | 0 | 0 | 6 | 7 | 26 | 0 | 0 |
| la gloria | 2014 | 13.000000 | 4.0898989 | 28 | 11 | 12 | 101 | 0 | 4 | 87 | 0 | 69 | 0 | 2 | 0 | 24 | 2 | 127 | 0 | 1 |
| la gloria | 2015 | 15.500000 | 6.3746658 | 26 | 9 | 12 | 129 | 0 | 10 | 104 | 0 | 82 | 0 | 0 | 1 | 37 | 4 | 144 | 0 | 0 |
| la gloria | 2016 | 18.583333 | 4.8515852 | 31 | 10 | 22 | 148 | 0 | 12 | 140 | 0 | 83 | 0 | 0 | 0 | 28 | 9 | 185 | 0 | 1 |
| la gloria | 2017 | 18.166667 | 4.2175679 | 36 | 12 | 26 | 134 | 0 | 10 | 128 | 1 | 89 | 1 | 1 | 8 | 43 | 26 | 139 | 0 | 0 |
| la gloria | 2018 | 14.166667 | 5.0241839 | 21 | 8 | 15 | 123 | 0 | 3 | 84 | 0 | 86 | 0 | 2 | 4 | 39 | 17 | 107 | 0 | 1 |
| la hondonada | 2014 | 3.250000 | 1.3887301 | 1 | 2 | 3 | 20 | 0 | 0 | 15 | 0 | 11 | 0 | 0 | 0 | 2 | 1 | 23 | 0 | 0 |
| la hondonada | 2015 | 2.888889 | 1.2692955 | 3 | 2 | 3 | 18 | 0 | 0 | 15 | 0 | 11 | 0 | 0 | 0 | 4 | 3 | 19 | 0 | 0 |
| la hondonada | 2016 | 2.818182 | 0.9816498 | 7 | 0 | 5 | 19 | 0 | 0 | 21 | 0 | 10 | 0 | 1 | 0 | 1 | 3 | 25 | 0 | 1 |
| la hondonada | 2017 | 4.181818 | 1.9908883 | 7 | 3 | 5 | 28 | 0 | 3 | 26 | 0 | 20 | 0 | 0 | 0 | 4 | 11 | 31 | 0 | 0 |
| la hondonada | 2018 | 4.272727 | 1.8488326 | 6 | 2 | 4 | 35 | 0 | 0 | 22 | 0 | 25 | 0 | 0 | 0 | 6 | 4 | 37 | 0 | 0 |
| la isla | 2014 | 3.750000 | 2.2207697 | 5 | 17 | 3 | 18 | 0 | 2 | 31 | 1 | 13 | 1 | 0 | 0 | 4 | 3 | 37 | 0 | 0 |
| la isla | 2015 | 3.500000 | 1.4459976 | 4 | 21 | 5 | 12 | 0 | 0 | 33 | 0 | 9 | 0 | 1 | 0 | 2 | 0 | 39 | 0 | 0 |
| la isla | 2016 | 3.583333 | 1.7816404 | 3 | 15 | 5 | 18 | 0 | 2 | 29 | 1 | 13 | 1 | 0 | 0 | 3 | 0 | 39 | 0 | 0 |
| la isla | 2017 | 2.500000 | 1.4337209 | 4 | 10 | 1 | 9 | 0 | 1 | 20 | 0 | 5 | 0 | 0 | 0 | 3 | 4 | 18 | 0 | 0 |
| la isla | 2018 | 3.166667 | 1.5275252 | 8 | 7 | 3 | 20 | 0 | 0 | 25 | 0 | 13 | 0 | 0 | 0 | 4 | 8 | 26 | 0 | 0 |
| la ladera | 2014 | 1.500000 | 0.7071068 | 4 | 1 | 1 | 9 | 0 | 0 | 10 | 0 | 5 | 0 | 0 | 0 | 2 | 1 | 11 | 0 | 1 |
| la ladera | 2015 | 1.555556 | 1.1303883 | 0 | 1 | 1 | 12 | 0 | 0 | 7 | 0 | 7 | 0 | 0 | 0 | 1 | 0 | 13 | 0 | 0 |
| la ladera | 2016 | 1.800000 | 0.7888106 | 3 | 2 | 2 | 10 | 0 | 1 | 11 | 0 | 7 | 0 | 0 | 0 | 1 | 0 | 17 | 0 | 0 |
| la ladera | 2017 | 2.000000 | 0.7559289 | 1 | 2 | 2 | 10 | 0 | 1 | 10 | 0 | 6 | 0 | 0 | 0 | 1 | 2 | 13 | 0 | 0 |
| la ladera | 2018 | 2.250000 | 1.1649647 | 3 | 2 | 6 | 7 | 0 | 0 | 13 | 0 | 5 | 0 | 0 | 0 | 1 | 6 | 11 | 0 | 0 |
| la libertad | 2014 | 5.916667 | 1.8809250 | 12 | 18 | 10 | 29 | 0 | 2 | 54 | 1 | 16 | 1 | 0 | 0 | 4 | 3 | 63 | 0 | 0 |
| la libertad | 2015 | 6.250000 | 2.5271256 | 15 | 7 | 12 | 33 | 0 | 8 | 49 | 0 | 26 | 0 | 1 | 0 | 4 | 4 | 66 | 0 | 0 |
| la libertad | 2016 | 5.000000 | 2.2962420 | 8 | 9 | 12 | 30 | 0 | 1 | 41 | 0 | 19 | 0 | 0 | 0 | 3 | 3 | 54 | 0 | 0 |
| la libertad | 2017 | 4.333333 | 2.0150946 | 10 | 10 | 5 | 26 | 0 | 1 | 28 | 0 | 24 | 0 | 0 | 0 | 5 | 11 | 36 | 0 | 0 |
| la libertad | 2018 | 5.166667 | 2.6911753 | 14 | 10 | 8 | 29 | 0 | 1 | 42 | 0 | 20 | 0 | 0 | 0 | 6 | 13 | 43 | 0 | 0 |
| la loma de los bernal | 2014 | 1.000000 | 0.0000000 | 0 | 0 | 1 | 5 | 0 | 0 | 2 | 0 | 4 | 0 | 0 | 0 | 1 | 0 | 5 | 0 | 0 |
| la loma de los bernal | 2015 | 1.000000 | 0.0000000 | 1 | 0 | 0 | 4 | 0 | 0 | 2 | 0 | 3 | 0 | 0 | 0 | 1 | 0 | 4 | 0 | 0 |
| la loma de los bernal | 2016 | 1.142857 | 0.3779645 | 2 | 0 | 0 | 6 | 0 | 0 | 3 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 |
| la loma de los bernal | 2017 | 1.142857 | 0.3779645 | 1 | 1 | 0 | 6 | 0 | 0 | 3 | 0 | 5 | 0 | 0 | 0 | 2 | 1 | 5 | 0 | 0 |
| la loma de los bernal | 2018 | 1.250000 | 0.5000000 | 0 | 0 | 1 | 4 | 0 | 0 | 1 | 0 | 4 | 0 | 0 | 0 | 1 | 0 | 4 | 0 | 0 |
| la loma oriental | 2014 | 1.000000 | NA | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| la loma oriental | 2015 | 1.250000 | 0.5000000 | 0 | 0 | 2 | 3 | 0 | 0 | 3 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 4 | 0 | 0 |
| la loma oriental | 2016 | 1.333333 | 0.5773503 | 1 | 0 | 0 | 2 | 0 | 1 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
| la loma oriental | 2017 | 1.333333 | 0.5773503 | 2 | 0 | 0 | 2 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 1 |
| la loma oriental | 2018 | 1.571429 | 0.5345225 | 1 | 1 | 3 | 4 | 0 | 2 | 9 | 0 | 2 | 0 | 0 | 0 | 1 | 3 | 7 | 0 | 0 |
| la mansion | 2014 | 4.166667 | 1.9924098 | 6 | 3 | 7 | 32 | 0 | 2 | 35 | 0 | 15 | 0 | 0 | 0 | 13 | 0 | 37 | 0 | 0 |
| la mansion | 2015 | 4.909091 | 2.3001976 | 5 | 9 | 7 | 31 | 0 | 2 | 42 | 0 | 12 | 0 | 0 | 0 | 9 | 2 | 43 | 0 | 0 |
| la mansion | 2016 | 5.333333 | 1.6143298 | 12 | 3 | 1 | 46 | 0 | 2 | 44 | 0 | 20 | 0 | 0 | 0 | 18 | 2 | 44 | 0 | 0 |
| la mansion | 2017 | 5.500000 | 2.6457513 | 3 | 8 | 6 | 49 | 0 | 0 | 41 | 0 | 25 | 0 | 1 | 0 | 28 | 2 | 35 | 0 | 0 |
| la mansion | 2018 | 4.416667 | 1.8319554 | 4 | 7 | 4 | 34 | 0 | 4 | 35 | 0 | 18 | 0 | 0 | 0 | 18 | 9 | 26 | 0 | 0 |
| la milagrosa | 2014 | 8.750000 | 4.2879323 | 9 | 13 | 9 | 72 | 0 | 2 | 70 | 2 | 33 | 2 | 0 | 0 | 17 | 2 | 84 | 0 | 0 |
| la milagrosa | 2015 | 7.750000 | 3.3337121 | 9 | 9 | 6 | 63 | 0 | 6 | 58 | 2 | 33 | 2 | 0 | 0 | 34 | 2 | 55 | 0 | 0 |
| la milagrosa | 2016 | 8.666667 | 3.2286595 | 10 | 13 | 11 | 66 | 0 | 4 | 65 | 1 | 38 | 1 | 0 | 0 | 29 | 6 | 68 | 0 | 0 |
| la milagrosa | 2017 | 8.250000 | 3.1370223 | 9 | 9 | 12 | 66 | 0 | 3 | 58 | 1 | 40 | 1 | 0 | 0 | 38 | 15 | 44 | 0 | 1 |
| la milagrosa | 2018 | 7.833333 | 2.6571801 | 5 | 14 | 15 | 59 | 0 | 1 | 59 | 1 | 34 | 1 | 0 | 0 | 35 | 11 | 47 | 0 | 0 |
| la mota | 2014 | 5.416667 | 1.9286516 | 6 | 3 | 5 | 45 | 0 | 6 | 34 | 1 | 30 | 1 | 0 | 1 | 13 | 5 | 45 | 0 | 0 |
| la mota | 2015 | 6.333333 | 2.0150946 | 4 | 2 | 7 | 59 | 0 | 4 | 38 | 0 | 38 | 0 | 0 | 2 | 15 | 4 | 55 | 0 | 0 |
| la mota | 2016 | 7.416667 | 2.3532698 | 15 | 6 | 3 | 63 | 0 | 2 | 51 | 2 | 36 | 2 | 0 | 4 | 22 | 5 | 56 | 0 | 0 |
| la mota | 2017 | 7.666667 | 2.8709623 | 11 | 7 | 10 | 60 | 0 | 4 | 52 | 0 | 40 | 0 | 0 | 3 | 16 | 14 | 58 | 0 | 1 |
| la mota | 2018 | 5.166667 | 1.8504709 | 5 | 4 | 5 | 45 | 0 | 3 | 39 | 0 | 23 | 0 | 0 | 5 | 13 | 7 | 37 | 0 | 0 |
| la oculta | 2014 | 1.000000 | 0.0000000 | 0 | 1 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| la oculta | 2015 | 1.000000 | NA | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| la oculta | 2016 | 1.000000 | NA | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| la oculta | 2017 | 1.000000 | 0.0000000 | 0 | 0 | 1 | 3 | 0 | 1 | 3 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 4 | 0 | 0 |
| la oculta | 2018 | 1.000000 | 0.0000000 | 0 | 1 | 0 | 2 | 0 | 1 | 2 | 0 | 2 | 0 | 0 | 0 | 1 | 1 | 2 | 0 | 0 |
| la palma | 2014 | 11.666667 | 3.9389277 | 18 | 19 | 17 | 80 | 0 | 6 | 88 | 1 | 51 | 1 | 1 | 0 | 14 | 4 | 119 | 1 | 0 |
| la palma | 2015 | 10.833333 | 2.7579087 | 18 | 12 | 11 | 81 | 0 | 8 | 74 | 0 | 56 | 0 | 0 | 1 | 20 | 4 | 105 | 0 | 0 |
| la palma | 2016 | 12.750000 | 3.4673805 | 19 | 15 | 11 | 103 | 0 | 5 | 91 | 1 | 61 | 1 | 1 | 1 | 25 | 4 | 121 | 0 | 0 |
| la palma | 2017 | 9.083333 | 2.7455198 | 10 | 7 | 10 | 79 | 0 | 3 | 55 | 0 | 54 | 0 | 2 | 0 | 21 | 11 | 75 | 0 | 0 |
| la palma | 2018 | 8.166667 | 4.1742355 | 4 | 10 | 8 | 76 | 0 | 0 | 45 | 0 | 53 | 0 | 1 | 1 | 25 | 17 | 54 | 0 | 0 |
| la pilarica | 2014 | 7.500000 | 3.3709993 | 10 | 7 | 12 | 59 | 0 | 2 | 49 | 0 | 41 | 0 | 0 | 0 | 11 | 3 | 76 | 0 | 0 |
| la pilarica | 2015 | 7.500000 | 3.0301515 | 16 | 2 | 5 | 63 | 0 | 4 | 51 | 0 | 39 | 0 | 0 | 0 | 16 | 3 | 71 | 0 | 0 |
| la pilarica | 2016 | 6.083333 | 3.1754265 | 8 | 7 | 3 | 54 | 0 | 1 | 40 | 0 | 33 | 0 | 0 | 0 | 12 | 2 | 59 | 0 | 0 |
| la pilarica | 2017 | 8.000000 | 4.5527215 | 14 | 6 | 6 | 65 | 0 | 5 | 52 | 1 | 43 | 1 | 0 | 0 | 20 | 11 | 64 | 0 | 0 |
| la pilarica | 2018 | 9.916667 | 2.7122059 | 11 | 6 | 21 | 80 | 0 | 1 | 72 | 0 | 47 | 0 | 1 | 0 | 25 | 20 | 73 | 0 | 0 |
| la pinuela | 2014 | 4.666667 | 1.3026779 | 6 | 11 | 5 | 31 | 0 | 3 | 40 | 1 | 15 | 1 | 0 | 0 | 8 | 1 | 45 | 0 | 1 |
| la pinuela | 2015 | 7.083333 | 2.5030285 | 8 | 15 | 14 | 43 | 0 | 5 | 62 | 1 | 22 | 1 | 2 | 0 | 9 | 4 | 69 | 0 | 0 |
| la pinuela | 2016 | 5.500000 | 1.8829377 | 6 | 13 | 15 | 31 | 0 | 1 | 51 | 1 | 14 | 1 | 0 | 0 | 11 | 1 | 53 | 0 | 0 |
| la pinuela | 2017 | 5.083333 | 2.2746961 | 9 | 5 | 10 | 34 | 0 | 3 | 46 | 0 | 15 | 0 | 0 | 0 | 12 | 7 | 42 | 0 | 0 |
| la pinuela | 2018 | 5.500000 | 2.5405797 | 8 | 7 | 10 | 37 | 0 | 4 | 46 | 0 | 20 | 0 | 0 | 0 | 19 | 11 | 36 | 0 | 0 |
| la pradera | 2014 | 7.250000 | 2.8001623 | 16 | 10 | 16 | 38 | 0 | 7 | 60 | 0 | 27 | 0 | 0 | 0 | 13 | 3 | 71 | 0 | 0 |
| la pradera | 2015 | 5.833333 | 1.6966991 | 13 | 9 | 9 | 33 | 0 | 6 | 51 | 0 | 19 | 0 | 0 | 0 | 12 | 3 | 55 | 0 | 0 |
| la pradera | 2016 | 8.083333 | 2.6097138 | 17 | 18 | 12 | 45 | 0 | 5 | 70 | 1 | 26 | 1 | 0 | 0 | 8 | 5 | 83 | 0 | 0 |
| la pradera | 2017 | 6.500000 | 2.7468991 | 11 | 19 | 10 | 34 | 0 | 4 | 61 | 1 | 16 | 1 | 0 | 0 | 13 | 15 | 49 | 0 | 0 |
| la pradera | 2018 | 4.750000 | 1.8647447 | 8 | 5 | 16 | 27 | 0 | 1 | 44 | 0 | 13 | 0 | 0 | 0 | 12 | 22 | 22 | 0 | 1 |
| la rosa | 2014 | 4.166667 | 1.8989630 | 8 | 14 | 3 | 24 | 0 | 1 | 40 | 2 | 8 | 2 | 0 | 0 | 5 | 3 | 40 | 0 | 0 |
| la rosa | 2015 | 4.083333 | 1.6213537 | 11 | 8 | 4 | 23 | 0 | 3 | 40 | 0 | 9 | 0 | 0 | 0 | 4 | 3 | 42 | 0 | 0 |
| la rosa | 2016 | 4.090909 | 1.9211739 | 6 | 8 | 7 | 21 | 0 | 3 | 38 | 0 | 7 | 0 | 0 | 0 | 2 | 4 | 39 | 0 | 0 |
| la rosa | 2017 | 3.090909 | 1.5135749 | 8 | 6 | 3 | 17 | 0 | 0 | 22 | 0 | 12 | 0 | 0 | 0 | 6 | 4 | 24 | 0 | 0 |
| la rosa | 2018 | 4.416667 | 2.6443192 | 5 | 11 | 7 | 29 | 0 | 1 | 34 | 0 | 19 | 0 | 0 | 0 | 14 | 11 | 28 | 0 | 0 |
| la salle | 2014 | 9.000000 | 2.5226249 | 13 | 37 | 17 | 38 | 0 | 3 | 90 | 0 | 18 | 0 | 1 | 0 | 7 | 4 | 96 | 0 | 0 |
| la salle | 2015 | 9.916667 | 2.9374799 | 13 | 43 | 13 | 46 | 0 | 4 | 92 | 1 | 26 | 1 | 1 | 0 | 9 | 4 | 104 | 0 | 0 |
| la salle | 2016 | 10.250000 | 2.5980762 | 12 | 31 | 10 | 59 | 0 | 11 | 84 | 1 | 38 | 1 | 2 | 0 | 16 | 3 | 101 | 0 | 0 |
| la salle | 2017 | 8.833333 | 1.7494588 | 13 | 17 | 18 | 56 | 0 | 2 | 75 | 0 | 31 | 0 | 0 | 0 | 14 | 15 | 77 | 0 | 0 |
| la salle | 2018 | 8.666667 | 2.4984844 | 12 | 28 | 11 | 47 | 0 | 6 | 79 | 1 | 24 | 1 | 1 | 0 | 8 | 22 | 72 | 0 | 0 |
| la sierra | 2014 | 1.000000 | 0.0000000 | 1 | 1 | 1 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 |
| la sierra | 2015 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| la sierra | 2016 | 1.200000 | 0.4472136 | 1 | 1 | 2 | 1 | 0 | 1 | 5 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 5 | 0 | 0 |
| la sierra | 2017 | 1.000000 | 0.0000000 | 2 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 |
| la sierra | 2018 | 1.333333 | 0.5773503 | 1 | 0 | 2 | 0 | 0 | 1 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
| la verde | 2014 | 1.500000 | 0.7071068 | 0 | 0 | 1 | 2 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 |
| la verde | 2015 | 1.500000 | 0.7071068 | 0 | 0 | 2 | 1 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 |
| la verde | 2016 | 1.000000 | 0.0000000 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| la verde | 2017 | 2.428571 | 1.3972763 | 2 | 1 | 2 | 11 | 0 | 1 | 9 | 0 | 8 | 0 | 0 | 9 | 3 | 3 | 2 | 0 | 0 |
| la verde | 2018 | 1.777778 | 1.3017083 | 2 | 0 | 1 | 12 | 0 | 1 | 6 | 0 | 10 | 0 | 0 | 9 | 1 | 4 | 2 | 0 | 0 |
| lalinde | 2014 | 2.777778 | 1.4813657 | 0 | 0 | 2 | 22 | 0 | 1 | 11 | 0 | 14 | 0 | 0 | 0 | 4 | 2 | 18 | 0 | 1 |
| lalinde | 2015 | 2.600000 | 1.1737878 | 0 | 0 | 3 | 23 | 0 | 0 | 14 | 0 | 12 | 0 | 0 | 0 | 6 | 0 | 20 | 0 | 0 |
| lalinde | 2016 | 2.666667 | 1.3026779 | 0 | 2 | 1 | 29 | 0 | 0 | 8 | 0 | 24 | 0 | 0 | 0 | 4 | 1 | 27 | 0 | 0 |
| lalinde | 2017 | 3.416667 | 1.9286516 | 1 | 0 | 0 | 40 | 0 | 0 | 15 | 0 | 26 | 0 | 0 | 0 | 11 | 1 | 29 | 0 | 0 |
| lalinde | 2018 | 2.363636 | 1.2060454 | 0 | 1 | 1 | 24 | 0 | 0 | 7 | 0 | 19 | 0 | 0 | 1 | 5 | 1 | 19 | 0 | 0 |
| las acacias | 2014 | 27.166667 | 6.3365223 | 21 | 15 | 22 | 264 | 0 | 4 | 130 | 2 | 194 | 2 | 1 | 40 | 36 | 2 | 244 | 1 | 0 |
| las acacias | 2015 | 26.083333 | 4.9443877 | 24 | 21 | 23 | 238 | 0 | 7 | 134 | 2 | 177 | 2 | 1 | 40 | 31 | 7 | 232 | 0 | 0 |
| las acacias | 2016 | 28.000000 | 6.7554692 | 31 | 13 | 21 | 257 | 0 | 14 | 148 | 0 | 188 | 0 | 0 | 44 | 38 | 2 | 251 | 1 | 0 |
| las acacias | 2017 | 23.916667 | 3.2879486 | 29 | 18 | 18 | 213 | 0 | 9 | 137 | 0 | 150 | 0 | 0 | 61 | 61 | 31 | 131 | 1 | 2 |
| las acacias | 2018 | 22.416667 | 7.3664884 | 14 | 9 | 16 | 228 | 0 | 2 | 105 | 2 | 162 | 1 | 2 | 63 | 49 | 25 | 129 | 0 | 0 |
| las brisas | 2014 | 16.666667 | 3.4200833 | 31 | 19 | 23 | 121 | 0 | 6 | 124 | 3 | 73 | 3 | 0 | 0 | 16 | 2 | 179 | 0 | 0 |
| las brisas | 2015 | 15.750000 | 4.7887178 | 29 | 7 | 23 | 120 | 0 | 10 | 115 | 1 | 73 | 1 | 2 | 0 | 14 | 7 | 165 | 0 | 0 |
| las brisas | 2016 | 17.916667 | 2.7784343 | 33 | 16 | 15 | 145 | 0 | 6 | 139 | 3 | 73 | 3 | 1 | 0 | 18 | 10 | 182 | 0 | 1 |
| las brisas | 2017 | 17.583333 | 5.0893531 | 29 | 7 | 20 | 145 | 0 | 10 | 122 | 0 | 89 | 0 | 1 | 0 | 30 | 32 | 147 | 0 | 1 |
| las brisas | 2018 | 15.000000 | 3.1622777 | 29 | 14 | 19 | 114 | 0 | 4 | 103 | 1 | 76 | 1 | 2 | 0 | 23 | 29 | 124 | 0 | 1 |
| las esmeraldas | 2014 | 9.083333 | 3.8720052 | 15 | 22 | 15 | 57 | 0 | 0 | 67 | 1 | 41 | 1 | 0 | 0 | 16 | 1 | 90 | 1 | 0 |
| las esmeraldas | 2015 | 8.916667 | 3.1754265 | 8 | 21 | 8 | 62 | 0 | 8 | 63 | 1 | 43 | 1 | 0 | 0 | 10 | 3 | 93 | 0 | 0 |
| las esmeraldas | 2016 | 7.583333 | 2.1933094 | 10 | 15 | 9 | 55 | 0 | 2 | 54 | 1 | 36 | 1 | 0 | 0 | 12 | 5 | 72 | 1 | 0 |
| las esmeraldas | 2017 | 4.000000 | 1.3333333 | 4 | 6 | 3 | 26 | 0 | 1 | 29 | 1 | 10 | 1 | 0 | 0 | 12 | 3 | 24 | 0 | 0 |
| las esmeraldas | 2018 | 3.416667 | 1.5050420 | 7 | 5 | 8 | 21 | 0 | 0 | 28 | 1 | 12 | 1 | 0 | 0 | 6 | 9 | 25 | 0 | 0 |
| las estancias | 2014 | 4.333333 | 1.6696942 | 7 | 20 | 8 | 16 | 0 | 1 | 42 | 0 | 10 | 0 | 0 | 0 | 4 | 2 | 46 | 0 | 0 |
| las estancias | 2015 | 4.416667 | 1.5642793 | 5 | 13 | 11 | 23 | 0 | 1 | 43 | 0 | 10 | 0 | 0 | 0 | 3 | 5 | 45 | 0 | 0 |
| las estancias | 2016 | 4.583333 | 1.8809250 | 11 | 12 | 11 | 19 | 0 | 2 | 43 | 0 | 12 | 0 | 0 | 0 | 4 | 4 | 47 | 0 | 0 |
| las estancias | 2017 | 4.454546 | 2.2522716 | 7 | 15 | 7 | 17 | 0 | 3 | 40 | 0 | 9 | 0 | 1 | 0 | 4 | 10 | 34 | 0 | 0 |
| las estancias | 2018 | 4.000000 | 2.4494897 | 8 | 8 | 7 | 20 | 0 | 5 | 37 | 0 | 11 | 0 | 0 | 0 | 4 | 16 | 28 | 0 | 0 |
| las granjas | 2014 | 21.416667 | 6.4731380 | 29 | 74 | 41 | 102 | 0 | 11 | 198 | 3 | 56 | 3 | 0 | 0 | 28 | 8 | 218 | 0 | 0 |
| las granjas | 2015 | 19.083333 | 5.8380933 | 33 | 48 | 34 | 100 | 0 | 14 | 181 | 4 | 44 | 4 | 2 | 0 | 22 | 8 | 193 | 0 | 0 |
| las granjas | 2016 | 21.500000 | 4.6612523 | 27 | 65 | 26 | 126 | 0 | 14 | 193 | 1 | 64 | 1 | 0 | 0 | 38 | 9 | 209 | 0 | 1 |
| las granjas | 2017 | 15.916667 | 4.1000739 | 27 | 41 | 13 | 102 | 0 | 8 | 131 | 2 | 58 | 2 | 2 | 0 | 29 | 19 | 139 | 0 | 0 |
| las granjas | 2018 | 14.916667 | 3.9418116 | 21 | 34 | 26 | 92 | 0 | 6 | 125 | 4 | 50 | 2 | 0 | 0 | 31 | 39 | 107 | 0 | 0 |
| las independencias | 2014 | 2.222222 | 1.2018504 | 4 | 8 | 5 | 3 | 0 | 0 | 19 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 18 | 0 | 0 |
| las independencias | 2015 | 2.250000 | 1.0350983 | 3 | 7 | 1 | 4 | 0 | 3 | 14 | 0 | 4 | 0 | 0 | 0 | 0 | 1 | 17 | 0 | 0 |
| las independencias | 2016 | 1.666667 | 0.8660254 | 3 | 6 | 1 | 3 | 0 | 2 | 13 | 0 | 2 | 0 | 0 | 0 | 1 | 1 | 13 | 0 | 0 |
| las independencias | 2017 | 1.142857 | 0.3779645 | 0 | 4 | 2 | 2 | 0 | 0 | 6 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 7 | 0 | 0 |
| las independencias | 2018 | 1.571429 | 0.5345225 | 0 | 5 | 0 | 4 | 0 | 2 | 8 | 0 | 3 | 0 | 0 | 0 | 0 | 5 | 6 | 0 | 0 |
| las lomas no.1 | 2014 | 9.250000 | 2.7010099 | 11 | 4 | 7 | 85 | 0 | 4 | 51 | 0 | 60 | 0 | 0 | 0 | 16 | 2 | 92 | 0 | 1 |
| las lomas no.1 | 2015 | 9.416667 | 2.9374799 | 9 | 3 | 6 | 94 | 0 | 1 | 40 | 0 | 73 | 0 | 0 | 0 | 12 | 3 | 98 | 0 | 0 |
| las lomas no.1 | 2016 | 8.250000 | 2.9580399 | 7 | 1 | 7 | 82 | 0 | 2 | 31 | 0 | 68 | 0 | 0 | 0 | 12 | 5 | 81 | 0 | 1 |
| las lomas no.1 | 2017 | 8.416667 | 2.7455198 | 5 | 2 | 5 | 88 | 0 | 1 | 32 | 0 | 69 | 0 | 0 | 0 | 34 | 7 | 59 | 0 | 1 |
| las lomas no.1 | 2018 | 9.916667 | 2.7784343 | 12 | 2 | 2 | 99 | 0 | 4 | 41 | 0 | 78 | 0 | 0 | 1 | 19 | 17 | 82 | 0 | 0 |
| las lomas no.2 | 2014 | 5.833333 | 2.5524795 | 6 | 2 | 7 | 52 | 0 | 3 | 32 | 0 | 38 | 0 | 0 | 0 | 12 | 2 | 56 | 0 | 0 |
| las lomas no.2 | 2015 | 3.833333 | 2.4802248 | 2 | 0 | 6 | 36 | 0 | 2 | 26 | 0 | 20 | 0 | 0 | 0 | 8 | 1 | 37 | 0 | 0 |
| las lomas no.2 | 2016 | 4.583333 | 1.8809250 | 5 | 1 | 5 | 43 | 0 | 1 | 22 | 0 | 33 | 0 | 0 | 0 | 13 | 2 | 39 | 0 | 1 |
| las lomas no.2 | 2017 | 4.666667 | 2.9336088 | 7 | 0 | 1 | 47 | 0 | 1 | 19 | 0 | 37 | 0 | 1 | 0 | 12 | 8 | 34 | 0 | 1 |
| las lomas no.2 | 2018 | 5.333333 | 2.1881222 | 10 | 2 | 3 | 48 | 0 | 1 | 27 | 0 | 37 | 0 | 0 | 0 | 13 | 8 | 42 | 0 | 1 |
| las mercedes | 2014 | 5.500000 | 2.2360680 | 7 | 6 | 9 | 42 | 0 | 2 | 40 | 0 | 26 | 0 | 0 | 1 | 10 | 2 | 53 | 0 | 0 |
| las mercedes | 2015 | 4.750000 | 2.3403574 | 6 | 8 | 6 | 34 | 0 | 3 | 35 | 0 | 22 | 0 | 0 | 0 | 9 | 5 | 43 | 0 | 0 |
| las mercedes | 2016 | 7.166667 | 3.4333480 | 9 | 8 | 6 | 57 | 0 | 6 | 53 | 0 | 33 | 0 | 0 | 0 | 13 | 4 | 69 | 0 | 0 |
| las mercedes | 2017 | 6.083333 | 1.7298625 | 11 | 10 | 7 | 41 | 0 | 4 | 49 | 0 | 24 | 0 | 0 | 1 | 14 | 19 | 39 | 0 | 0 |
| las mercedes | 2018 | 5.500000 | 3.3166248 | 5 | 6 | 3 | 51 | 0 | 1 | 30 | 0 | 36 | 0 | 0 | 3 | 12 | 10 | 41 | 0 | 0 |
| las palmas | 2014 | 9.000000 | 3.4377583 | 19 | 4 | 15 | 67 | 0 | 3 | 65 | 0 | 43 | 0 | 1 | 0 | 13 | 4 | 90 | 0 | 0 |
| las palmas | 2015 | 9.833333 | 3.4859023 | 10 | 10 | 13 | 78 | 0 | 7 | 72 | 0 | 46 | 0 | 0 | 0 | 11 | 2 | 105 | 0 | 0 |
| las palmas | 2016 | 9.916667 | 2.9987371 | 11 | 10 | 14 | 73 | 0 | 11 | 71 | 3 | 45 | 3 | 0 | 2 | 23 | 2 | 89 | 0 | 0 |
| las palmas | 2017 | 10.083333 | 3.8009170 | 15 | 12 | 8 | 80 | 0 | 6 | 61 | 0 | 60 | 0 | 0 | 0 | 27 | 12 | 79 | 0 | 3 |
| las palmas | 2018 | 10.333333 | 3.6514837 | 15 | 3 | 8 | 93 | 0 | 5 | 53 | 1 | 70 | 1 | 0 | 0 | 37 | 13 | 73 | 0 | 0 |
| las playas | 2014 | 8.250000 | 2.9886148 | 13 | 2 | 9 | 70 | 0 | 5 | 58 | 0 | 41 | 0 | 2 | 0 | 14 | 1 | 82 | 0 | 0 |
| las playas | 2015 | 9.166667 | 3.1574827 | 15 | 8 | 10 | 72 | 0 | 5 | 65 | 0 | 45 | 0 | 0 | 0 | 23 | 1 | 86 | 0 | 0 |
| las playas | 2016 | 11.083333 | 3.0587678 | 11 | 7 | 9 | 100 | 0 | 6 | 72 | 0 | 61 | 0 | 0 | 0 | 20 | 3 | 110 | 0 | 0 |
| las playas | 2017 | 9.583333 | 3.0289012 | 19 | 7 | 7 | 74 | 0 | 8 | 77 | 0 | 38 | 0 | 1 | 0 | 31 | 22 | 60 | 0 | 1 |
| las playas | 2018 | 7.666667 | 2.0597146 | 9 | 5 | 6 | 69 | 0 | 3 | 45 | 1 | 46 | 1 | 0 | 0 | 31 | 6 | 54 | 0 | 0 |
| las violetas | 2014 | 7.750000 | 2.5271256 | 12 | 24 | 14 | 42 | 0 | 1 | 69 | 0 | 24 | 0 | 1 | 0 | 11 | 6 | 75 | 0 | 0 |
| las violetas | 2015 | 5.916667 | 2.5746433 | 8 | 16 | 6 | 39 | 0 | 2 | 45 | 1 | 25 | 1 | 0 | 0 | 6 | 2 | 62 | 0 | 0 |
| las violetas | 2016 | 6.666667 | 1.6696942 | 11 | 11 | 10 | 45 | 0 | 3 | 51 | 2 | 27 | 2 | 0 | 0 | 8 | 9 | 61 | 0 | 0 |
| las violetas | 2017 | 5.833333 | 2.5878504 | 7 | 15 | 9 | 35 | 0 | 4 | 44 | 0 | 26 | 0 | 0 | 0 | 2 | 21 | 47 | 0 | 0 |
| las violetas | 2018 | 5.250000 | 1.6025548 | 5 | 7 | 10 | 40 | 0 | 1 | 30 | 1 | 32 | 1 | 1 | 0 | 13 | 12 | 36 | 0 | 0 |
| laureles | 2014 | 22.833333 | 4.2604595 | 17 | 14 | 8 | 233 | 0 | 2 | 115 | 4 | 155 | 4 | 1 | 12 | 65 | 9 | 183 | 0 | 0 |
| laureles | 2015 | 27.083333 | 6.1268164 | 27 | 16 | 5 | 266 | 0 | 11 | 144 | 0 | 181 | 0 | 0 | 6 | 91 | 8 | 220 | 0 | 0 |
| laureles | 2016 | 28.083333 | 5.9917873 | 23 | 14 | 13 | 283 | 0 | 4 | 149 | 2 | 186 | 2 | 0 | 11 | 86 | 8 | 230 | 0 | 0 |
| laureles | 2017 | 25.250000 | 6.0018936 | 30 | 15 | 12 | 242 | 0 | 4 | 142 | 1 | 160 | 1 | 2 | 13 | 112 | 24 | 151 | 0 | 0 |
| laureles | 2018 | 23.000000 | 5.2742944 | 24 | 12 | 11 | 226 | 0 | 3 | 134 | 3 | 139 | 2 | 1 | 19 | 89 | 29 | 134 | 0 | 2 |
| laureles estadio | 2017 | 1.750000 | 0.9574271 | 0 | 4 | 0 | 3 | 0 | 0 | 0 | 7 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| llanaditas | 2014 | 1.777778 | 0.8333333 | 2 | 3 | 2 | 8 | 0 | 1 | 13 | 0 | 3 | 0 | 1 | 0 | 0 | 0 | 15 | 0 | 0 |
| llanaditas | 2015 | 1.000000 | 0.0000000 | 1 | 4 | 0 | 1 | 0 | 0 | 5 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 5 | 0 | 0 |
| llanaditas | 2016 | 1.714286 | 0.9511897 | 1 | 8 | 0 | 3 | 0 | 0 | 9 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
| llanaditas | 2017 | 1.700000 | 0.8232726 | 4 | 6 | 2 | 5 | 0 | 0 | 14 | 0 | 3 | 0 | 0 | 0 | 0 | 3 | 14 | 0 | 0 |
| llanaditas | 2018 | 1.428571 | 0.7867958 | 2 | 4 | 1 | 3 | 0 | 0 | 7 | 0 | 3 | 0 | 0 | 0 | 0 | 2 | 8 | 0 | 0 |
| loma de los bernal | 2014 | 6.333333 | 2.5702258 | 9 | 5 | 6 | 53 | 0 | 3 | 38 | 0 | 38 | 0 | 0 | 2 | 10 | 4 | 60 | 0 | 0 |
| loma de los bernal | 2015 | 6.000000 | 2.8284271 | 7 | 6 | 6 | 49 | 0 | 4 | 32 | 1 | 39 | 1 | 0 | 2 | 6 | 5 | 58 | 0 | 0 |
| loma de los bernal | 2016 | 8.000000 | 2.5584086 | 7 | 6 | 13 | 68 | 0 | 2 | 46 | 1 | 49 | 1 | 1 | 3 | 12 | 9 | 70 | 0 | 0 |
| loma de los bernal | 2017 | 7.083333 | 2.1514618 | 15 | 1 | 4 | 59 | 0 | 6 | 40 | 0 | 45 | 0 | 1 | 2 | 7 | 20 | 55 | 0 | 0 |
| loma de los bernal | 2018 | 5.333333 | 2.2696949 | 7 | 6 | 3 | 47 | 0 | 1 | 27 | 0 | 37 | 0 | 0 | 0 | 9 | 14 | 40 | 0 | 1 |
| lopez de mesa | 2014 | 15.666667 | 3.0251471 | 45 | 22 | 40 | 75 | 0 | 6 | 147 | 0 | 41 | 0 | 3 | 6 | 21 | 5 | 153 | 0 | 0 |
| lopez de mesa | 2015 | 16.500000 | 5.2829055 | 27 | 24 | 35 | 102 | 0 | 10 | 146 | 1 | 51 | 1 | 1 | 13 | 17 | 5 | 161 | 0 | 0 |
| lopez de mesa | 2016 | 15.833333 | 5.5732043 | 46 | 18 | 35 | 82 | 0 | 9 | 143 | 1 | 46 | 1 | 0 | 15 | 17 | 9 | 148 | 0 | 0 |
| lopez de mesa | 2017 | 13.166667 | 3.6390142 | 35 | 12 | 34 | 74 | 0 | 3 | 121 | 0 | 37 | 0 | 0 | 12 | 30 | 23 | 93 | 0 | 0 |
| lopez de mesa | 2018 | 16.583333 | 4.3580299 | 28 | 18 | 56 | 92 | 0 | 5 | 138 | 1 | 60 | 1 | 0 | 4 | 32 | 67 | 95 | 0 | 0 |
| lorena | 2014 | 15.833333 | 3.2983008 | 22 | 18 | 10 | 139 | 0 | 1 | 100 | 2 | 88 | 2 | 1 | 1 | 35 | 10 | 140 | 0 | 1 |
| lorena | 2015 | 17.416667 | 4.4406865 | 11 | 25 | 14 | 154 | 0 | 5 | 116 | 1 | 92 | 1 | 2 | 2 | 27 | 4 | 172 | 0 | 1 |
| lorena | 2016 | 16.416667 | 3.5280263 | 21 | 19 | 12 | 143 | 1 | 1 | 104 | 3 | 90 | 3 | 1 | 1 | 33 | 8 | 150 | 0 | 1 |
| lorena | 2017 | 13.750000 | 5.0294587 | 13 | 6 | 8 | 136 | 0 | 2 | 63 | 1 | 101 | 1 | 0 | 3 | 44 | 19 | 95 | 0 | 3 |
| lorena | 2018 | 13.916667 | 4.2524503 | 8 | 14 | 13 | 129 | 0 | 3 | 79 | 1 | 87 | 0 | 0 | 2 | 41 | 26 | 96 | 1 | 1 |
| loreto | 2014 | 10.750000 | 2.9580399 | 17 | 33 | 21 | 54 | 0 | 4 | 97 | 1 | 31 | 1 | 0 | 0 | 6 | 1 | 121 | 0 | 0 |
| loreto | 2015 | 11.333333 | 3.4989176 | 29 | 34 | 15 | 51 | 0 | 7 | 103 | 0 | 33 | 0 | 0 | 0 | 12 | 2 | 122 | 0 | 0 |
| loreto | 2016 | 11.750000 | 4.0028399 | 27 | 14 | 16 | 75 | 0 | 9 | 97 | 0 | 44 | 0 | 2 | 0 | 12 | 5 | 122 | 0 | 0 |
| loreto | 2017 | 12.750000 | 4.3510709 | 21 | 21 | 14 | 88 | 0 | 9 | 92 | 0 | 61 | 0 | 0 | 0 | 21 | 23 | 109 | 0 | 0 |
| loreto | 2018 | 10.416667 | 3.0587678 | 14 | 18 | 16 | 71 | 0 | 6 | 75 | 2 | 48 | 1 | 1 | 0 | 9 | 27 | 87 | 0 | 0 |
| los alcazares | 2014 | 7.750000 | 3.0188800 | 14 | 8 | 13 | 55 | 0 | 3 | 61 | 2 | 30 | 2 | 1 | 0 | 23 | 0 | 67 | 0 | 0 |
| los alcazares | 2015 | 7.500000 | 1.8340219 | 8 | 15 | 12 | 51 | 0 | 4 | 61 | 2 | 27 | 2 | 0 | 0 | 16 | 4 | 68 | 0 | 0 |
| los alcazares | 2016 | 7.416667 | 2.8109634 | 7 | 9 | 13 | 55 | 0 | 5 | 59 | 0 | 30 | 0 | 0 | 0 | 23 | 1 | 65 | 0 | 0 |
| los alcazares | 2017 | 8.500000 | 2.3159526 | 8 | 11 | 5 | 74 | 0 | 4 | 55 | 1 | 46 | 1 | 0 | 0 | 43 | 13 | 44 | 0 | 1 |
| los alcazares | 2018 | 6.500000 | 2.2763607 | 7 | 4 | 15 | 51 | 0 | 1 | 51 | 0 | 27 | 0 | 0 | 0 | 16 | 20 | 42 | 0 | 0 |
| los alpes | 2014 | 7.916667 | 2.9987371 | 7 | 7 | 15 | 62 | 0 | 4 | 56 | 0 | 39 | 0 | 0 | 0 | 23 | 3 | 69 | 0 | 0 |
| los alpes | 2015 | 6.916667 | 3.1176429 | 9 | 5 | 10 | 57 | 0 | 2 | 47 | 0 | 36 | 0 | 0 | 0 | 17 | 3 | 63 | 0 | 0 |
| los alpes | 2016 | 8.250000 | 3.1370223 | 18 | 7 | 11 | 59 | 0 | 4 | 69 | 1 | 29 | 1 | 0 | 0 | 18 | 3 | 77 | 0 | 0 |
| los alpes | 2017 | 6.583333 | 3.5537006 | 14 | 7 | 8 | 46 | 0 | 4 | 48 | 0 | 31 | 0 | 0 | 1 | 26 | 17 | 35 | 0 | 0 |
| los alpes | 2018 | 6.583333 | 2.1087839 | 8 | 12 | 3 | 53 | 0 | 3 | 45 | 0 | 34 | 0 | 0 | 0 | 33 | 17 | 29 | 0 | 0 |
| los angeles | 2014 | 18.333333 | 3.7254245 | 27 | 18 | 11 | 158 | 0 | 6 | 136 | 0 | 84 | 0 | 1 | 0 | 57 | 3 | 159 | 0 | 0 |
| los angeles | 2015 | 21.750000 | 4.9749372 | 24 | 28 | 15 | 187 | 0 | 7 | 145 | 2 | 114 | 2 | 0 | 0 | 71 | 6 | 182 | 0 | 0 |
| los angeles | 2016 | 20.750000 | 4.8453352 | 27 | 13 | 19 | 183 | 0 | 7 | 138 | 0 | 111 | 0 | 0 | 0 | 56 | 5 | 188 | 0 | 0 |
| los angeles | 2017 | 19.500000 | 5.1433982 | 23 | 15 | 12 | 178 | 0 | 6 | 130 | 0 | 104 | 0 | 2 | 0 | 97 | 25 | 109 | 0 | 1 |
| los angeles | 2018 | 16.333333 | 4.7354242 | 14 | 22 | 16 | 134 | 0 | 10 | 118 | 0 | 78 | 0 | 0 | 0 | 75 | 23 | 98 | 0 | 0 |
| los balsos no.1 | 2014 | 6.083333 | 3.5537006 | 4 | 2 | 3 | 63 | 0 | 1 | 23 | 0 | 50 | 0 | 0 | 0 | 4 | 4 | 65 | 0 | 0 |
| los balsos no.1 | 2015 | 5.833333 | 2.1248886 | 5 | 2 | 2 | 59 | 0 | 2 | 26 | 1 | 43 | 1 | 0 | 0 | 9 | 6 | 54 | 0 | 0 |
| los balsos no.1 | 2016 | 8.000000 | 3.3303017 | 9 | 1 | 4 | 81 | 0 | 1 | 27 | 0 | 69 | 0 | 0 | 1 | 10 | 4 | 79 | 0 | 2 |
| los balsos no.1 | 2017 | 4.500000 | 3.1478709 | 3 | 0 | 1 | 47 | 0 | 3 | 20 | 1 | 33 | 1 | 0 | 0 | 6 | 7 | 38 | 0 | 2 |
| los balsos no.1 | 2018 | 4.583333 | 3.1176429 | 2 | 0 | 1 | 51 | 0 | 1 | 15 | 1 | 39 | 1 | 0 | 1 | 11 | 2 | 39 | 0 | 1 |
| los balsos no.2 | 2014 | 10.250000 | 2.8959219 | 7 | 1 | 6 | 105 | 0 | 4 | 32 | 0 | 91 | 0 | 0 | 1 | 8 | 11 | 103 | 0 | 0 |
| los balsos no.2 | 2015 | 10.500000 | 3.2333490 | 3 | 3 | 2 | 117 | 0 | 1 | 27 | 0 | 99 | 0 | 0 | 0 | 5 | 7 | 114 | 0 | 0 |
| los balsos no.2 | 2016 | 12.500000 | 4.8147501 | 4 | 3 | 2 | 140 | 0 | 1 | 26 | 0 | 124 | 0 | 0 | 1 | 22 | 13 | 112 | 1 | 1 |
| los balsos no.2 | 2017 | 18.333333 | 5.9135182 | 6 | 10 | 5 | 196 | 0 | 3 | 47 | 0 | 173 | 0 | 2 | 1 | 18 | 38 | 157 | 0 | 4 |
| los balsos no.2 | 2018 | 9.750000 | 3.5707142 | 5 | 2 | 6 | 104 | 0 | 0 | 30 | 0 | 87 | 0 | 0 | 1 | 11 | 26 | 78 | 0 | 1 |
| los cerros el vergel | 2014 | 5.416667 | 3.1754265 | 13 | 8 | 9 | 30 | 0 | 5 | 42 | 1 | 22 | 1 | 0 | 0 | 9 | 4 | 51 | 0 | 0 |
| los cerros el vergel | 2015 | 4.333333 | 1.8748737 | 8 | 10 | 7 | 26 | 0 | 1 | 38 | 0 | 14 | 0 | 0 | 0 | 5 | 3 | 44 | 0 | 0 |
| los cerros el vergel | 2016 | 4.250000 | 2.2613351 | 7 | 5 | 12 | 24 | 0 | 3 | 34 | 0 | 17 | 0 | 0 | 0 | 6 | 1 | 44 | 0 | 0 |
| los cerros el vergel | 2017 | 3.000000 | 2.3354968 | 8 | 5 | 0 | 22 | 0 | 1 | 24 | 0 | 12 | 0 | 0 | 0 | 11 | 5 | 20 | 0 | 0 |
| los cerros el vergel | 2018 | 3.000000 | 1.2792043 | 6 | 3 | 5 | 21 | 0 | 1 | 20 | 2 | 14 | 1 | 1 | 0 | 3 | 6 | 25 | 0 | 0 |
| los colores | 2014 | 26.833333 | 6.2788727 | 43 | 32 | 44 | 194 | 0 | 9 | 199 | 1 | 122 | 1 | 2 | 0 | 43 | 8 | 268 | 0 | 0 |
| los colores | 2015 | 22.750000 | 7.1239034 | 33 | 26 | 26 | 180 | 0 | 8 | 160 | 1 | 112 | 1 | 1 | 1 | 41 | 14 | 214 | 0 | 1 |
| los colores | 2016 | 30.500000 | 5.8852667 | 65 | 23 | 33 | 234 | 0 | 11 | 236 | 1 | 129 | 1 | 1 | 1 | 47 | 11 | 305 | 0 | 0 |
| los colores | 2017 | 45.750000 | 9.4496272 | 85 | 34 | 73 | 326 | 1 | 30 | 347 | 2 | 200 | 2 | 1 | 46 | 65 | 60 | 371 | 0 | 4 |
| los colores | 2018 | 38.000000 | 4.0226631 | 54 | 33 | 70 | 280 | 1 | 18 | 289 | 4 | 163 | 4 | 1 | 61 | 38 | 81 | 269 | 1 | 1 |
| los conquistadores | 2014 | 61.250000 | 9.9098207 | 63 | 29 | 51 | 581 | 0 | 11 | 317 | 4 | 414 | 4 | 5 | 11 | 71 | 11 | 627 | 0 | 6 |
| los conquistadores | 2015 | 65.416667 | 8.8979909 | 63 | 44 | 38 | 622 | 0 | 18 | 329 | 6 | 450 | 6 | 1 | 10 | 88 | 14 | 660 | 0 | 6 |
| los conquistadores | 2016 | 68.250000 | 11.2583302 | 86 | 30 | 45 | 623 | 0 | 35 | 367 | 5 | 447 | 5 | 1 | 10 | 78 | 31 | 671 | 1 | 22 |
| los conquistadores | 2017 | 59.416667 | 9.6338261 | 67 | 29 | 43 | 553 | 0 | 21 | 317 | 2 | 394 | 2 | 2 | 14 | 99 | 49 | 510 | 0 | 37 |
| los conquistadores | 2018 | 58.666667 | 10.5772770 | 56 | 34 | 27 | 571 | 0 | 16 | 309 | 2 | 393 | 2 | 4 | 19 | 93 | 81 | 469 | 0 | 36 |
| los mangos | 2014 | 8.583333 | 2.7455198 | 10 | 20 | 23 | 47 | 0 | 3 | 72 | 0 | 31 | 0 | 1 | 0 | 14 | 1 | 87 | 0 | 0 |
| los mangos | 2015 | 9.250000 | 2.6671401 | 10 | 28 | 18 | 49 | 0 | 6 | 87 | 0 | 24 | 0 | 0 | 0 | 11 | 4 | 96 | 0 | 0 |
| los mangos | 2016 | 8.500000 | 2.1532217 | 15 | 20 | 11 | 44 | 0 | 12 | 76 | 2 | 24 | 2 | 0 | 0 | 13 | 2 | 85 | 0 | 0 |
| los mangos | 2017 | 8.333333 | 3.1430539 | 12 | 16 | 12 | 56 | 0 | 4 | 66 | 1 | 33 | 1 | 0 | 0 | 17 | 22 | 60 | 0 | 0 |
| los mangos | 2018 | 7.750000 | 3.0785179 | 9 | 20 | 6 | 56 | 0 | 2 | 61 | 0 | 32 | 0 | 0 | 0 | 11 | 21 | 61 | 0 | 0 |
| los naranjos | 2014 | 8.000000 | 3.5929223 | 8 | 5 | 8 | 71 | 0 | 4 | 39 | 0 | 57 | 0 | 0 | 2 | 11 | 5 | 78 | 0 | 0 |
| los naranjos | 2015 | 8.000000 | 2.2962420 | 5 | 4 | 7 | 77 | 0 | 3 | 38 | 0 | 58 | 0 | 0 | 1 | 13 | 7 | 75 | 0 | 0 |
| los naranjos | 2016 | 6.083333 | 2.2746961 | 4 | 0 | 4 | 62 | 0 | 3 | 20 | 0 | 53 | 0 | 0 | 0 | 13 | 8 | 52 | 0 | 0 |
| los naranjos | 2017 | 8.416667 | 2.9063671 | 7 | 3 | 4 | 85 | 0 | 2 | 29 | 0 | 72 | 0 | 0 | 1 | 14 | 25 | 61 | 0 | 0 |
| los naranjos | 2018 | 8.250000 | 3.3063300 | 6 | 2 | 2 | 88 | 0 | 1 | 28 | 0 | 71 | 0 | 0 | 1 | 14 | 29 | 55 | 0 | 0 |
| los pinos | 2014 | 19.583333 | 3.7769236 | 41 | 13 | 27 | 151 | 0 | 3 | 128 | 1 | 106 | 1 | 2 | 11 | 19 | 3 | 199 | 0 | 0 |
| los pinos | 2015 | 20.666667 | 4.5990776 | 32 | 25 | 19 | 163 | 1 | 8 | 127 | 0 | 121 | 0 | 2 | 10 | 34 | 10 | 192 | 0 | 0 |
| los pinos | 2016 | 19.750000 | 5.9256760 | 24 | 16 | 15 | 175 | 0 | 7 | 117 | 2 | 118 | 2 | 0 | 12 | 18 | 5 | 198 | 0 | 2 |
| los pinos | 2017 | 18.750000 | 6.4402851 | 28 | 12 | 8 | 170 | 0 | 7 | 108 | 0 | 117 | 0 | 1 | 20 | 38 | 15 | 151 | 0 | 0 |
| los pinos | 2018 | 15.250000 | 2.7675063 | 15 | 20 | 16 | 127 | 0 | 5 | 94 | 2 | 87 | 2 | 3 | 7 | 35 | 14 | 121 | 0 | 1 |
| manila | 2014 | 26.666667 | 5.7419245 | 17 | 10 | 16 | 269 | 0 | 8 | 108 | 0 | 212 | 0 | 1 | 52 | 23 | 8 | 230 | 0 | 6 |
| manila | 2015 | 30.666667 | 6.5412444 | 21 | 10 | 24 | 310 | 0 | 3 | 128 | 2 | 238 | 2 | 1 | 43 | 34 | 13 | 270 | 0 | 5 |
| manila | 2016 | 30.333333 | 5.7892272 | 27 | 9 | 20 | 298 | 0 | 10 | 135 | 1 | 228 | 1 | 1 | 49 | 37 | 14 | 251 | 1 | 10 |
| manila | 2017 | 31.833333 | 7.6732515 | 24 | 13 | 11 | 323 | 0 | 11 | 121 | 0 | 261 | 0 | 1 | 74 | 50 | 32 | 198 | 0 | 27 |
| manila | 2018 | 29.750000 | 6.1809826 | 24 | 10 | 11 | 304 | 0 | 8 | 118 | 0 | 239 | 0 | 2 | 66 | 48 | 37 | 181 | 0 | 23 |
| manrique | 2017 | 3.000000 | 2.8284271 | 0 | 3 | 0 | 3 | 0 | 0 | 0 | 6 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| manrique central no. 1 | 2014 | 19.166667 | 4.2175679 | 38 | 30 | 23 | 130 | 0 | 9 | 167 | 5 | 58 | 5 | 0 | 0 | 54 | 4 | 167 | 0 | 0 |
| manrique central no. 1 | 2015 | 18.083333 | 4.4611114 | 29 | 24 | 20 | 135 | 0 | 9 | 147 | 4 | 66 | 4 | 0 | 0 | 43 | 8 | 162 | 0 | 0 |
| manrique central no. 1 | 2016 | 21.333333 | 5.4661493 | 36 | 22 | 22 | 162 | 0 | 14 | 170 | 2 | 84 | 2 | 1 | 0 | 69 | 6 | 178 | 0 | 0 |
| manrique central no. 1 | 2017 | 15.666667 | 4.0973014 | 28 | 11 | 14 | 132 | 0 | 3 | 113 | 0 | 75 | 0 | 1 | 0 | 58 | 14 | 115 | 0 | 0 |
| manrique central no. 1 | 2018 | 19.083333 | 5.8225008 | 27 | 18 | 23 | 152 | 0 | 9 | 139 | 0 | 90 | 0 | 0 | 0 | 88 | 30 | 111 | 0 | 0 |
| manrique central no. 2 | 2014 | 10.583333 | 3.3698755 | 20 | 22 | 19 | 62 | 0 | 4 | 97 | 1 | 29 | 1 | 0 | 0 | 20 | 5 | 100 | 0 | 1 |
| manrique central no. 2 | 2015 | 13.666667 | 2.9949452 | 23 | 28 | 15 | 88 | 0 | 10 | 122 | 1 | 41 | 1 | 1 | 0 | 30 | 6 | 126 | 0 | 0 |
| manrique central no. 2 | 2016 | 10.416667 | 4.2094770 | 10 | 17 | 27 | 66 | 0 | 5 | 91 | 0 | 34 | 0 | 0 | 0 | 19 | 5 | 101 | 0 | 0 |
| manrique central no. 2 | 2017 | 10.916667 | 3.9876704 | 12 | 18 | 16 | 78 | 0 | 7 | 94 | 0 | 37 | 0 | 0 | 0 | 33 | 21 | 77 | 0 | 0 |
| manrique central no. 2 | 2018 | 8.000000 | 3.1622777 | 10 | 8 | 10 | 68 | 0 | 0 | 60 | 0 | 36 | 0 | 0 | 0 | 27 | 24 | 45 | 0 | 0 |
| manrique central no.1 | 2014 | 1.000000 | 0.0000000 | 0 | 0 | 0 | 5 | 0 | 0 | 4 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 2 | 0 | 0 |
| manrique central no.1 | 2015 | 1.500000 | 0.7071068 | 0 | 0 | 1 | 2 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 0 |
| manrique central no.1 | 2016 | 1.600000 | 0.8944272 | 0 | 1 | 0 | 7 | 0 | 0 | 6 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 7 | 0 | 0 |
| manrique central no.1 | 2017 | 1.400000 | 0.5477226 | 0 | 0 | 0 | 7 | 0 | 0 | 4 | 0 | 3 | 0 | 0 | 0 | 4 | 0 | 3 | 0 | 0 |
| manrique central no.1 | 2018 | 1.166667 | 0.4082483 | 0 | 0 | 0 | 7 | 0 | 0 | 3 | 0 | 4 | 0 | 0 | 0 | 5 | 0 | 2 | 0 | 0 |
| manrique central no.2 | 2014 | 1.200000 | 0.4472136 | 1 | 1 | 0 | 4 | 0 | 0 | 3 | 0 | 3 | 0 | 0 | 0 | 2 | 0 | 4 | 0 | 0 |
| manrique central no.2 | 2015 | 1.200000 | 0.4472136 | 0 | 1 | 1 | 4 | 0 | 0 | 5 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 3 | 0 | 0 |
| manrique central no.2 | 2016 | 1.000000 | 0.0000000 | 1 | 0 | 0 | 3 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 3 | 0 | 0 |
| manrique central no.2 | 2017 | 1.200000 | 0.4472136 | 1 | 0 | 1 | 4 | 0 | 0 | 3 | 0 | 3 | 0 | 0 | 0 | 1 | 1 | 4 | 0 | 0 |
| manrique central no.2 | 2018 | 1.000000 | 0.0000000 | 1 | 1 | 2 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 1 | 0 | 0 |
| manrique oriental | 2014 | 16.416667 | 3.3427896 | 18 | 43 | 33 | 96 | 0 | 7 | 158 | 2 | 37 | 2 | 0 | 0 | 38 | 1 | 156 | 0 | 0 |
| manrique oriental | 2015 | 15.916667 | 6.1564206 | 28 | 32 | 20 | 108 | 0 | 3 | 138 | 1 | 52 | 1 | 2 | 0 | 19 | 3 | 166 | 0 | 0 |
| manrique oriental | 2016 | 13.333333 | 5.4494926 | 14 | 19 | 16 | 106 | 0 | 5 | 109 | 1 | 50 | 1 | 0 | 0 | 34 | 4 | 120 | 0 | 1 |
| manrique oriental | 2017 | 14.000000 | 4.5726459 | 21 | 24 | 10 | 106 | 0 | 7 | 116 | 0 | 52 | 0 | 1 | 0 | 41 | 20 | 106 | 0 | 0 |
| manrique oriental | 2018 | 13.416667 | 3.8009170 | 20 | 26 | 18 | 90 | 0 | 7 | 112 | 3 | 46 | 2 | 0 | 0 | 28 | 31 | 100 | 0 | 0 |
| maria cano carambolas | 2014 | 1.500000 | 0.5345225 | 1 | 6 | 0 | 5 | 0 | 0 | 8 | 0 | 4 | 0 | 0 | 0 | 0 | 1 | 11 | 0 | 0 |
| maria cano carambolas | 2015 | 1.666667 | 0.7071068 | 4 | 7 | 1 | 3 | 0 | 0 | 13 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 14 | 0 | 0 |
| maria cano carambolas | 2016 | 1.454546 | 0.5222330 | 1 | 10 | 0 | 5 | 0 | 0 | 13 | 1 | 2 | 1 | 0 | 0 | 1 | 0 | 14 | 0 | 0 |
| maria cano carambolas | 2017 | 1.555556 | 0.8819171 | 3 | 5 | 0 | 4 | 0 | 2 | 10 | 0 | 4 | 0 | 0 | 0 | 0 | 3 | 11 | 0 | 0 |
| maria cano carambolas | 2018 | 1.000000 | 0.0000000 | 1 | 3 | 0 | 2 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 4 | 0 | 0 |
| media luna | 2014 | 1.363636 | 0.5045250 | 6 | 1 | 2 | 5 | 0 | 1 | 12 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 14 | 0 | 0 |
| media luna | 2015 | 1.200000 | 0.4472136 | 1 | 0 | 1 | 4 | 0 | 0 | 5 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 5 | 0 | 0 |
| media luna | 2016 | 1.600000 | 0.8944272 | 4 | 0 | 0 | 3 | 0 | 1 | 7 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 6 | 0 | 0 |
| media luna | 2017 | 1.500000 | 0.7071068 | 2 | 0 | 1 | 0 | 0 | 0 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
| media luna | 2018 | 1.600000 | 0.8944272 | 0 | 1 | 1 | 5 | 0 | 1 | 5 | 2 | 1 | 1 | 0 | 0 | 0 | 1 | 6 | 0 | 0 |
| metropolitano | 2014 | 1.333333 | 0.5773503 | 1 | 0 | 0 | 3 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 3 | 0 | 0 |
| metropolitano | 2015 | 2.166667 | 1.1690452 | 0 | 3 | 3 | 6 | 0 | 1 | 10 | 0 | 3 | 0 | 0 | 0 | 3 | 1 | 9 | 0 | 0 |
| metropolitano | 2016 | 1.375000 | 0.5175492 | 2 | 2 | 2 | 4 | 0 | 1 | 7 | 0 | 4 | 0 | 1 | 0 | 1 | 0 | 9 | 0 | 0 |
| metropolitano | 2017 | 1.200000 | 0.4472136 | 2 | 1 | 1 | 2 | 0 | 0 | 5 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 4 | 0 | 0 |
| metropolitano | 2018 | 1.250000 | 0.5000000 | 1 | 0 | 2 | 1 | 0 | 1 | 4 | 0 | 1 | 0 | 0 | 0 | 0 | 3 | 2 | 0 | 0 |
| mirador del doce | 2014 | 1.400000 | 0.5477226 | 4 | 1 | 1 | 1 | 0 | 0 | 6 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 6 | 0 | 0 |
| mirador del doce | 2015 | 1.800000 | 0.4472136 | 1 | 3 | 2 | 3 | 0 | 0 | 7 | 0 | 2 | 0 | 0 | 0 | 1 | 1 | 7 | 0 | 0 |
| mirador del doce | 2016 | 1.333333 | 0.8164966 | 0 | 4 | 2 | 2 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 |
| mirador del doce | 2017 | 1.428571 | 0.7867958 | 4 | 2 | 2 | 2 | 0 | 0 | 8 | 0 | 2 | 0 | 0 | 0 | 1 | 2 | 7 | 0 | 0 |
| mirador del doce | 2018 | 1.000000 | 0.0000000 | 1 | 3 | 3 | 0 | 0 | 0 | 6 | 1 | 0 | 1 | 0 | 0 | 1 | 2 | 3 | 0 | 0 |
| miraflores | 2014 | 12.500000 | 4.5427265 | 21 | 11 | 15 | 99 | 1 | 3 | 97 | 1 | 52 | 1 | 0 | 0 | 42 | 1 | 106 | 0 | 0 |
| miraflores | 2015 | 10.500000 | 2.7797972 | 12 | 13 | 6 | 88 | 0 | 7 | 88 | 1 | 37 | 1 | 0 | 0 | 37 | 7 | 81 | 0 | 0 |
| miraflores | 2016 | 12.250000 | 3.2227882 | 19 | 11 | 15 | 96 | 0 | 6 | 95 | 0 | 52 | 0 | 0 | 0 | 37 | 10 | 100 | 0 | 0 |
| miraflores | 2017 | 7.833333 | 3.0100841 | 10 | 4 | 5 | 72 | 0 | 3 | 56 | 0 | 38 | 0 | 0 | 0 | 37 | 12 | 45 | 0 | 0 |
| miraflores | 2018 | 8.416667 | 3.2039275 | 8 | 9 | 4 | 73 | 0 | 7 | 57 | 0 | 44 | 0 | 0 | 0 | 42 | 13 | 46 | 0 | 0 |
| miranda | 2014 | 18.333333 | 3.9157800 | 23 | 32 | 21 | 141 | 0 | 3 | 126 | 0 | 94 | 0 | 1 | 1 | 40 | 8 | 170 | 0 | 0 |
| miranda | 2015 | 20.083333 | 3.2601822 | 17 | 31 | 15 | 174 | 0 | 4 | 137 | 0 | 104 | 0 | 0 | 0 | 59 | 4 | 178 | 0 | 0 |
| miranda | 2016 | 17.500000 | 3.6556308 | 30 | 29 | 19 | 124 | 0 | 8 | 130 | 2 | 78 | 2 | 1 | 0 | 55 | 11 | 141 | 0 | 0 |
| miranda | 2017 | 17.333333 | 3.8924947 | 17 | 31 | 18 | 135 | 0 | 7 | 133 | 0 | 75 | 0 | 2 | 0 | 65 | 25 | 116 | 0 | 0 |
| miranda | 2018 | 14.166667 | 2.6911753 | 17 | 19 | 14 | 113 | 0 | 7 | 104 | 0 | 66 | 0 | 0 | 0 | 46 | 33 | 89 | 0 | 2 |
| miravalle | 2014 | 1.800000 | 1.0327956 | 1 | 4 | 0 | 10 | 0 | 3 | 10 | 0 | 8 | 0 | 0 | 0 | 3 | 1 | 14 | 0 | 0 |
| miravalle | 2015 | 1.750000 | 0.8864053 | 1 | 2 | 1 | 10 | 0 | 0 | 8 | 0 | 6 | 0 | 0 | 0 | 3 | 0 | 11 | 0 | 0 |
| miravalle | 2016 | 2.777778 | 1.4813657 | 2 | 1 | 0 | 19 | 0 | 3 | 11 | 0 | 14 | 0 | 0 | 0 | 3 | 0 | 22 | 0 | 0 |
| miravalle | 2017 | 1.875000 | 0.9910312 | 0 | 3 | 2 | 10 | 0 | 0 | 9 | 0 | 6 | 0 | 0 | 0 | 6 | 0 | 9 | 0 | 0 |
| miravalle | 2018 | 1.375000 | 0.7440238 | 2 | 0 | 1 | 8 | 0 | 0 | 4 | 0 | 7 | 0 | 0 | 0 | 3 | 2 | 6 | 0 | 0 |
| monteclaro | 2014 | 1.700000 | 0.8232726 | 3 | 2 | 2 | 8 | 0 | 2 | 12 | 0 | 5 | 0 | 0 | 0 | 0 | 2 | 15 | 0 | 0 |
| monteclaro | 2015 | 1.500000 | 0.5270463 | 5 | 2 | 2 | 5 | 0 | 1 | 12 | 0 | 3 | 0 | 0 | 0 | 0 | 2 | 13 | 0 | 0 |
| monteclaro | 2016 | 2.000000 | 1.3228757 | 7 | 1 | 3 | 6 | 0 | 1 | 15 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 17 | 0 | 0 |
| monteclaro | 2017 | 2.272727 | 1.1037127 | 5 | 3 | 5 | 9 | 0 | 3 | 19 | 0 | 6 | 0 | 0 | 0 | 2 | 4 | 19 | 0 | 0 |
| monteclaro | 2018 | 2.555556 | 0.8819171 | 2 | 3 | 8 | 9 | 0 | 1 | 17 | 0 | 6 | 0 | 0 | 0 | 0 | 7 | 16 | 0 | 0 |
| moravia | 2014 | 26.416667 | 5.7597085 | 33 | 72 | 17 | 181 | 0 | 14 | 177 | 5 | 135 | 5 | 1 | 0 | 25 | 4 | 278 | 0 | 4 |
| moravia | 2015 | 25.250000 | 3.1944554 | 28 | 68 | 28 | 167 | 0 | 12 | 186 | 4 | 113 | 4 | 0 | 0 | 27 | 8 | 260 | 0 | 4 |
| moravia | 2016 | 23.000000 | 3.5929223 | 29 | 68 | 22 | 145 | 0 | 12 | 187 | 6 | 83 | 6 | 0 | 0 | 19 | 10 | 239 | 0 | 2 |
| moravia | 2017 | 16.916667 | 3.2039275 | 31 | 28 | 19 | 117 | 0 | 8 | 136 | 3 | 64 | 3 | 1 | 0 | 24 | 16 | 157 | 0 | 2 |
| moravia | 2018 | 20.416667 | 5.4013186 | 25 | 35 | 19 | 154 | 0 | 12 | 147 | 2 | 96 | 2 | 0 | 5 | 25 | 45 | 166 | 0 | 2 |
| moscu no. 1 | 2014 | 6.333333 | 3.0550505 | 7 | 25 | 5 | 38 | 0 | 1 | 55 | 0 | 21 | 0 | 0 | 0 | 10 | 2 | 64 | 0 | 0 |
| moscu no. 1 | 2015 | 5.500000 | 2.5761141 | 3 | 18 | 4 | 39 | 0 | 2 | 37 | 0 | 29 | 0 | 0 | 0 | 9 | 1 | 56 | 0 | 0 |
| moscu no. 1 | 2016 | 6.250000 | 2.7010099 | 8 | 14 | 9 | 38 | 0 | 6 | 49 | 0 | 26 | 0 | 0 | 0 | 10 | 3 | 62 | 0 | 0 |
| moscu no. 1 | 2017 | 4.500000 | 1.9771421 | 7 | 5 | 7 | 31 | 0 | 4 | 36 | 0 | 18 | 0 | 0 | 0 | 10 | 7 | 37 | 0 | 0 |
| moscu no. 1 | 2018 | 5.833333 | 2.4432963 | 7 | 15 | 11 | 37 | 0 | 0 | 49 | 0 | 21 | 0 | 2 | 0 | 10 | 14 | 43 | 0 | 1 |
| moscu no. 2 | 2014 | 4.833333 | 2.3677121 | 10 | 18 | 11 | 18 | 0 | 1 | 51 | 0 | 7 | 0 | 0 | 0 | 5 | 4 | 49 | 0 | 0 |
| moscu no. 2 | 2015 | 6.500000 | 2.4308622 | 12 | 20 | 13 | 29 | 0 | 4 | 65 | 0 | 13 | 0 | 0 | 0 | 10 | 3 | 65 | 0 | 0 |
| moscu no. 2 | 2016 | 4.750000 | 2.3403574 | 5 | 19 | 9 | 20 | 0 | 4 | 43 | 0 | 14 | 0 | 0 | 0 | 5 | 2 | 49 | 0 | 1 |
| moscu no. 2 | 2017 | 5.333333 | 2.3484360 | 8 | 21 | 10 | 25 | 0 | 0 | 47 | 1 | 16 | 1 | 0 | 0 | 9 | 10 | 44 | 0 | 0 |
| moscu no. 2 | 2018 | 4.363636 | 2.0626550 | 8 | 11 | 8 | 19 | 0 | 2 | 34 | 0 | 14 | 0 | 0 | 0 | 1 | 12 | 35 | 0 | 0 |
| moscu no.1 | 2015 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| moscu no.2 | 2014 | 1.000000 | NA | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| moscu no.2 | 2015 | 1.000000 | 0.0000000 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| moscu no.2 | 2016 | 1.000000 | 0.0000000 | 1 | 1 | 1 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 |
| moscu no.2 | 2017 | 1.000000 | NA | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| moscu no.2 | 2018 | 1.000000 | 0.0000000 | 0 | 1 | 1 | 1 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 0 |
| naranjal | 2014 | 44.666667 | 7.1647284 | 50 | 31 | 40 | 408 | 0 | 7 | 232 | 4 | 300 | 4 | 3 | 0 | 44 | 29 | 451 | 0 | 5 |
| naranjal | 2015 | 53.000000 | 10.2691064 | 63 | 32 | 42 | 487 | 0 | 12 | 241 | 3 | 392 | 3 | 0 | 0 | 55 | 25 | 546 | 0 | 7 |
| naranjal | 2016 | 42.500000 | 8.3502858 | 45 | 25 | 38 | 392 | 0 | 10 | 213 | 3 | 294 | 3 | 0 | 1 | 43 | 28 | 425 | 0 | 10 |
| naranjal | 2017 | 44.750000 | 7.1747664 | 60 | 30 | 36 | 397 | 0 | 14 | 262 | 0 | 275 | 0 | 9 | 1 | 75 | 60 | 378 | 0 | 14 |
| naranjal | 2018 | 40.833333 | 7.5297390 | 49 | 28 | 25 | 369 | 0 | 19 | 217 | 2 | 271 | 2 | 0 | 0 | 75 | 66 | 334 | 0 | 13 |
| nueva villa de aburra | 2014 | 3.181818 | 1.9400094 | 2 | 8 | 2 | 23 | 0 | 0 | 20 | 0 | 15 | 0 | 0 | 0 | 2 | 0 | 33 | 0 | 0 |
| nueva villa de aburra | 2015 | 2.833333 | 1.7494588 | 4 | 0 | 2 | 28 | 0 | 0 | 12 | 0 | 22 | 0 | 0 | 0 | 5 | 0 | 29 | 0 | 0 |
| nueva villa de aburra | 2016 | 3.200000 | 1.4757296 | 4 | 2 | 3 | 22 | 0 | 1 | 22 | 1 | 9 | 1 | 0 | 0 | 4 | 2 | 25 | 0 | 0 |
| nueva villa de aburra | 2017 | 3.727273 | 1.9540168 | 5 | 3 | 2 | 29 | 0 | 2 | 19 | 0 | 22 | 0 | 0 | 0 | 9 | 5 | 27 | 0 | 0 |
| nueva villa de aburra | 2018 | 2.818182 | 1.4709304 | 3 | 2 | 2 | 24 | 0 | 0 | 15 | 0 | 16 | 0 | 0 | 0 | 8 | 1 | 22 | 0 | 0 |
| nueva villa de la iguana | 2014 | 6.916667 | 3.6045006 | 13 | 5 | 8 | 56 | 0 | 1 | 56 | 0 | 27 | 0 | 1 | 0 | 11 | 2 | 68 | 0 | 1 |
| nueva villa de la iguana | 2015 | 6.500000 | 2.4308622 | 9 | 5 | 5 | 55 | 0 | 4 | 48 | 1 | 29 | 1 | 0 | 0 | 16 | 2 | 59 | 0 | 0 |
| nueva villa de la iguana | 2016 | 7.250000 | 2.4167973 | 12 | 9 | 9 | 54 | 0 | 3 | 46 | 1 | 40 | 1 | 0 | 0 | 11 | 3 | 72 | 0 | 0 |
| nueva villa de la iguana | 2017 | 7.583333 | 3.4234043 | 11 | 6 | 4 | 67 | 0 | 3 | 59 | 0 | 32 | 0 | 2 | 0 | 20 | 5 | 63 | 1 | 0 |
| nueva villa de la iguana | 2018 | 7.500000 | 1.6787441 | 10 | 4 | 10 | 63 | 0 | 3 | 57 | 0 | 33 | 0 | 1 | 1 | 16 | 10 | 60 | 0 | 2 |
| nuevos conquistadores | 2014 | 2.444444 | 1.6666667 | 4 | 7 | 4 | 7 | 0 | 0 | 18 | 1 | 3 | 1 | 0 | 0 | 0 | 2 | 19 | 0 | 0 |
| nuevos conquistadores | 2015 | 2.083333 | 0.9962049 | 7 | 7 | 3 | 8 | 0 | 0 | 17 | 0 | 8 | 0 | 0 | 0 | 1 | 1 | 23 | 0 | 0 |
| nuevos conquistadores | 2016 | 2.181818 | 1.3280197 | 4 | 8 | 4 | 4 | 0 | 4 | 23 | 0 | 1 | 0 | 0 | 0 | 1 | 4 | 19 | 0 | 0 |
| nuevos conquistadores | 2017 | 1.625000 | 0.7440238 | 1 | 3 | 1 | 8 | 0 | 0 | 7 | 0 | 6 | 0 | 0 | 0 | 1 | 2 | 10 | 0 | 0 |
| nuevos conquistadores | 2018 | 2.000000 | 1.1547005 | 0 | 2 | 4 | 8 | 0 | 0 | 7 | 0 | 7 | 0 | 0 | 0 | 2 | 2 | 10 | 0 | 0 |
| ocho de marzo | 2014 | 1.111111 | 0.3333333 | 0 | 1 | 1 | 6 | 0 | 2 | 7 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 9 | 0 | 0 |
| ocho de marzo | 2015 | 1.444444 | 0.5270463 | 0 | 2 | 0 | 10 | 0 | 1 | 9 | 0 | 4 | 0 | 0 | 0 | 1 | 0 | 12 | 0 | 0 |
| ocho de marzo | 2016 | 1.800000 | 1.3038405 | 5 | 2 | 0 | 2 | 0 | 0 | 8 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 6 | 0 | 0 |
| ocho de marzo | 2017 | 1.222222 | 0.4409586 | 0 | 4 | 0 | 7 | 0 | 0 | 6 | 0 | 5 | 0 | 0 | 0 | 1 | 2 | 8 | 0 | 0 |
| ocho de marzo | 2018 | 1.857143 | 0.3779645 | 1 | 1 | 1 | 9 | 0 | 1 | 6 | 0 | 7 | 0 | 0 | 0 | 1 | 1 | 11 | 0 | 0 |
| olaya herrera | 2014 | 2.500000 | 1.5075567 | 6 | 12 | 2 | 10 | 0 | 0 | 24 | 0 | 6 | 0 | 0 | 0 | 1 | 4 | 25 | 0 | 0 |
| olaya herrera | 2015 | 3.200000 | 1.8135294 | 6 | 13 | 4 | 8 | 0 | 1 | 28 | 0 | 4 | 0 | 0 | 0 | 0 | 3 | 29 | 0 | 0 |
| olaya herrera | 2016 | 2.700000 | 1.2516656 | 3 | 5 | 6 | 13 | 0 | 0 | 21 | 1 | 5 | 1 | 0 | 0 | 1 | 3 | 22 | 0 | 0 |
| olaya herrera | 2017 | 4.000000 | 1.6514456 | 7 | 7 | 4 | 26 | 0 | 4 | 34 | 0 | 14 | 0 | 0 | 1 | 4 | 10 | 32 | 0 | 1 |
| olaya herrera | 2018 | 3.916667 | 1.7816404 | 9 | 6 | 11 | 21 | 0 | 0 | 32 | 0 | 15 | 0 | 0 | 0 | 2 | 12 | 33 | 0 | 0 |
| oleoducto | 2014 | 5.000000 | 2.8284271 | 4 | 4 | 5 | 47 | 0 | 0 | 31 | 1 | 28 | 1 | 0 | 0 | 1 | 0 | 58 | 0 | 0 |
| oleoducto | 2015 | 6.416667 | 2.8109634 | 3 | 4 | 6 | 62 | 0 | 2 | 42 | 0 | 35 | 0 | 0 | 0 | 2 | 1 | 74 | 0 | 0 |
| oleoducto | 2016 | 4.181818 | 2.2723636 | 3 | 2 | 1 | 37 | 0 | 3 | 27 | 2 | 17 | 2 | 0 | 0 | 3 | 1 | 40 | 0 | 0 |
| oleoducto | 2017 | 10.583333 | 4.9259671 | 12 | 5 | 13 | 93 | 0 | 4 | 85 | 0 | 42 | 0 | 0 | 0 | 4 | 8 | 108 | 0 | 7 |
| oleoducto | 2018 | 14.000000 | 3.6680438 | 16 | 7 | 11 | 122 | 0 | 12 | 106 | 3 | 59 | 2 | 1 | 0 | 7 | 13 | 129 | 0 | 16 |
| oriente | 2014 | 1.600000 | 0.8432740 | 1 | 5 | 3 | 5 | 0 | 2 | 11 | 1 | 4 | 1 | 0 | 0 | 1 | 0 | 14 | 0 | 0 |
| oriente | 2015 | 1.600000 | 0.6992059 | 1 | 10 | 2 | 2 | 0 | 1 | 15 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 15 | 0 | 0 |
| oriente | 2016 | 1.909091 | 1.0444659 | 1 | 11 | 1 | 7 | 0 | 1 | 18 | 0 | 3 | 0 | 0 | 0 | 2 | 3 | 16 | 0 | 0 |
| oriente | 2017 | 1.875000 | 1.3562027 | 2 | 0 | 1 | 10 | 0 | 2 | 11 | 1 | 3 | 1 | 0 | 0 | 0 | 3 | 11 | 0 | 0 |
| oriente | 2018 | 2.200000 | 1.1352924 | 3 | 4 | 5 | 9 | 0 | 1 | 17 | 2 | 3 | 1 | 0 | 0 | 3 | 10 | 8 | 0 | 0 |
| pablo vi | 2014 | 1.727273 | 0.4670994 | 2 | 6 | 2 | 9 | 0 | 0 | 14 | 0 | 5 | 0 | 0 | 0 | 1 | 0 | 18 | 0 | 0 |
| pablo vi | 2015 | 2.200000 | 1.2292726 | 2 | 9 | 2 | 8 | 0 | 1 | 15 | 1 | 6 | 1 | 0 | 0 | 0 | 0 | 20 | 0 | 1 |
| pablo vi | 2016 | 1.666667 | 0.7784989 | 2 | 7 | 1 | 8 | 0 | 2 | 13 | 0 | 7 | 0 | 1 | 0 | 0 | 0 | 19 | 0 | 0 |
| pablo vi | 2017 | 1.900000 | 0.7378648 | 1 | 6 | 0 | 12 | 0 | 0 | 11 | 0 | 8 | 0 | 0 | 0 | 3 | 3 | 13 | 0 | 0 |
| pablo vi | 2018 | 1.714286 | 0.4879500 | 1 | 2 | 1 | 7 | 0 | 1 | 7 | 1 | 4 | 1 | 0 | 0 | 2 | 1 | 8 | 0 | 0 |
| pajarito | 2014 | 1.600000 | 0.5477226 | 2 | 1 | 2 | 2 | 0 | 1 | 7 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 7 | 0 | 0 |
| pajarito | 2015 | 1.600000 | 1.0749677 | 3 | 1 | 3 | 7 | 0 | 2 | 14 | 0 | 2 | 0 | 0 | 0 | 0 | 3 | 13 | 0 | 0 |
| pajarito | 2016 | 1.909091 | 0.9438798 | 3 | 1 | 5 | 11 | 0 | 1 | 13 | 0 | 8 | 0 | 0 | 0 | 2 | 1 | 18 | 0 | 0 |
| pajarito | 2017 | 2.272727 | 1.1908744 | 6 | 2 | 1 | 15 | 0 | 1 | 15 | 0 | 10 | 0 | 0 | 0 | 6 | 5 | 14 | 0 | 0 |
| pajarito | 2018 | 2.750000 | 1.2154311 | 9 | 4 | 10 | 9 | 0 | 1 | 28 | 0 | 5 | 0 | 0 | 0 | 4 | 10 | 19 | 0 | 0 |
| palenque | 2014 | 8.250000 | 2.5980762 | 16 | 11 | 14 | 53 | 0 | 5 | 65 | 0 | 34 | 0 | 2 | 0 | 7 | 3 | 87 | 0 | 0 |
| palenque | 2015 | 7.083333 | 2.5030285 | 13 | 6 | 18 | 48 | 0 | 0 | 57 | 0 | 28 | 0 | 0 | 0 | 14 | 2 | 69 | 0 | 0 |
| palenque | 2016 | 7.416667 | 2.9682665 | 12 | 10 | 9 | 57 | 0 | 1 | 49 | 1 | 39 | 1 | 0 | 0 | 8 | 1 | 79 | 0 | 0 |
| palenque | 2017 | 4.583333 | 2.1514618 | 6 | 5 | 7 | 36 | 0 | 1 | 31 | 0 | 24 | 0 | 1 | 0 | 12 | 5 | 37 | 0 | 0 |
| palenque | 2018 | 5.916667 | 2.8749177 | 7 | 5 | 8 | 48 | 0 | 3 | 44 | 0 | 27 | 0 | 0 | 0 | 14 | 19 | 36 | 0 | 2 |
| palermo | 2014 | 3.583333 | 1.1645002 | 5 | 9 | 4 | 24 | 1 | 0 | 29 | 0 | 14 | 0 | 0 | 0 | 2 | 1 | 40 | 0 | 0 |
| palermo | 2015 | 4.416667 | 1.7298625 | 5 | 8 | 3 | 34 | 0 | 3 | 33 | 1 | 19 | 1 | 0 | 0 | 10 | 0 | 42 | 0 | 0 |
| palermo | 2016 | 5.416667 | 3.3967453 | 11 | 11 | 7 | 33 | 0 | 3 | 46 | 0 | 19 | 0 | 0 | 6 | 4 | 1 | 52 | 0 | 2 |
| palermo | 2017 | 7.333333 | 2.9949452 | 5 | 17 | 11 | 52 | 0 | 3 | 52 | 1 | 35 | 1 | 0 | 8 | 8 | 8 | 54 | 0 | 9 |
| palermo | 2018 | 9.083333 | 1.8809250 | 16 | 13 | 10 | 66 | 0 | 4 | 71 | 1 | 37 | 1 | 1 | 13 | 12 | 10 | 69 | 0 | 3 |
| parque juan pablo ii | 2014 | 10.416667 | 2.5030285 | 10 | 7 | 10 | 93 | 0 | 5 | 69 | 2 | 54 | 2 | 0 | 0 | 17 | 4 | 102 | 0 | 0 |
| parque juan pablo ii | 2015 | 9.083333 | 2.6784776 | 11 | 9 | 10 | 75 | 0 | 4 | 74 | 3 | 32 | 3 | 0 | 0 | 13 | 3 | 90 | 0 | 0 |
| parque juan pablo ii | 2016 | 13.750000 | 4.3301270 | 28 | 4 | 14 | 109 | 0 | 10 | 113 | 0 | 52 | 0 | 0 | 1 | 22 | 4 | 138 | 0 | 0 |
| parque juan pablo ii | 2017 | 13.000000 | 3.0748245 | 15 | 6 | 12 | 114 | 0 | 9 | 78 | 1 | 77 | 1 | 1 | 11 | 29 | 25 | 89 | 0 | 0 |
| parque juan pablo ii | 2018 | 12.500000 | 4.2958754 | 12 | 11 | 5 | 115 | 0 | 7 | 84 | 2 | 64 | 1 | 0 | 17 | 17 | 18 | 97 | 0 | 0 |
| parque norte | 2014 | 7.833333 | 3.4067669 | 11 | 8 | 3 | 71 | 0 | 1 | 45 | 0 | 49 | 0 | 1 | 0 | 11 | 1 | 79 | 0 | 2 |
| parque norte | 2015 | 8.083333 | 2.0207259 | 12 | 9 | 4 | 69 | 0 | 3 | 53 | 1 | 43 | 1 | 0 | 0 | 7 | 0 | 86 | 0 | 3 |
| parque norte | 2016 | 8.416667 | 2.9987371 | 7 | 9 | 11 | 70 | 0 | 4 | 61 | 0 | 40 | 0 | 0 | 0 | 16 | 1 | 83 | 0 | 1 |
| parque norte | 2017 | 3.727273 | 2.4531983 | 5 | 3 | 5 | 26 | 0 | 2 | 25 | 0 | 16 | 0 | 0 | 0 | 6 | 7 | 28 | 0 | 0 |
| parque norte | 2018 | 3.300000 | 1.8287822 | 2 | 5 | 2 | 23 | 0 | 1 | 16 | 0 | 17 | 0 | 0 | 0 | 6 | 3 | 24 | 0 | 0 |
| patio bonito | 2014 | 15.666667 | 6.7733882 | 16 | 9 | 13 | 146 | 0 | 4 | 78 | 0 | 110 | 0 | 1 | 0 | 25 | 5 | 156 | 0 | 1 |
| patio bonito | 2015 | 14.750000 | 5.7227616 | 11 | 4 | 6 | 154 | 0 | 2 | 68 | 1 | 108 | 1 | 0 | 0 | 26 | 3 | 147 | 0 | 0 |
| patio bonito | 2016 | 14.333333 | 4.7161875 | 11 | 5 | 7 | 141 | 0 | 8 | 69 | 1 | 102 | 1 | 0 | 0 | 18 | 3 | 150 | 0 | 0 |
| patio bonito | 2017 | 18.166667 | 3.5376760 | 16 | 6 | 8 | 183 | 0 | 5 | 81 | 0 | 137 | 0 | 1 | 0 | 31 | 12 | 171 | 0 | 3 |
| patio bonito | 2018 | 17.083333 | 5.3335701 | 8 | 9 | 8 | 177 | 0 | 3 | 71 | 0 | 134 | 0 | 1 | 1 | 33 | 14 | 153 | 0 | 3 |
| pedregal | 2014 | 15.583333 | 5.0535016 | 39 | 32 | 40 | 71 | 0 | 5 | 156 | 0 | 31 | 0 | 2 | 0 | 27 | 7 | 151 | 0 | 0 |
| pedregal | 2015 | 14.833333 | 3.0100841 | 25 | 37 | 19 | 88 | 0 | 9 | 138 | 1 | 39 | 1 | 0 | 2 | 38 | 8 | 129 | 0 | 0 |
| pedregal | 2016 | 14.250000 | 4.2022721 | 24 | 34 | 31 | 77 | 0 | 5 | 137 | 2 | 32 | 2 | 0 | 2 | 35 | 8 | 124 | 0 | 0 |
| pedregal | 2017 | 15.000000 | 5.5595945 | 32 | 33 | 28 | 80 | 0 | 7 | 144 | 1 | 35 | 1 | 1 | 1 | 29 | 34 | 114 | 0 | 0 |
| pedregal | 2018 | 15.416667 | 4.1221868 | 27 | 34 | 42 | 77 | 0 | 5 | 146 | 3 | 36 | 2 | 0 | 4 | 35 | 57 | 87 | 0 | 0 |
| pedregal alto | 2014 | 1.000000 | 0.0000000 | 1 | 0 | 1 | 3 | 0 | 0 | 3 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 |
| pedregal alto | 2015 | 1.500000 | 0.8366600 | 1 | 0 | 2 | 4 | 0 | 2 | 7 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 8 | 0 | 0 |
| pedregal alto | 2016 | 2.000000 | 1.2247449 | 3 | 2 | 3 | 2 | 0 | 0 | 9 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 9 | 0 | 0 |
| pedregal alto | 2017 | 1.285714 | 0.4879500 | 3 | 0 | 2 | 3 | 0 | 1 | 8 | 0 | 1 | 0 | 0 | 0 | 1 | 2 | 6 | 0 | 0 |
| pedregal alto | 2018 | 1.300000 | 0.6749486 | 4 | 0 | 4 | 5 | 0 | 0 | 10 | 0 | 3 | 0 | 0 | 0 | 1 | 6 | 6 | 0 | 0 |
| pedregal bajo | 2014 | 2.750000 | 1.5447860 | 12 | 1 | 5 | 14 | 0 | 1 | 25 | 0 | 8 | 0 | 0 | 0 | 2 | 1 | 30 | 0 | 0 |
| pedregal bajo | 2015 | 2.454546 | 1.3684763 | 3 | 3 | 8 | 10 | 0 | 3 | 24 | 0 | 3 | 0 | 0 | 0 | 1 | 1 | 25 | 0 | 0 |
| pedregal bajo | 2016 | 2.181818 | 1.3280197 | 5 | 1 | 5 | 11 | 0 | 2 | 21 | 0 | 3 | 0 | 0 | 0 | 1 | 2 | 21 | 0 | 0 |
| pedregal bajo | 2017 | 2.000000 | 1.6733201 | 0 | 0 | 4 | 7 | 0 | 1 | 9 | 0 | 3 | 0 | 0 | 0 | 1 | 3 | 8 | 0 | 0 |
| pedregal bajo | 2018 | 1.000000 | 0.0000000 | 1 | 1 | 1 | 1 | 0 | 0 | 3 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 3 | 0 | 0 |
| perpetuo socorro | 2014 | 64.583333 | 8.6493125 | 72 | 29 | 40 | 612 | 0 | 22 | 384 | 2 | 389 | 2 | 4 | 19 | 112 | 15 | 603 | 0 | 20 |
| perpetuo socorro | 2015 | 67.000000 | 7.8624539 | 55 | 41 | 52 | 632 | 0 | 24 | 388 | 4 | 412 | 4 | 4 | 17 | 150 | 18 | 602 | 0 | 9 |
| perpetuo socorro | 2016 | 72.916667 | 10.6979890 | 96 | 32 | 54 | 673 | 0 | 20 | 402 | 5 | 468 | 5 | 2 | 22 | 145 | 20 | 665 | 0 | 16 |
| perpetuo socorro | 2017 | 72.583333 | 6.4731380 | 63 | 28 | 54 | 702 | 0 | 24 | 373 | 0 | 498 | 0 | 4 | 24 | 201 | 55 | 542 | 0 | 45 |
| perpetuo socorro | 2018 | 66.416667 | 10.0946280 | 67 | 30 | 48 | 629 | 0 | 23 | 349 | 3 | 445 | 1 | 3 | 22 | 172 | 61 | 496 | 0 | 42 |
| picachito | 2014 | 1.714286 | 0.9511897 | 4 | 4 | 4 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
| picachito | 2015 | 1.571429 | 0.5345225 | 4 | 3 | 0 | 4 | 0 | 0 | 10 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 10 | 0 | 0 |
| picachito | 2016 | 1.625000 | 1.1877349 | 3 | 3 | 3 | 3 | 0 | 1 | 12 | 0 | 1 | 0 | 0 | 0 | 2 | 3 | 8 | 0 | 0 |
| picachito | 2017 | 1.500000 | 0.7977240 | 1 | 5 | 4 | 4 | 0 | 4 | 16 | 0 | 2 | 0 | 1 | 0 | 0 | 4 | 13 | 0 | 0 |
| picachito | 2018 | 2.000000 | 1.0954451 | 6 | 0 | 9 | 6 | 0 | 1 | 18 | 0 | 4 | 0 | 0 | 0 | 2 | 11 | 9 | 0 | 0 |
| picacho | 2014 | 12.250000 | 3.8641711 | 29 | 25 | 35 | 57 | 0 | 1 | 118 | 0 | 29 | 0 | 0 | 0 | 10 | 7 | 130 | 0 | 0 |
| picacho | 2015 | 12.916667 | 2.7455198 | 29 | 18 | 38 | 63 | 0 | 7 | 120 | 0 | 35 | 0 | 0 | 0 | 12 | 6 | 137 | 0 | 0 |
| picacho | 2016 | 14.000000 | 3.7899388 | 32 | 42 | 28 | 61 | 0 | 5 | 130 | 0 | 38 | 0 | 0 | 0 | 19 | 12 | 137 | 0 | 0 |
| picacho | 2017 | 13.000000 | 5.5103209 | 30 | 24 | 36 | 61 | 0 | 5 | 123 | 1 | 32 | 1 | 0 | 0 | 13 | 34 | 108 | 0 | 0 |
| picacho | 2018 | 12.166667 | 3.5632807 | 20 | 21 | 35 | 68 | 0 | 2 | 109 | 0 | 37 | 0 | 0 | 0 | 16 | 57 | 71 | 0 | 2 |
| piedra gorda | 2017 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| piedras blancas | 2014 | 1.272727 | 0.6466698 | 2 | 5 | 2 | 4 | 0 | 1 | 11 | 0 | 3 | 0 | 0 | 0 | 0 | 2 | 12 | 0 | 0 |
| piedras blancas | 2015 | 2.300000 | 1.3374935 | 1 | 10 | 3 | 7 | 0 | 2 | 21 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 22 | 0 | 0 |
| piedras blancas | 2016 | 1.600000 | 0.6992059 | 1 | 6 | 3 | 6 | 0 | 0 | 12 | 1 | 3 | 1 | 0 | 0 | 0 | 2 | 13 | 0 | 0 |
| piedras blancas | 2017 | 2.500000 | 1.2692955 | 3 | 12 | 3 | 6 | 0 | 1 | 21 | 0 | 4 | 0 | 1 | 0 | 1 | 9 | 14 | 0 | 0 |
| piedras blancas | 2018 | 2.333333 | 1.4142136 | 0 | 7 | 2 | 12 | 0 | 0 | 14 | 0 | 7 | 0 | 0 | 0 | 0 | 5 | 16 | 0 | 0 |
| piedras blancas - matasano | 2015 | 1.000000 | NA | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| piedras blancas represa | 2014 | 1.333333 | 0.8164966 | 2 | 1 | 3 | 1 | 0 | 1 | 7 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 |
| piedras blancas represa | 2015 | 1.666667 | 0.5773503 | 0 | 0 | 0 | 5 | 0 | 0 | 3 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 |
| piedras blancas represa | 2016 | 1.000000 | 0.0000000 | 0 | 0 | 2 | 1 | 0 | 0 | 2 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
| piedras blancas represa | 2017 | 1.000000 | 0.0000000 | 1 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| piedras blancas represa | 2018 | 1.500000 | 0.5773503 | 2 | 0 | 1 | 2 | 0 | 1 | 5 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 5 | 0 | 0 |
| playon de los comuneros | 2014 | 5.333333 | 2.2696949 | 7 | 23 | 4 | 30 | 0 | 0 | 48 | 0 | 16 | 0 | 1 | 0 | 7 | 1 | 55 | 0 | 0 |
| playon de los comuneros | 2015 | 5.416667 | 2.4293034 | 6 | 7 | 12 | 36 | 0 | 4 | 47 | 1 | 17 | 1 | 0 | 0 | 7 | 2 | 55 | 0 | 0 |
| playon de los comuneros | 2016 | 4.500000 | 2.2763607 | 4 | 15 | 4 | 25 | 0 | 6 | 43 | 0 | 11 | 0 | 0 | 0 | 3 | 3 | 48 | 0 | 0 |
| playon de los comuneros | 2017 | 5.250000 | 2.0943647 | 9 | 8 | 2 | 43 | 0 | 1 | 34 | 0 | 29 | 0 | 0 | 0 | 21 | 8 | 34 | 0 | 0 |
| playon de los comuneros | 2018 | 6.166667 | 2.3677121 | 9 | 10 | 5 | 46 | 0 | 4 | 43 | 2 | 29 | 1 | 0 | 0 | 10 | 12 | 50 | 0 | 1 |
| plaza de ferias | 2014 | 2.333333 | 1.3026779 | 2 | 1 | 2 | 23 | 0 | 0 | 18 | 0 | 10 | 0 | 0 | 0 | 3 | 0 | 25 | 0 | 0 |
| plaza de ferias | 2015 | 2.333333 | 1.5811388 | 1 | 5 | 0 | 14 | 0 | 1 | 11 | 1 | 9 | 1 | 0 | 0 | 3 | 0 | 16 | 0 | 1 |
| plaza de ferias | 2016 | 3.000000 | 2.0449494 | 1 | 4 | 2 | 29 | 0 | 0 | 23 | 0 | 13 | 0 | 0 | 0 | 6 | 2 | 28 | 0 | 0 |
| plaza de ferias | 2017 | 2.363636 | 1.2060454 | 0 | 3 | 2 | 20 | 0 | 1 | 18 | 0 | 8 | 0 | 0 | 0 | 8 | 3 | 15 | 0 | 0 |
| plaza de ferias | 2018 | 2.000000 | 0.8660254 | 0 | 0 | 0 | 18 | 0 | 0 | 8 | 0 | 10 | 0 | 0 | 0 | 1 | 1 | 16 | 0 | 0 |
| popular | 2014 | 10.083333 | 3.8954130 | 18 | 35 | 18 | 48 | 1 | 1 | 85 | 1 | 35 | 1 | 2 | 0 | 4 | 1 | 113 | 0 | 0 |
| popular | 2015 | 7.916667 | 3.1176429 | 11 | 25 | 16 | 39 | 0 | 4 | 71 | 0 | 24 | 0 | 0 | 0 | 7 | 7 | 81 | 0 | 0 |
| popular | 2016 | 7.333333 | 3.0846639 | 9 | 29 | 6 | 41 | 0 | 3 | 60 | 0 | 28 | 0 | 0 | 0 | 5 | 3 | 80 | 0 | 0 |
| popular | 2017 | 6.583333 | 1.8809250 | 6 | 20 | 16 | 33 | 0 | 4 | 55 | 1 | 23 | 1 | 0 | 0 | 7 | 14 | 57 | 0 | 0 |
| popular | 2018 | 6.750000 | 2.0504988 | 16 | 18 | 13 | 32 | 0 | 2 | 57 | 0 | 24 | 0 | 0 | 0 | 5 | 30 | 46 | 0 | 0 |
| potrerito | 2014 | 1.000000 | 0.0000000 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
| potrerito | 2015 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| potrerito | 2017 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| potrerito | 2018 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| prado | 2014 | 38.583333 | 6.0371326 | 42 | 41 | 36 | 335 | 0 | 9 | 252 | 2 | 209 | 2 | 0 | 0 | 116 | 3 | 342 | 0 | 0 |
| prado | 2015 | 36.166667 | 6.8600733 | 34 | 35 | 36 | 311 | 0 | 18 | 236 | 2 | 196 | 2 | 1 | 1 | 121 | 5 | 304 | 0 | 0 |
| prado | 2016 | 33.500000 | 6.5017480 | 37 | 36 | 25 | 284 | 1 | 19 | 233 | 2 | 167 | 2 | 3 | 0 | 110 | 9 | 278 | 0 | 0 |
| prado | 2017 | 31.666667 | 7.7733032 | 29 | 23 | 21 | 296 | 0 | 11 | 214 | 0 | 166 | 0 | 0 | 0 | 187 | 25 | 167 | 0 | 1 |
| prado | 2018 | 29.000000 | 6.1200119 | 25 | 29 | 25 | 261 | 0 | 8 | 212 | 8 | 128 | 5 | 2 | 0 | 176 | 37 | 128 | 0 | 0 |
| robledo | 2014 | 14.500000 | 2.9076701 | 29 | 18 | 23 | 100 | 0 | 4 | 107 | 0 | 67 | 0 | 0 | 0 | 25 | 5 | 143 | 0 | 1 |
| robledo | 2015 | 17.500000 | 5.1433982 | 35 | 25 | 27 | 108 | 0 | 15 | 143 | 1 | 66 | 1 | 1 | 0 | 28 | 7 | 172 | 0 | 1 |
| robledo | 2016 | 17.416667 | 4.9627400 | 42 | 17 | 36 | 97 | 0 | 17 | 160 | 1 | 48 | 1 | 0 | 0 | 15 | 10 | 182 | 0 | 1 |
| robledo | 2017 | 20.750000 | 5.9103146 | 53 | 13 | 41 | 125 | 0 | 17 | 174 | 2 | 73 | 2 | 0 | 0 | 39 | 43 | 164 | 0 | 1 |
| robledo | 2018 | 15.750000 | 3.8168288 | 26 | 11 | 41 | 101 | 0 | 10 | 134 | 1 | 54 | 1 | 0 | 0 | 25 | 56 | 106 | 0 | 1 |
| rosales | 2014 | 22.333333 | 3.1430539 | 19 | 17 | 21 | 208 | 0 | 3 | 135 | 0 | 133 | 0 | 1 | 0 | 56 | 5 | 203 | 0 | 3 |
| rosales | 2015 | 23.833333 | 6.6446606 | 21 | 13 | 16 | 229 | 0 | 7 | 148 | 1 | 137 | 1 | 0 | 3 | 78 | 3 | 199 | 0 | 2 |
| rosales | 2016 | 27.500000 | 4.3379928 | 20 | 11 | 30 | 255 | 0 | 14 | 180 | 2 | 148 | 2 | 1 | 2 | 76 | 8 | 239 | 1 | 1 |
| rosales | 2017 | 25.500000 | 6.4737231 | 31 | 18 | 16 | 230 | 0 | 11 | 174 | 0 | 132 | 0 | 1 | 0 | 120 | 25 | 156 | 0 | 4 |
| rosales | 2018 | 26.083333 | 4.2949936 | 18 | 19 | 15 | 257 | 0 | 4 | 160 | 3 | 150 | 2 | 0 | 4 | 107 | 26 | 170 | 0 | 4 |
| san antonio | 2014 | 1.400000 | 0.5477226 | 2 | 1 | 2 | 2 | 0 | 0 | 5 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 |
| san antonio | 2015 | 1.400000 | 0.5477226 | 0 | 1 | 1 | 4 | 0 | 1 | 4 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 |
| san antonio | 2016 | 1.200000 | 0.4472136 | 0 | 2 | 1 | 2 | 0 | 1 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 |
| san antonio | 2017 | 2.000000 | NA | 1 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
| san antonio | 2018 | 1.000000 | NA | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| san benito | 2014 | 58.000000 | 11.3458042 | 46 | 97 | 45 | 497 | 0 | 11 | 305 | 7 | 384 | 7 | 2 | 0 | 83 | 17 | 580 | 0 | 7 |
| san benito | 2015 | 72.333333 | 14.4243061 | 55 | 105 | 53 | 633 | 0 | 22 | 369 | 13 | 486 | 13 | 1 | 2 | 74 | 22 | 751 | 0 | 5 |
| san benito | 2016 | 60.833333 | 8.8094302 | 56 | 88 | 46 | 519 | 0 | 21 | 333 | 4 | 393 | 4 | 1 | 0 | 82 | 26 | 608 | 2 | 7 |
| san benito | 2017 | 47.083333 | 10.5525381 | 48 | 55 | 23 | 425 | 0 | 14 | 224 | 3 | 338 | 3 | 2 | 2 | 99 | 43 | 405 | 0 | 11 |
| san benito | 2018 | 48.166667 | 8.9932635 | 32 | 65 | 31 | 435 | 1 | 14 | 240 | 1 | 337 | 1 | 0 | 1 | 111 | 61 | 392 | 0 | 12 |
| san bernardo | 2014 | 15.166667 | 3.0100841 | 15 | 17 | 17 | 125 | 0 | 8 | 99 | 0 | 83 | 0 | 1 | 0 | 32 | 1 | 148 | 0 | 0 |
| san bernardo | 2015 | 15.916667 | 2.2343733 | 12 | 26 | 16 | 131 | 0 | 6 | 120 | 1 | 70 | 1 | 0 | 0 | 32 | 6 | 152 | 0 | 0 |
| san bernardo | 2016 | 19.916667 | 4.0330078 | 30 | 27 | 22 | 152 | 0 | 8 | 146 | 1 | 92 | 1 | 0 | 0 | 56 | 7 | 174 | 0 | 1 |
| san bernardo | 2017 | 17.333333 | 5.1049590 | 30 | 20 | 19 | 129 | 0 | 10 | 123 | 1 | 84 | 1 | 2 | 0 | 61 | 28 | 116 | 0 | 0 |
| san bernardo | 2018 | 15.750000 | 3.3063300 | 19 | 21 | 11 | 132 | 0 | 6 | 108 | 6 | 75 | 4 | 1 | 0 | 70 | 24 | 90 | 0 | 0 |
| san diego | 2014 | 45.666667 | 9.7731853 | 48 | 41 | 51 | 393 | 0 | 15 | 248 | 2 | 298 | 2 | 1 | 17 | 47 | 17 | 447 | 0 | 17 |
| san diego | 2015 | 48.666667 | 7.8315601 | 55 | 32 | 36 | 446 | 0 | 15 | 244 | 0 | 340 | 0 | 1 | 32 | 42 | 24 | 480 | 0 | 5 |
| san diego | 2016 | 49.833333 | 6.0877423 | 51 | 22 | 32 | 477 | 0 | 16 | 238 | 2 | 358 | 2 | 1 | 35 | 45 | 30 | 473 | 0 | 12 |
| san diego | 2017 | 48.916667 | 7.2545701 | 60 | 31 | 36 | 444 | 0 | 16 | 246 | 2 | 339 | 2 | 1 | 45 | 70 | 63 | 381 | 0 | 25 |
| san diego | 2018 | 45.250000 | 7.2503918 | 29 | 22 | 22 | 454 | 0 | 16 | 174 | 6 | 363 | 4 | 1 | 50 | 83 | 67 | 318 | 0 | 20 |
| san german | 2014 | 8.416667 | 3.6545945 | 12 | 13 | 7 | 69 | 0 | 0 | 50 | 0 | 51 | 0 | 2 | 0 | 12 | 4 | 83 | 0 | 0 |
| san german | 2015 | 9.583333 | 3.7284736 | 11 | 15 | 6 | 78 | 0 | 5 | 66 | 3 | 46 | 3 | 1 | 1 | 16 | 2 | 92 | 0 | 0 |
| san german | 2016 | 10.583333 | 2.7784343 | 11 | 14 | 6 | 92 | 0 | 4 | 78 | 0 | 49 | 0 | 1 | 0 | 12 | 6 | 105 | 0 | 3 |
| san german | 2017 | 11.083333 | 3.8954130 | 12 | 7 | 8 | 102 | 0 | 4 | 69 | 0 | 64 | 0 | 0 | 0 | 31 | 13 | 86 | 0 | 3 |
| san german | 2018 | 14.583333 | 5.5670840 | 14 | 17 | 12 | 128 | 0 | 4 | 92 | 2 | 81 | 2 | 1 | 1 | 32 | 25 | 112 | 0 | 2 |
| san isidro | 2014 | 13.166667 | 3.4067669 | 30 | 25 | 24 | 74 | 0 | 5 | 113 | 2 | 43 | 2 | 1 | 0 | 23 | 2 | 128 | 0 | 2 |
| san isidro | 2015 | 15.416667 | 3.7284736 | 26 | 31 | 26 | 97 | 0 | 5 | 139 | 1 | 45 | 1 | 0 | 0 | 34 | 5 | 143 | 0 | 2 |
| san isidro | 2016 | 19.083333 | 3.3967453 | 37 | 33 | 31 | 116 | 0 | 12 | 173 | 2 | 54 | 2 | 1 | 2 | 49 | 7 | 167 | 0 | 1 |
| san isidro | 2017 | 19.000000 | 3.5675303 | 37 | 21 | 25 | 139 | 0 | 6 | 157 | 0 | 71 | 0 | 0 | 2 | 69 | 40 | 115 | 0 | 2 |
| san isidro | 2018 | 17.333333 | 6.4291005 | 25 | 25 | 31 | 119 | 0 | 8 | 144 | 0 | 64 | 0 | 1 | 8 | 49 | 40 | 103 | 0 | 7 |
| san javier | 2017 | 1.000000 | 0.0000000 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| san javier no.1 | 2014 | 13.500000 | 3.0000000 | 25 | 23 | 23 | 84 | 0 | 7 | 119 | 0 | 43 | 0 | 0 | 3 | 24 | 6 | 128 | 0 | 1 |
| san javier no.1 | 2015 | 11.666667 | 2.5346089 | 20 | 17 | 15 | 79 | 0 | 9 | 90 | 1 | 49 | 1 | 0 | 7 | 21 | 6 | 105 | 0 | 0 |
| san javier no.1 | 2016 | 12.583333 | 2.9987371 | 18 | 20 | 20 | 84 | 0 | 9 | 106 | 2 | 43 | 2 | 0 | 9 | 28 | 2 | 110 | 0 | 0 |
| san javier no.1 | 2017 | 12.750000 | 4.7887178 | 25 | 17 | 20 | 83 | 0 | 8 | 111 | 1 | 41 | 1 | 0 | 10 | 39 | 30 | 73 | 0 | 0 |
| san javier no.1 | 2018 | 10.250000 | 4.4543135 | 12 | 20 | 13 | 74 | 0 | 4 | 84 | 0 | 39 | 0 | 0 | 9 | 42 | 23 | 49 | 0 | 0 |
| san javier no.2 | 2014 | 5.666667 | 1.5569979 | 8 | 16 | 7 | 36 | 0 | 1 | 42 | 1 | 25 | 1 | 1 | 0 | 13 | 1 | 52 | 0 | 0 |
| san javier no.2 | 2015 | 4.250000 | 1.7645499 | 5 | 11 | 7 | 28 | 0 | 0 | 35 | 0 | 16 | 0 | 0 | 1 | 5 | 2 | 43 | 0 | 0 |
| san javier no.2 | 2016 | 6.250000 | 1.9128750 | 8 | 20 | 8 | 35 | 0 | 4 | 55 | 0 | 20 | 0 | 0 | 0 | 14 | 2 | 59 | 0 | 0 |
| san javier no.2 | 2017 | 4.454546 | 1.7529196 | 8 | 6 | 4 | 31 | 0 | 0 | 30 | 0 | 19 | 0 | 0 | 0 | 15 | 8 | 26 | 0 | 0 |
| san javier no.2 | 2018 | 4.000000 | 1.8586408 | 5 | 6 | 8 | 28 | 0 | 1 | 25 | 0 | 23 | 0 | 0 | 0 | 14 | 8 | 26 | 0 | 0 |
| san joaquin | 2014 | 11.000000 | 2.8919952 | 9 | 9 | 6 | 105 | 0 | 3 | 57 | 2 | 73 | 2 | 0 | 0 | 21 | 4 | 105 | 0 | 0 |
| san joaquin | 2015 | 11.333333 | 3.7979261 | 8 | 12 | 8 | 105 | 0 | 3 | 73 | 0 | 63 | 0 | 0 | 0 | 21 | 2 | 112 | 0 | 1 |
| san joaquin | 2016 | 13.416667 | 3.9648073 | 14 | 13 | 7 | 119 | 0 | 8 | 88 | 1 | 72 | 1 | 0 | 0 | 30 | 6 | 123 | 1 | 0 |
| san joaquin | 2017 | 8.833333 | 3.5118846 | 8 | 10 | 3 | 82 | 0 | 3 | 47 | 1 | 58 | 1 | 0 | 0 | 24 | 6 | 75 | 0 | 0 |
| san joaquin | 2018 | 10.750000 | 3.8876261 | 8 | 7 | 4 | 107 | 0 | 3 | 56 | 3 | 70 | 2 | 1 | 0 | 38 | 9 | 79 | 0 | 0 |
| san jose de la montana | 2017 | 1.000000 | NA | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| san jose de la montana | 2018 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| san jose la cima no. 1 | 2014 | 1.000000 | 0.0000000 | 1 | 2 | 0 | 1 | 0 | 1 | 4 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 4 | 0 | 0 |
| san jose la cima no. 1 | 2015 | 1.571429 | 0.7867958 | 0 | 4 | 0 | 7 | 0 | 0 | 7 | 1 | 3 | 1 | 0 | 0 | 0 | 0 | 10 | 0 | 0 |
| san jose la cima no. 1 | 2016 | 1.333333 | 0.5163978 | 2 | 1 | 2 | 3 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 |
| san jose la cima no. 1 | 2017 | 1.400000 | 0.5477226 | 3 | 0 | 1 | 3 | 0 | 0 | 4 | 0 | 3 | 0 | 0 | 0 | 1 | 2 | 4 | 0 | 0 |
| san jose la cima no. 1 | 2018 | 1.250000 | 0.5000000 | 0 | 4 | 1 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 3 | 0 | 0 |
| san jose la cima no.2 | 2014 | 1.000000 | 0.0000000 | 4 | 2 | 2 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 6 | 0 | 0 |
| san jose la cima no.2 | 2015 | 1.000000 | 0.0000000 | 0 | 1 | 1 | 1 | 0 | 1 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
| san jose la cima no.2 | 2016 | 1.000000 | 0.0000000 | 1 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| san jose la cima no.2 | 2017 | 1.500000 | 0.7071068 | 2 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 |
| san jose la cima no.2 | 2018 | 1.000000 | 0.0000000 | 0 | 1 | 1 | 0 | 0 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| san lucas | 2014 | 2.750000 | 1.4222262 | 1 | 1 | 1 | 30 | 0 | 0 | 8 | 0 | 25 | 0 | 0 | 1 | 1 | 2 | 29 | 0 | 0 |
| san lucas | 2015 | 1.750000 | 1.2154311 | 1 | 2 | 0 | 17 | 0 | 1 | 6 | 1 | 14 | 1 | 0 | 0 | 3 | 3 | 14 | 0 | 0 |
| san lucas | 2016 | 2.416667 | 1.1645002 | 4 | 2 | 1 | 21 | 0 | 1 | 10 | 0 | 19 | 0 | 0 | 0 | 0 | 0 | 29 | 0 | 0 |
| san lucas | 2017 | 4.636364 | 2.2033033 | 2 | 1 | 2 | 45 | 0 | 1 | 10 | 0 | 41 | 0 | 0 | 1 | 5 | 9 | 36 | 0 | 0 |
| san lucas | 2018 | 4.909091 | 2.4679767 | 2 | 3 | 1 | 45 | 0 | 3 | 13 | 0 | 41 | 0 | 0 | 0 | 4 | 10 | 39 | 0 | 1 |
| san martin de porres | 2014 | 10.166667 | 2.9797295 | 19 | 20 | 31 | 50 | 0 | 2 | 88 | 1 | 33 | 1 | 1 | 0 | 11 | 4 | 105 | 0 | 0 |
| san martin de porres | 2015 | 10.083333 | 2.6443192 | 20 | 20 | 17 | 54 | 0 | 10 | 86 | 0 | 35 | 0 | 1 | 0 | 18 | 7 | 95 | 0 | 0 |
| san martin de porres | 2016 | 9.583333 | 3.2601822 | 25 | 18 | 21 | 44 | 0 | 7 | 88 | 0 | 27 | 0 | 0 | 0 | 15 | 7 | 93 | 0 | 0 |
| san martin de porres | 2017 | 10.416667 | 3.9876704 | 19 | 21 | 18 | 60 | 0 | 7 | 91 | 0 | 34 | 0 | 1 | 0 | 24 | 26 | 74 | 0 | 0 |
| san martin de porres | 2018 | 10.916667 | 3.6296339 | 21 | 19 | 31 | 56 | 0 | 4 | 102 | 0 | 29 | 0 | 2 | 0 | 23 | 45 | 61 | 0 | 0 |
| san miguel | 2014 | 16.000000 | 4.1778637 | 21 | 17 | 25 | 124 | 0 | 5 | 138 | 3 | 51 | 3 | 1 | 0 | 57 | 2 | 129 | 0 | 0 |
| san miguel | 2015 | 14.000000 | 3.4112115 | 12 | 13 | 8 | 127 | 0 | 8 | 112 | 1 | 55 | 1 | 0 | 0 | 62 | 4 | 101 | 0 | 0 |
| san miguel | 2016 | 12.583333 | 3.0289012 | 22 | 16 | 13 | 93 | 0 | 7 | 112 | 0 | 39 | 0 | 0 | 0 | 65 | 2 | 84 | 0 | 0 |
| san miguel | 2017 | 13.416667 | 3.8954130 | 16 | 10 | 17 | 110 | 0 | 8 | 109 | 0 | 52 | 0 | 0 | 0 | 79 | 23 | 58 | 1 | 0 |
| san miguel | 2018 | 11.583333 | 3.9186810 | 14 | 10 | 15 | 93 | 0 | 7 | 96 | 0 | 43 | 0 | 0 | 0 | 56 | 20 | 62 | 0 | 1 |
| san pablo | 2014 | 6.818182 | 2.9603440 | 6 | 37 | 8 | 22 | 0 | 2 | 67 | 0 | 8 | 0 | 0 | 0 | 4 | 2 | 69 | 0 | 0 |
| san pablo | 2015 | 7.166667 | 1.6966991 | 10 | 24 | 17 | 31 | 0 | 4 | 70 | 0 | 16 | 0 | 0 | 0 | 9 | 3 | 74 | 0 | 0 |
| san pablo | 2016 | 6.333333 | 3.3393884 | 10 | 21 | 11 | 31 | 0 | 3 | 58 | 0 | 18 | 0 | 0 | 0 | 7 | 3 | 66 | 0 | 0 |
| san pablo | 2017 | 5.583333 | 1.7816404 | 10 | 8 | 10 | 37 | 0 | 2 | 42 | 0 | 25 | 0 | 0 | 0 | 10 | 4 | 53 | 0 | 0 |
| san pablo | 2018 | 5.000000 | 1.5954481 | 7 | 13 | 14 | 21 | 0 | 5 | 48 | 0 | 12 | 0 | 0 | 0 | 7 | 24 | 29 | 0 | 0 |
| san pedro | 2014 | 16.916667 | 4.9074773 | 22 | 17 | 25 | 136 | 0 | 3 | 114 | 1 | 88 | 1 | 0 | 16 | 43 | 2 | 141 | 0 | 0 |
| san pedro | 2015 | 15.500000 | 4.2958754 | 21 | 16 | 14 | 133 | 0 | 2 | 95 | 2 | 89 | 2 | 0 | 12 | 38 | 3 | 131 | 0 | 0 |
| san pedro | 2016 | 17.166667 | 6.5758972 | 13 | 23 | 22 | 146 | 0 | 2 | 111 | 3 | 92 | 3 | 2 | 13 | 42 | 3 | 143 | 0 | 0 |
| san pedro | 2017 | 14.916667 | 3.0289012 | 20 | 19 | 7 | 128 | 0 | 5 | 94 | 0 | 85 | 0 | 2 | 26 | 53 | 17 | 81 | 0 | 0 |
| san pedro | 2018 | 14.750000 | 4.0926764 | 12 | 20 | 11 | 130 | 0 | 4 | 85 | 0 | 92 | 0 | 0 | 19 | 51 | 20 | 87 | 0 | 0 |
| santa cruz | 2014 | 6.583333 | 3.4498573 | 10 | 21 | 11 | 34 | 0 | 3 | 59 | 2 | 18 | 2 | 2 | 0 | 10 | 3 | 62 | 0 | 0 |
| santa cruz | 2015 | 4.416667 | 1.8809250 | 4 | 15 | 7 | 26 | 0 | 1 | 45 | 1 | 7 | 1 | 0 | 0 | 11 | 0 | 41 | 0 | 0 |
| santa cruz | 2016 | 4.500000 | 2.5045413 | 7 | 14 | 2 | 31 | 0 | 0 | 41 | 0 | 13 | 0 | 0 | 0 | 7 | 3 | 44 | 0 | 0 |
| santa cruz | 2017 | 5.000000 | 1.8090681 | 7 | 16 | 5 | 30 | 0 | 2 | 38 | 5 | 17 | 5 | 1 | 0 | 8 | 3 | 43 | 0 | 0 |
| santa cruz | 2018 | 5.916667 | 2.8109634 | 13 | 12 | 6 | 38 | 0 | 2 | 53 | 0 | 18 | 0 | 0 | 1 | 13 | 18 | 39 | 0 | 0 |
| santa fe | 2014 | 56.083333 | 8.7952294 | 58 | 34 | 60 | 491 | 1 | 29 | 364 | 3 | 306 | 3 | 2 | 10 | 74 | 4 | 572 | 0 | 8 |
| santa fe | 2015 | 47.916667 | 6.5151339 | 57 | 48 | 61 | 390 | 0 | 19 | 336 | 3 | 236 | 3 | 2 | 18 | 62 | 9 | 478 | 0 | 3 |
| santa fe | 2016 | 58.000000 | 8.9035233 | 72 | 51 | 41 | 510 | 0 | 22 | 381 | 3 | 312 | 3 | 0 | 16 | 75 | 23 | 571 | 0 | 8 |
| santa fe | 2017 | 59.666667 | 9.6137528 | 87 | 25 | 42 | 530 | 0 | 32 | 395 | 3 | 318 | 3 | 5 | 32 | 109 | 63 | 492 | 0 | 12 |
| santa fe | 2018 | 59.666667 | 10.2985730 | 63 | 35 | 35 | 560 | 1 | 22 | 335 | 8 | 373 | 6 | 2 | 27 | 125 | 44 | 509 | 0 | 3 |
| santa ines | 2014 | 11.333333 | 3.2844906 | 23 | 33 | 16 | 59 | 0 | 5 | 106 | 0 | 30 | 0 | 1 | 1 | 9 | 5 | 120 | 0 | 0 |
| santa ines | 2015 | 8.250000 | 2.1794495 | 16 | 17 | 17 | 47 | 0 | 2 | 68 | 1 | 30 | 1 | 0 | 0 | 11 | 2 | 85 | 0 | 0 |
| santa ines | 2016 | 9.083333 | 1.6213537 | 14 | 23 | 13 | 56 | 0 | 3 | 81 | 0 | 28 | 0 | 0 | 1 | 14 | 5 | 89 | 0 | 0 |
| santa ines | 2017 | 7.416667 | 1.7816404 | 10 | 14 | 9 | 53 | 0 | 3 | 58 | 0 | 31 | 0 | 0 | 1 | 20 | 10 | 58 | 0 | 0 |
| santa ines | 2018 | 9.583333 | 3.7284736 | 19 | 25 | 8 | 58 | 0 | 5 | 81 | 2 | 32 | 2 | 1 | 0 | 17 | 32 | 63 | 0 | 0 |
| santa lucia | 2014 | 5.111111 | 2.1473498 | 4 | 9 | 8 | 24 | 0 | 1 | 31 | 0 | 15 | 0 | 0 | 0 | 4 | 0 | 42 | 0 | 0 |
| santa lucia | 2015 | 4.666667 | 1.5569979 | 5 | 12 | 8 | 30 | 0 | 1 | 37 | 0 | 19 | 0 | 0 | 0 | 7 | 1 | 48 | 0 | 0 |
| santa lucia | 2016 | 3.583333 | 1.4433757 | 1 | 9 | 7 | 21 | 0 | 5 | 31 | 0 | 12 | 0 | 0 | 0 | 5 | 1 | 37 | 0 | 0 |
| santa lucia | 2017 | 5.250000 | 1.9128750 | 9 | 7 | 2 | 42 | 0 | 3 | 41 | 0 | 22 | 0 | 0 | 0 | 20 | 4 | 39 | 0 | 0 |
| santa lucia | 2018 | 3.916667 | 1.7816404 | 1 | 11 | 3 | 32 | 0 | 0 | 23 | 1 | 23 | 1 | 0 | 0 | 13 | 4 | 29 | 0 | 0 |
| santa margarita | 2014 | 2.444444 | 2.2973415 | 4 | 1 | 3 | 10 | 0 | 4 | 16 | 0 | 6 | 0 | 0 | 0 | 3 | 0 | 19 | 0 | 0 |
| santa margarita | 2015 | 2.083333 | 1.1645002 | 2 | 4 | 10 | 9 | 0 | 0 | 16 | 0 | 9 | 0 | 1 | 0 | 1 | 0 | 22 | 0 | 1 |
| santa margarita | 2016 | 2.636364 | 1.5015144 | 5 | 3 | 8 | 10 | 0 | 3 | 22 | 0 | 7 | 0 | 0 | 0 | 4 | 1 | 24 | 0 | 0 |
| santa margarita | 2017 | 5.090909 | 2.8444523 | 10 | 2 | 12 | 30 | 0 | 2 | 44 | 0 | 12 | 0 | 0 | 0 | 4 | 12 | 40 | 0 | 0 |
| santa margarita | 2018 | 7.083333 | 2.8749177 | 14 | 9 | 18 | 41 | 0 | 3 | 63 | 2 | 20 | 2 | 0 | 0 | 10 | 22 | 49 | 0 | 2 |
| santa maria de los angeles | 2014 | 13.750000 | 3.0785179 | 13 | 4 | 7 | 139 | 0 | 2 | 56 | 0 | 109 | 0 | 1 | 0 | 20 | 8 | 134 | 0 | 2 |
| santa maria de los angeles | 2015 | 14.583333 | 3.3967453 | 8 | 4 | 6 | 152 | 0 | 5 | 58 | 1 | 116 | 1 | 1 | 0 | 12 | 9 | 150 | 0 | 2 |
| santa maria de los angeles | 2016 | 15.416667 | 3.3427896 | 24 | 7 | 12 | 138 | 0 | 4 | 76 | 3 | 106 | 3 | 0 | 0 | 8 | 11 | 163 | 0 | 0 |
| santa maria de los angeles | 2017 | 22.833333 | 3.5376760 | 28 | 3 | 15 | 217 | 0 | 11 | 115 | 0 | 159 | 0 | 2 | 0 | 32 | 32 | 201 | 0 | 7 |
| santa maria de los angeles | 2018 | 14.583333 | 4.6992907 | 18 | 7 | 9 | 137 | 0 | 4 | 67 | 3 | 105 | 2 | 2 | 0 | 21 | 17 | 132 | 0 | 1 |
| santa monica | 2014 | 6.833333 | 1.3371158 | 11 | 4 | 8 | 59 | 0 | 0 | 46 | 1 | 35 | 1 | 0 | 0 | 24 | 1 | 56 | 0 | 0 |
| santa monica | 2015 | 6.583333 | 2.3915888 | 15 | 5 | 5 | 51 | 0 | 3 | 54 | 1 | 24 | 1 | 0 | 0 | 24 | 2 | 52 | 0 | 0 |
| santa monica | 2016 | 8.250000 | 2.8643578 | 9 | 3 | 17 | 69 | 0 | 1 | 67 | 0 | 32 | 0 | 0 | 0 | 29 | 3 | 67 | 0 | 0 |
| santa monica | 2017 | 6.333333 | 3.0251471 | 7 | 4 | 9 | 53 | 0 | 3 | 53 | 0 | 23 | 0 | 0 | 0 | 32 | 11 | 33 | 0 | 0 |
| santa monica | 2018 | 5.333333 | 1.8257419 | 6 | 6 | 4 | 47 | 0 | 1 | 39 | 0 | 25 | 0 | 1 | 0 | 27 | 7 | 29 | 0 | 0 |
| santa rosa de lima | 2014 | 1.400000 | 0.5477226 | 1 | 1 | 2 | 2 | 0 | 1 | 5 | 1 | 1 | 1 | 0 | 0 | 2 | 0 | 4 | 0 | 0 |
| santa rosa de lima | 2015 | 1.333333 | 0.5773503 | 0 | 1 | 0 | 3 | 0 | 0 | 3 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 0 |
| santa rosa de lima | 2016 | 1.000000 | NA | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| santa rosa de lima | 2017 | 1.333333 | 0.5163978 | 1 | 0 | 3 | 4 | 0 | 0 | 5 | 0 | 3 | 0 | 0 | 0 | 0 | 2 | 6 | 0 | 0 |
| santa rosa de lima | 2018 | 1.000000 | 0.0000000 | 2 | 2 | 0 | 2 | 0 | 0 | 5 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 4 | 0 | 0 |
| santa teresita | 2014 | 4.583333 | 1.8319554 | 4 | 3 | 2 | 45 | 0 | 1 | 32 | 0 | 23 | 0 | 1 | 0 | 15 | 2 | 37 | 0 | 0 |
| santa teresita | 2015 | 4.583333 | 1.5050420 | 4 | 5 | 1 | 43 | 0 | 2 | 29 | 0 | 26 | 0 | 0 | 0 | 16 | 2 | 37 | 0 | 0 |
| santa teresita | 2016 | 4.666667 | 2.3484360 | 2 | 3 | 2 | 45 | 0 | 4 | 29 | 0 | 27 | 0 | 0 | 0 | 25 | 1 | 30 | 0 | 0 |
| santa teresita | 2017 | 4.750000 | 1.4847712 | 8 | 3 | 2 | 43 | 0 | 1 | 32 | 0 | 25 | 0 | 0 | 0 | 23 | 10 | 24 | 0 | 0 |
| santa teresita | 2018 | 5.181818 | 2.0404990 | 4 | 2 | 3 | 48 | 0 | 0 | 27 | 0 | 30 | 0 | 0 | 0 | 22 | 7 | 28 | 0 | 0 |
| santander | 2014 | 8.166667 | 2.6571801 | 15 | 29 | 20 | 32 | 0 | 2 | 80 | 1 | 17 | 1 | 0 | 0 | 7 | 5 | 85 | 0 | 0 |
| santander | 2015 | 7.583333 | 3.2601822 | 9 | 22 | 22 | 33 | 0 | 5 | 75 | 1 | 15 | 1 | 0 | 0 | 4 | 9 | 77 | 0 | 0 |
| santander | 2016 | 9.333333 | 4.1633320 | 21 | 20 | 21 | 47 | 0 | 3 | 84 | 3 | 25 | 3 | 0 | 0 | 13 | 3 | 93 | 0 | 0 |
| santander | 2017 | 10.833333 | 4.4890439 | 23 | 31 | 24 | 50 | 0 | 2 | 105 | 1 | 24 | 1 | 2 | 0 | 27 | 22 | 78 | 0 | 0 |
| santander | 2018 | 8.666667 | 3.6762959 | 12 | 26 | 25 | 40 | 0 | 1 | 85 | 2 | 17 | 2 | 0 | 0 | 16 | 37 | 49 | 0 | 0 |
| santo domingo savio no. 1 | 2014 | 9.666667 | 2.8069179 | 14 | 41 | 19 | 32 | 0 | 10 | 89 | 1 | 26 | 1 | 0 | 0 | 5 | 5 | 105 | 0 | 0 |
| santo domingo savio no. 1 | 2015 | 8.333333 | 3.0550505 | 14 | 41 | 19 | 23 | 0 | 3 | 83 | 1 | 16 | 1 | 0 | 0 | 6 | 7 | 86 | 0 | 0 |
| santo domingo savio no. 1 | 2016 | 9.166667 | 2.8867513 | 19 | 34 | 18 | 33 | 0 | 6 | 87 | 0 | 23 | 0 | 0 | 0 | 3 | 10 | 97 | 0 | 0 |
| santo domingo savio no. 1 | 2017 | 6.666667 | 3.0550505 | 10 | 24 | 3 | 38 | 0 | 5 | 51 | 0 | 29 | 0 | 0 | 0 | 7 | 13 | 60 | 0 | 0 |
| santo domingo savio no. 1 | 2018 | 7.750000 | 3.1370223 | 22 | 33 | 12 | 23 | 0 | 3 | 78 | 3 | 12 | 3 | 0 | 0 | 7 | 35 | 48 | 0 | 0 |
| santo domingo savio no. 2 | 2014 | 3.250000 | 1.5447860 | 2 | 14 | 8 | 15 | 0 | 0 | 34 | 0 | 5 | 0 | 0 | 0 | 1 | 3 | 35 | 0 | 0 |
| santo domingo savio no. 2 | 2015 | 3.272727 | 1.7372915 | 2 | 20 | 5 | 8 | 0 | 1 | 28 | 1 | 7 | 1 | 1 | 0 | 0 | 2 | 32 | 0 | 0 |
| santo domingo savio no. 2 | 2016 | 3.416667 | 2.2746961 | 5 | 19 | 7 | 10 | 0 | 0 | 35 | 1 | 5 | 1 | 0 | 0 | 0 | 4 | 36 | 0 | 0 |
| santo domingo savio no. 2 | 2017 | 3.200000 | 1.2292726 | 7 | 10 | 4 | 11 | 0 | 0 | 21 | 0 | 11 | 0 | 0 | 0 | 3 | 10 | 19 | 0 | 0 |
| santo domingo savio no. 2 | 2018 | 2.250000 | 0.9653073 | 1 | 8 | 5 | 12 | 0 | 1 | 18 | 0 | 9 | 0 | 0 | 0 | 2 | 9 | 16 | 0 | 0 |
| santo domingo savio no.1 | 2014 | 1.000000 | 0.0000000 | 1 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| santo domingo savio no.1 | 2015 | 1.000000 | NA | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| santo domingo savio no.1 | 2017 | 1.000000 | 0.0000000 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| santo domingo savio no.1 | 2018 | 1.000000 | 0.0000000 | 0 | 0 | 1 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| sevilla | 2014 | 21.000000 | 3.9312270 | 18 | 31 | 19 | 181 | 0 | 3 | 123 | 3 | 126 | 3 | 0 | 10 | 42 | 4 | 192 | 1 | 0 |
| sevilla | 2015 | 20.333333 | 5.9288713 | 29 | 22 | 31 | 157 | 0 | 5 | 138 | 2 | 104 | 2 | 2 | 4 | 35 | 10 | 191 | 0 | 0 |
| sevilla | 2016 | 19.583333 | 5.5507302 | 19 | 17 | 18 | 177 | 0 | 4 | 115 | 2 | 118 | 2 | 0 | 13 | 46 | 8 | 165 | 1 | 0 |
| sevilla | 2017 | 24.583333 | 7.0124348 | 40 | 23 | 30 | 194 | 0 | 8 | 165 | 1 | 129 | 1 | 0 | 16 | 55 | 40 | 183 | 0 | 0 |
| sevilla | 2018 | 19.666667 | 5.8981250 | 15 | 27 | 18 | 171 | 0 | 5 | 127 | 2 | 107 | 1 | 0 | 14 | 60 | 29 | 132 | 0 | 0 |
| simon bolivar | 2014 | 5.500000 | 2.2360680 | 5 | 7 | 5 | 49 | 0 | 0 | 29 | 0 | 37 | 0 | 0 | 0 | 16 | 0 | 50 | 0 | 0 |
| simon bolivar | 2015 | 8.333333 | 2.5346089 | 9 | 6 | 6 | 76 | 0 | 3 | 61 | 1 | 38 | 1 | 0 | 0 | 30 | 3 | 66 | 0 | 0 |
| simon bolivar | 2016 | 7.416667 | 2.5746433 | 1 | 3 | 5 | 77 | 0 | 3 | 47 | 0 | 42 | 0 | 0 | 0 | 31 | 2 | 56 | 0 | 0 |
| simon bolivar | 2017 | 6.583333 | 1.9286516 | 3 | 7 | 3 | 66 | 0 | 0 | 46 | 0 | 33 | 0 | 0 | 6 | 33 | 2 | 37 | 0 | 1 |
| simon bolivar | 2018 | 6.500000 | 2.1532217 | 5 | 1 | 5 | 67 | 0 | 0 | 40 | 0 | 38 | 0 | 0 | 4 | 38 | 6 | 30 | 0 | 0 |
| sin nombre | 2014 | 1.000000 | 0.0000000 | 1 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
| sin nombre | 2015 | 2.000000 | NA | 1 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
| sin nombre | 2018 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| suburbano altavista | 2014 | 2.000000 | 0.8660254 | 4 | 2 | 4 | 8 | 0 | 0 | 15 | 0 | 3 | 0 | 0 | 0 | 0 | 2 | 16 | 0 | 0 |
| suburbano altavista | 2015 | 2.875000 | 1.5526475 | 3 | 3 | 2 | 14 | 0 | 1 | 17 | 0 | 6 | 0 | 0 | 0 | 1 | 1 | 21 | 0 | 0 |
| suburbano altavista | 2016 | 1.666667 | 0.8660254 | 0 | 3 | 2 | 9 | 0 | 1 | 10 | 1 | 4 | 1 | 0 | 0 | 0 | 0 | 14 | 0 | 0 |
| suburbano altavista | 2017 | 2.375000 | 1.7677670 | 5 | 3 | 2 | 8 | 0 | 1 | 14 | 0 | 5 | 0 | 0 | 0 | 1 | 2 | 16 | 0 | 0 |
| suburbano altavista | 2018 | 1.625000 | 1.0606602 | 3 | 2 | 1 | 6 | 0 | 1 | 10 | 0 | 3 | 0 | 0 | 0 | 0 | 4 | 9 | 0 | 0 |
| suburbano chacaltaya | 2014 | 4.083333 | 2.1514618 | 13 | 1 | 8 | 20 | 0 | 7 | 33 | 5 | 11 | 5 | 0 | 0 | 0 | 1 | 43 | 0 | 0 |
| suburbano chacaltaya | 2015 | 3.250000 | 1.1381804 | 4 | 0 | 6 | 25 | 0 | 4 | 20 | 1 | 18 | 1 | 0 | 0 | 3 | 2 | 33 | 0 | 0 |
| suburbano chacaltaya | 2016 | 4.125000 | 2.5877458 | 8 | 1 | 8 | 14 | 0 | 2 | 27 | 0 | 6 | 0 | 0 | 0 | 1 | 1 | 31 | 0 | 0 |
| suburbano chacaltaya | 2017 | 2.250000 | 1.8929694 | 1 | 0 | 0 | 8 | 0 | 0 | 5 | 1 | 3 | 1 | 0 | 0 | 0 | 0 | 8 | 0 | 0 |
| suburbano chacaltaya | 2018 | 2.000000 | 1.4142136 | 2 | 0 | 2 | 11 | 0 | 1 | 10 | 3 | 3 | 3 | 0 | 0 | 0 | 1 | 12 | 0 | 0 |
| suburbano el llano | 2014 | 1.166667 | 0.4082483 | 2 | 0 | 1 | 4 | 0 | 0 | 3 | 0 | 4 | 0 | 0 | 0 | 1 | 0 | 6 | 0 | 0 |
| suburbano el llano | 2015 | 1.000000 | 0.0000000 | 0 | 0 | 0 | 3 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 |
| suburbano el llano | 2016 | 1.000000 | 0.0000000 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| suburbano el llano | 2017 | 1.285714 | 0.4879500 | 0 | 0 | 1 | 8 | 0 | 0 | 2 | 0 | 7 | 0 | 0 | 0 | 0 | 1 | 8 | 0 | 0 |
| suburbano el llano | 2018 | 1.500000 | 0.5345225 | 1 | 2 | 0 | 7 | 0 | 2 | 5 | 0 | 7 | 0 | 0 | 0 | 1 | 1 | 10 | 0 | 0 |
| suburbano el plan | 2014 | 14.250000 | 8.0693021 | 52 | 12 | 44 | 45 | 0 | 18 | 145 | 0 | 26 | 0 | 3 | 0 | 0 | 28 | 140 | 0 | 0 |
| suburbano el plan | 2015 | 7.166667 | 8.4405227 | 21 | 10 | 21 | 26 | 0 | 8 | 69 | 0 | 17 | 0 | 0 | 0 | 0 | 32 | 54 | 0 | 0 |
| suburbano el plan | 2016 | 2.750000 | 1.4222262 | 3 | 9 | 12 | 5 | 0 | 4 | 32 | 0 | 1 | 0 | 0 | 0 | 0 | 30 | 3 | 0 | 0 |
| suburbano el plan | 2017 | 3.142857 | 1.5735916 | 5 | 4 | 4 | 7 | 0 | 2 | 18 | 0 | 4 | 0 | 0 | 0 | 1 | 11 | 10 | 0 | 0 |
| suburbano el tesoro | 2014 | 2.000000 | 0.0000000 | 0 | 0 | 1 | 3 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
| suburbano el tesoro | 2015 | 1.500000 | 0.5477226 | 1 | 0 | 1 | 6 | 0 | 1 | 4 | 0 | 5 | 0 | 0 | 0 | 1 | 0 | 8 | 0 | 0 |
| suburbano el tesoro | 2016 | 1.000000 | 0.0000000 | 2 | 0 | 0 | 1 | 0 | 0 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| suburbano el tesoro | 2017 | 1.000000 | 0.0000000 | 0 | 0 | 1 | 2 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 |
| suburbano el tesoro | 2018 | 1.000000 | 0.0000000 | 0 | 0 | 0 | 5 | 0 | 2 | 2 | 0 | 5 | 0 | 0 | 1 | 0 | 2 | 4 | 0 | 0 |
| suburbano la loma | 2014 | 3.636364 | 1.0269106 | 2 | 4 | 6 | 26 | 0 | 2 | 23 | 0 | 17 | 0 | 0 | 0 | 1 | 0 | 39 | 0 | 0 |
| suburbano la loma | 2015 | 4.000000 | 1.4770979 | 7 | 4 | 7 | 29 | 0 | 1 | 32 | 0 | 16 | 0 | 0 | 0 | 1 | 1 | 46 | 0 | 0 |
| suburbano la loma | 2016 | 4.500000 | 2.4308622 | 13 | 4 | 9 | 26 | 0 | 2 | 34 | 1 | 19 | 1 | 0 | 0 | 2 | 5 | 45 | 0 | 1 |
| suburbano la loma | 2017 | 2.833333 | 1.6966991 | 4 | 9 | 3 | 18 | 0 | 0 | 22 | 1 | 11 | 1 | 0 | 0 | 5 | 3 | 24 | 0 | 1 |
| suburbano la loma | 2018 | 4.916667 | 2.2343733 | 14 | 7 | 4 | 31 | 0 | 3 | 38 | 1 | 20 | 1 | 0 | 0 | 3 | 13 | 42 | 0 | 0 |
| suburbano mirador del poblado | 2014 | 1.333333 | 0.5163978 | 0 | 0 | 1 | 6 | 0 | 1 | 3 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 |
| suburbano mirador del poblado | 2015 | 1.500000 | 0.7559289 | 1 | 0 | 2 | 7 | 0 | 2 | 7 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
| suburbano mirador del poblado | 2016 | 1.200000 | 0.4472136 | 0 | 0 | 0 | 5 | 0 | 1 | 4 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 |
| suburbano mirador del poblado | 2017 | 2.142857 | 1.4638501 | 3 | 0 | 1 | 10 | 0 | 1 | 8 | 0 | 7 | 0 | 0 | 0 | 4 | 2 | 9 | 0 | 0 |
| suburbano mirador del poblado | 2018 | 2.000000 | 1.2649111 | 3 | 0 | 3 | 14 | 1 | 1 | 10 | 0 | 12 | 0 | 0 | 2 | 0 | 3 | 17 | 0 | 0 |
| suburbano palma patio | 2014 | 1.666667 | 0.5773503 | 0 | 0 | 1 | 4 | 0 | 0 | 3 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 4 | 0 | 0 |
| suburbano palma patio | 2015 | 1.333333 | 0.5773503 | 0 | 0 | 2 | 2 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 0 | 0 |
| suburbano palma patio | 2016 | 2.000000 | 1.0000000 | 2 | 1 | 2 | 1 | 0 | 0 | 5 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 5 | 0 | 0 |
| suburbano palma patio | 2017 | 1.750000 | 0.9574271 | 0 | 1 | 1 | 5 | 0 | 0 | 3 | 0 | 4 | 0 | 0 | 0 | 2 | 0 | 3 | 0 | 2 |
| suburbano palma patio | 2018 | 1.750000 | 0.9574271 | 0 | 1 | 1 | 5 | 0 | 0 | 3 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 5 | 0 | 0 |
| suburbano palmitas | 2015 | 1.000000 | 0.0000000 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
| suburbano palmitas | 2016 | 1.333333 | 0.5773503 | 0 | 0 | 0 | 4 | 0 | 0 | 1 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
| suburbano palmitas | 2017 | 1.000000 | 0.0000000 | 0 | 0 | 0 | 2 | 0 | 1 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 |
| suburbano palmitas | 2018 | 1.000000 | 0.0000000 | 0 | 1 | 0 | 3 | 0 | 0 | 0 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| suburbano pedregal alto | 2014 | 1.250000 | 0.5000000 | 2 | 0 | 0 | 2 | 0 | 1 | 4 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 |
| suburbano pedregal alto | 2015 | 1.000000 | 0.0000000 | 1 | 0 | 1 | 2 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
| suburbano pedregal alto | 2016 | 1.222222 | 0.4409586 | 5 | 1 | 3 | 1 | 0 | 1 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 9 | 0 | 0 |
| suburbano pedregal alto | 2017 | 1.000000 | NA | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| suburbano pedregal alto | 2018 | 1.000000 | 0.0000000 | 1 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| suburbano potrerito | 2017 | 1.000000 | NA | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| suburbano travesias | 2014 | 1.500000 | 0.5270463 | 4 | 5 | 1 | 5 | 0 | 0 | 12 | 0 | 3 | 0 | 0 | 0 | 1 | 3 | 11 | 0 | 0 |
| suburbano travesias | 2015 | 1.500000 | 0.8366600 | 3 | 0 | 2 | 3 | 0 | 1 | 7 | 0 | 2 | 0 | 0 | 0 | 0 | 3 | 6 | 0 | 0 |
| suburbano travesias | 2016 | 2.100000 | 1.1005049 | 1 | 5 | 4 | 10 | 0 | 1 | 17 | 0 | 4 | 0 | 0 | 0 | 4 | 1 | 16 | 0 | 0 |
| suburbano travesias | 2017 | 1.625000 | 0.7440238 | 4 | 2 | 1 | 4 | 0 | 2 | 11 | 0 | 2 | 0 | 0 | 0 | 1 | 3 | 8 | 0 | 1 |
| suburbano travesias | 2018 | 2.333333 | 1.1180340 | 2 | 6 | 4 | 8 | 0 | 1 | 15 | 0 | 6 | 0 | 0 | 0 | 2 | 4 | 14 | 0 | 1 |
| sucre | 2014 | 12.083333 | 4.1000739 | 15 | 23 | 10 | 91 | 0 | 6 | 92 | 1 | 52 | 1 | 0 | 0 | 30 | 2 | 111 | 0 | 1 |
| sucre | 2015 | 12.333333 | 3.6013465 | 15 | 19 | 8 | 101 | 0 | 5 | 96 | 1 | 51 | 1 | 0 | 0 | 31 | 2 | 114 | 0 | 0 |
| sucre | 2016 | 12.250000 | 4.1148291 | 20 | 12 | 9 | 98 | 0 | 8 | 99 | 0 | 48 | 0 | 1 | 0 | 28 | 5 | 111 | 0 | 2 |
| sucre | 2017 | 9.916667 | 2.6097138 | 14 | 10 | 9 | 81 | 0 | 5 | 81 | 0 | 38 | 0 | 1 | 1 | 48 | 15 | 53 | 0 | 1 |
| sucre | 2018 | 10.000000 | 2.6285150 | 15 | 7 | 12 | 81 | 0 | 5 | 88 | 2 | 30 | 2 | 0 | 1 | 42 | 26 | 49 | 0 | 0 |
| suramericana | 2014 | 27.583333 | 5.4013186 | 21 | 16 | 15 | 276 | 0 | 3 | 128 | 2 | 201 | 2 | 0 | 0 | 68 | 4 | 255 | 0 | 2 |
| suramericana | 2015 | 29.916667 | 5.4181233 | 22 | 10 | 16 | 307 | 0 | 4 | 127 | 1 | 231 | 1 | 2 | 0 | 55 | 8 | 293 | 0 | 0 |
| suramericana | 2016 | 25.083333 | 6.2152062 | 36 | 16 | 19 | 225 | 0 | 5 | 134 | 3 | 164 | 3 | 0 | 0 | 39 | 10 | 247 | 0 | 2 |
| suramericana | 2017 | 29.583333 | 5.4515775 | 27 | 16 | 26 | 273 | 0 | 13 | 163 | 0 | 192 | 0 | 1 | 0 | 92 | 22 | 240 | 0 | 0 |
| suramericana | 2018 | 26.000000 | 5.4104276 | 29 | 21 | 13 | 243 | 1 | 5 | 145 | 2 | 165 | 1 | 2 | 0 | 79 | 33 | 195 | 0 | 2 |
| tejelo | 2014 | 11.000000 | 4.8429893 | 27 | 19 | 20 | 63 | 0 | 3 | 94 | 4 | 34 | 4 | 1 | 0 | 23 | 3 | 101 | 0 | 0 |
| tejelo | 2015 | 10.333333 | 2.9644357 | 21 | 15 | 21 | 62 | 0 | 5 | 92 | 1 | 31 | 1 | 1 | 0 | 29 | 5 | 88 | 0 | 0 |
| tejelo | 2016 | 14.500000 | 3.3709993 | 28 | 31 | 30 | 77 | 0 | 8 | 132 | 0 | 42 | 0 | 0 | 0 | 32 | 10 | 132 | 0 | 0 |
| tejelo | 2017 | 11.333333 | 3.4728383 | 20 | 19 | 20 | 69 | 0 | 8 | 109 | 0 | 27 | 0 | 0 | 0 | 36 | 17 | 83 | 0 | 0 |
| tejelo | 2018 | 13.083333 | 3.5791907 | 11 | 26 | 39 | 76 | 0 | 5 | 117 | 0 | 40 | 0 | 0 | 0 | 39 | 37 | 81 | 0 | 0 |
| tenche | 2014 | 15.000000 | 3.3574882 | 9 | 10 | 14 | 142 | 0 | 5 | 88 | 0 | 92 | 0 | 2 | 0 | 31 | 1 | 146 | 0 | 0 |
| tenche | 2015 | 18.916667 | 5.0173940 | 15 | 8 | 7 | 191 | 0 | 6 | 105 | 3 | 119 | 3 | 0 | 0 | 36 | 4 | 184 | 0 | 0 |
| tenche | 2016 | 20.083333 | 5.5178773 | 23 | 18 | 11 | 185 | 0 | 4 | 136 | 0 | 105 | 0 | 0 | 0 | 51 | 6 | 181 | 0 | 3 |
| tenche | 2017 | 14.666667 | 3.5248039 | 10 | 4 | 8 | 149 | 0 | 5 | 80 | 0 | 96 | 0 | 2 | 0 | 56 | 10 | 108 | 0 | 0 |
| tenche | 2018 | 14.916667 | 4.3788403 | 16 | 2 | 6 | 155 | 0 | 0 | 80 | 3 | 96 | 2 | 1 | 0 | 51 | 16 | 106 | 0 | 3 |
| terminal de transporte | 2014 | 54.833333 | 8.2443737 | 85 | 47 | 52 | 465 | 0 | 9 | 298 | 3 | 357 | 3 | 1 | 48 | 25 | 24 | 541 | 0 | 16 |
| terminal de transporte | 2015 | 47.666667 | 5.3143602 | 64 | 24 | 49 | 418 | 0 | 17 | 250 | 5 | 317 | 5 | 0 | 50 | 24 | 17 | 467 | 0 | 9 |
| terminal de transporte | 2016 | 45.166667 | 8.2553931 | 70 | 25 | 26 | 411 | 0 | 10 | 231 | 3 | 308 | 3 | 2 | 66 | 35 | 19 | 406 | 0 | 11 |
| terminal de transporte | 2017 | 52.583333 | 10.0313901 | 87 | 36 | 49 | 431 | 0 | 28 | 318 | 5 | 308 | 5 | 5 | 105 | 36 | 71 | 391 | 0 | 18 |
| terminal de transporte | 2018 | 41.916667 | 7.2420280 | 40 | 28 | 37 | 382 | 0 | 16 | 235 | 3 | 265 | 3 | 1 | 79 | 35 | 84 | 279 | 0 | 22 |
| toscana | 2014 | 9.583333 | 2.1514618 | 16 | 7 | 10 | 78 | 0 | 4 | 67 | 2 | 46 | 2 | 0 | 0 | 7 | 3 | 103 | 0 | 0 |
| toscana | 2015 | 10.750000 | 4.6539328 | 14 | 10 | 15 | 85 | 0 | 5 | 81 | 3 | 45 | 3 | 0 | 0 | 6 | 2 | 115 | 0 | 3 |
| toscana | 2016 | 11.083333 | 3.5791907 | 15 | 9 | 14 | 92 | 0 | 3 | 85 | 2 | 46 | 2 | 1 | 0 | 6 | 1 | 119 | 0 | 4 |
| toscana | 2017 | 17.000000 | 4.1341153 | 23 | 13 | 14 | 148 | 0 | 6 | 111 | 0 | 93 | 0 | 0 | 0 | 13 | 14 | 170 | 0 | 7 |
| toscana | 2018 | 19.416667 | 4.7569726 | 17 | 14 | 14 | 177 | 0 | 11 | 129 | 4 | 100 | 3 | 0 | 0 | 14 | 16 | 192 | 0 | 8 |
| travesias | 2017 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| trece de noviembre | 2014 | 1.500000 | 0.5477226 | 0 | 1 | 2 | 6 | 0 | 0 | 4 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 0 |
| trece de noviembre | 2015 | 1.200000 | 0.4472136 | 0 | 4 | 0 | 2 | 0 | 0 | 4 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 |
| trece de noviembre | 2016 | 1.555556 | 1.0137938 | 0 | 2 | 0 | 12 | 0 | 0 | 4 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 14 | 0 | 0 |
| trece de noviembre | 2017 | 1.875000 | 1.1259916 | 1 | 3 | 0 | 11 | 0 | 0 | 5 | 0 | 10 | 0 | 0 | 0 | 1 | 1 | 13 | 0 | 0 |
| trece de noviembre | 2018 | 1.500000 | 0.7559289 | 1 | 4 | 0 | 7 | 0 | 0 | 7 | 0 | 5 | 0 | 1 | 0 | 0 | 0 | 11 | 0 | 0 |
| tricentenario | 2014 | 15.000000 | 4.5527215 | 21 | 10 | 18 | 127 | 0 | 4 | 96 | 0 | 84 | 0 | 0 | 0 | 5 | 5 | 170 | 0 | 0 |
| tricentenario | 2015 | 14.833333 | 4.7065396 | 12 | 8 | 16 | 137 | 0 | 5 | 103 | 2 | 73 | 2 | 0 | 0 | 12 | 2 | 162 | 0 | 0 |
| tricentenario | 2016 | 15.833333 | 3.9041547 | 20 | 11 | 17 | 137 | 0 | 5 | 102 | 1 | 87 | 1 | 0 | 0 | 10 | 4 | 174 | 0 | 1 |
| tricentenario | 2017 | 18.166667 | 4.4890439 | 20 | 11 | 13 | 153 | 0 | 21 | 117 | 1 | 100 | 1 | 1 | 0 | 11 | 19 | 183 | 0 | 3 |
| tricentenario | 2018 | 17.166667 | 5.0060569 | 27 | 8 | 26 | 141 | 0 | 4 | 130 | 1 | 75 | 1 | 0 | 0 | 10 | 27 | 165 | 0 | 3 |
| trinidad | 2014 | 18.833333 | 3.0401356 | 27 | 32 | 10 | 152 | 0 | 5 | 139 | 1 | 86 | 1 | 2 | 0 | 55 | 6 | 162 | 0 | 0 |
| trinidad | 2015 | 19.083333 | 2.9063671 | 12 | 40 | 13 | 157 | 0 | 7 | 138 | 1 | 90 | 1 | 1 | 0 | 49 | 3 | 175 | 0 | 0 |
| trinidad | 2016 | 19.500000 | 3.5290998 | 16 | 27 | 18 | 168 | 0 | 5 | 134 | 3 | 97 | 3 | 0 | 0 | 44 | 5 | 182 | 0 | 0 |
| trinidad | 2017 | 16.583333 | 3.5280263 | 22 | 18 | 17 | 133 | 0 | 9 | 119 | 1 | 79 | 1 | 1 | 0 | 53 | 25 | 119 | 0 | 0 |
| trinidad | 2018 | 15.500000 | 3.4245106 | 16 | 23 | 4 | 141 | 0 | 2 | 90 | 0 | 96 | 0 | 0 | 0 | 59 | 15 | 112 | 0 | 0 |
| u.d. atanasio girardot | 2014 | 5.750000 | 2.5271256 | 4 | 6 | 5 | 54 | 0 | 0 | 38 | 0 | 31 | 0 | 1 | 0 | 11 | 0 | 57 | 0 | 0 |
| u.d. atanasio girardot | 2015 | 5.000000 | 2.0000000 | 7 | 10 | 4 | 39 | 0 | 0 | 36 | 0 | 24 | 0 | 1 | 0 | 5 | 2 | 52 | 0 | 0 |
| u.d. atanasio girardot | 2016 | 5.916667 | 3.3698755 | 11 | 8 | 5 | 46 | 0 | 1 | 42 | 0 | 29 | 0 | 1 | 0 | 9 | 3 | 58 | 0 | 0 |
| u.d. atanasio girardot | 2017 | 4.416667 | 2.4664414 | 7 | 3 | 1 | 40 | 0 | 2 | 21 | 0 | 32 | 0 | 0 | 1 | 14 | 5 | 32 | 0 | 1 |
| u.d. atanasio girardot | 2018 | 4.500000 | 2.4308622 | 6 | 6 | 6 | 35 | 0 | 1 | 28 | 0 | 26 | 0 | 2 | 0 | 10 | 9 | 33 | 0 | 0 |
| u.p.b. | 2014 | 2.333333 | 1.3662601 | 4 | 0 | 1 | 9 | 0 | 0 | 8 | 0 | 6 | 0 | 0 | 0 | 0 | 5 | 9 | 0 | 0 |
| u.p.b. | 2015 | 2.750000 | 2.1876275 | 2 | 1 | 1 | 17 | 0 | 1 | 7 | 0 | 15 | 0 | 0 | 0 | 2 | 3 | 17 | 0 | 0 |
| u.p.b. | 2016 | 2.000000 | 1.1547005 | 3 | 3 | 0 | 14 | 0 | 0 | 9 | 0 | 11 | 0 | 0 | 0 | 3 | 0 | 17 | 0 | 0 |
| u.p.b. | 2017 | 3.666667 | 1.9694639 | 2 | 1 | 0 | 38 | 0 | 3 | 11 | 0 | 33 | 0 | 0 | 3 | 12 | 2 | 26 | 0 | 1 |
| u.p.b. | 2018 | 2.800000 | 1.3165612 | 3 | 1 | 5 | 19 | 0 | 0 | 12 | 1 | 15 | 0 | 0 | 1 | 2 | 3 | 22 | 0 | 0 |
| universidad de antioquia | 2014 | 13.083333 | 4.1000739 | 12 | 16 | 11 | 113 | 0 | 5 | 71 | 0 | 86 | 0 | 3 | 1 | 4 | 1 | 142 | 0 | 6 |
| universidad de antioquia | 2015 | 12.083333 | 3.5021638 | 13 | 10 | 4 | 111 | 0 | 7 | 58 | 1 | 86 | 1 | 0 | 0 | 11 | 4 | 125 | 0 | 4 |
| universidad de antioquia | 2016 | 11.833333 | 3.7859389 | 20 | 4 | 12 | 101 | 0 | 5 | 76 | 0 | 66 | 0 | 0 | 0 | 8 | 3 | 128 | 0 | 3 |
| universidad de antioquia | 2017 | 20.166667 | 13.9273004 | 46 | 7 | 31 | 138 | 0 | 20 | 163 | 1 | 78 | 1 | 2 | 0 | 15 | 24 | 198 | 0 | 2 |
| universidad de antioquia | 2018 | 16.833333 | 6.2498485 | 26 | 10 | 22 | 136 | 0 | 8 | 119 | 2 | 81 | 1 | 0 | 1 | 22 | 22 | 148 | 0 | 8 |
| universidad nacional | 2014 | 34.083333 | 6.0371326 | 39 | 28 | 25 | 305 | 0 | 12 | 186 | 2 | 221 | 2 | 3 | 0 | 29 | 10 | 354 | 0 | 11 |
| universidad nacional | 2015 | 34.583333 | 4.8702872 | 38 | 20 | 27 | 312 | 0 | 18 | 215 | 4 | 196 | 4 | 1 | 0 | 41 | 5 | 360 | 0 | 4 |
| universidad nacional | 2016 | 34.500000 | 5.7603661 | 48 | 14 | 28 | 303 | 0 | 21 | 213 | 2 | 199 | 2 | 0 | 0 | 30 | 11 | 362 | 0 | 9 |
| universidad nacional | 2017 | 28.083333 | 4.5618643 | 28 | 13 | 24 | 264 | 0 | 8 | 189 | 1 | 147 | 1 | 3 | 1 | 31 | 20 | 253 | 0 | 28 |
| universidad nacional | 2018 | 22.500000 | 3.4245106 | 22 | 15 | 19 | 201 | 0 | 13 | 138 | 3 | 129 | 3 | 0 | 0 | 25 | 27 | 197 | 0 | 18 |
| veinte de julio | 2014 | 7.500000 | 2.7797972 | 10 | 19 | 11 | 50 | 0 | 0 | 70 | 2 | 18 | 2 | 1 | 0 | 13 | 1 | 73 | 0 | 0 |
| veinte de julio | 2015 | 6.000000 | 2.5584086 | 14 | 18 | 5 | 33 | 0 | 2 | 52 | 2 | 18 | 2 | 0 | 0 | 6 | 4 | 60 | 0 | 0 |
| veinte de julio | 2016 | 6.000000 | 2.4120908 | 8 | 14 | 6 | 38 | 0 | 6 | 55 | 0 | 17 | 0 | 0 | 0 | 14 | 1 | 57 | 0 | 0 |
| veinte de julio | 2017 | 5.333333 | 2.7743413 | 6 | 17 | 10 | 30 | 0 | 1 | 54 | 2 | 8 | 2 | 0 | 0 | 12 | 7 | 43 | 0 | 0 |
| veinte de julio | 2018 | 5.083333 | 1.8319554 | 10 | 10 | 5 | 36 | 0 | 0 | 42 | 0 | 19 | 0 | 0 | 0 | 12 | 12 | 37 | 0 | 0 |
| versalles no. 1 | 2014 | 9.000000 | 2.6967994 | 13 | 32 | 17 | 43 | 0 | 3 | 82 | 1 | 25 | 1 | 0 | 0 | 15 | 5 | 87 | 0 | 0 |
| versalles no. 1 | 2015 | 9.583333 | 3.5021638 | 21 | 26 | 18 | 44 | 0 | 6 | 83 | 0 | 32 | 0 | 0 | 0 | 12 | 2 | 101 | 0 | 0 |
| versalles no. 1 | 2016 | 8.500000 | 2.3159526 | 11 | 19 | 10 | 58 | 0 | 4 | 63 | 0 | 39 | 0 | 0 | 0 | 13 | 4 | 85 | 0 | 0 |
| versalles no. 1 | 2017 | 8.250000 | 2.5980762 | 20 | 27 | 10 | 41 | 0 | 1 | 66 | 1 | 32 | 1 | 2 | 0 | 18 | 14 | 64 | 0 | 0 |
| versalles no. 1 | 2018 | 6.416667 | 1.7298625 | 13 | 22 | 11 | 27 | 0 | 4 | 56 | 1 | 20 | 1 | 0 | 0 | 7 | 21 | 48 | 0 | 0 |
| versalles no. 2 | 2014 | 1.571429 | 0.5345225 | 1 | 4 | 1 | 5 | 0 | 0 | 6 | 0 | 5 | 0 | 1 | 0 | 0 | 0 | 10 | 0 | 0 |
| versalles no. 2 | 2015 | 1.428571 | 0.5345225 | 0 | 3 | 2 | 5 | 0 | 0 | 6 | 0 | 4 | 0 | 0 | 0 | 1 | 0 | 9 | 0 | 0 |
| versalles no. 2 | 2016 | 1.142857 | 0.3779645 | 1 | 3 | 0 | 4 | 0 | 0 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 1 | 7 | 0 | 0 |
| versalles no. 2 | 2017 | 1.555556 | 0.8819171 | 1 | 3 | 3 | 5 | 0 | 2 | 9 | 0 | 5 | 0 | 0 | 0 | 1 | 3 | 10 | 0 | 0 |
| versalles no. 2 | 2018 | 1.571429 | 0.5345225 | 2 | 3 | 0 | 6 | 0 | 0 | 8 | 0 | 3 | 0 | 0 | 0 | 0 | 3 | 8 | 0 | 0 |
| versalles no.1 | 2014 | 1.000000 | 0.0000000 | 0 | 1 | 0 | 2 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 |
| versalles no.1 | 2015 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| versalles no.1 | 2016 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| versalles no.1 | 2017 | 1.000000 | 0.0000000 | 0 | 1 | 0 | 3 | 0 | 0 | 1 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 3 | 0 | 0 |
| versalles no.1 | 2018 | 1.000000 | 0.0000000 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| versalles no.2 | 2015 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| versalles no.2 | 2016 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| versalles no.2 | 2017 | 1.000000 | NA | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| villa carlota | 2014 | 34.250000 | 5.2936497 | 20 | 19 | 26 | 340 | 0 | 6 | 183 | 3 | 225 | 3 | 1 | 0 | 39 | 12 | 352 | 1 | 3 |
| villa carlota | 2015 | 34.500000 | 5.8542914 | 22 | 14 | 18 | 349 | 0 | 11 | 172 | 3 | 239 | 3 | 2 | 0 | 38 | 12 | 359 | 0 | 0 |
| villa carlota | 2016 | 39.583333 | 9.0900378 | 25 | 18 | 14 | 403 | 0 | 15 | 208 | 1 | 266 | 1 | 0 | 0 | 49 | 22 | 396 | 0 | 7 |
| villa carlota | 2017 | 36.500000 | 8.2406972 | 21 | 8 | 17 | 376 | 2 | 14 | 152 | 1 | 285 | 1 | 0 | 0 | 63 | 35 | 336 | 0 | 3 |
| villa carlota | 2018 | 40.916667 | 7.5010100 | 24 | 17 | 16 | 424 | 0 | 10 | 170 | 2 | 319 | 2 | 1 | 1 | 64 | 50 | 371 | 0 | 2 |
| villa del socorro | 2014 | 7.250000 | 2.0943647 | 10 | 24 | 16 | 36 | 0 | 1 | 55 | 3 | 29 | 3 | 1 | 0 | 4 | 0 | 79 | 0 | 0 |
| villa del socorro | 2015 | 6.583333 | 2.1933094 | 11 | 17 | 9 | 39 | 0 | 3 | 59 | 0 | 20 | 0 | 0 | 0 | 5 | 2 | 72 | 0 | 0 |
| villa del socorro | 2016 | 8.416667 | 2.8431204 | 17 | 18 | 8 | 54 | 0 | 4 | 67 | 0 | 34 | 0 | 1 | 0 | 8 | 3 | 89 | 0 | 0 |
| villa del socorro | 2017 | 6.416667 | 1.9752253 | 10 | 16 | 10 | 40 | 0 | 1 | 50 | 0 | 27 | 0 | 0 | 0 | 5 | 11 | 61 | 0 | 0 |
| villa del socorro | 2018 | 7.083333 | 1.8809250 | 11 | 17 | 4 | 51 | 0 | 2 | 51 | 0 | 34 | 0 | 0 | 0 | 9 | 21 | 55 | 0 | 0 |
| villa flora | 2014 | 13.000000 | 6.3389130 | 20 | 8 | 19 | 108 | 0 | 1 | 85 | 0 | 71 | 0 | 0 | 0 | 19 | 3 | 134 | 0 | 0 |
| villa flora | 2015 | 14.916667 | 3.1176429 | 22 | 11 | 21 | 117 | 0 | 8 | 109 | 0 | 70 | 0 | 1 | 0 | 18 | 2 | 158 | 0 | 0 |
| villa flora | 2016 | 12.750000 | 2.7675063 | 29 | 11 | 20 | 87 | 0 | 6 | 105 | 0 | 48 | 0 | 0 | 0 | 24 | 5 | 124 | 0 | 0 |
| villa flora | 2017 | 13.000000 | 1.9069252 | 28 | 5 | 24 | 93 | 0 | 6 | 107 | 0 | 49 | 0 | 1 | 0 | 27 | 22 | 106 | 0 | 0 |
| villa flora | 2018 | 14.666667 | 4.5193188 | 36 | 10 | 29 | 96 | 0 | 5 | 113 | 0 | 63 | 0 | 0 | 0 | 28 | 57 | 91 | 0 | 0 |
| villa guadalupe | 2014 | 6.500000 | 3.2891005 | 11 | 22 | 8 | 33 | 0 | 4 | 60 | 0 | 18 | 0 | 0 | 0 | 6 | 3 | 69 | 0 | 0 |
| villa guadalupe | 2015 | 5.750000 | 2.3788844 | 10 | 15 | 9 | 34 | 0 | 1 | 42 | 2 | 25 | 2 | 1 | 0 | 3 | 1 | 61 | 0 | 1 |
| villa guadalupe | 2016 | 5.000000 | 2.6285150 | 8 | 17 | 7 | 27 | 0 | 1 | 46 | 0 | 14 | 0 | 0 | 0 | 5 | 1 | 54 | 0 | 0 |
| villa guadalupe | 2017 | 6.166667 | 2.2087978 | 16 | 18 | 11 | 25 | 0 | 4 | 59 | 0 | 15 | 0 | 1 | 0 | 11 | 14 | 47 | 0 | 1 |
| villa guadalupe | 2018 | 6.750000 | 1.9128750 | 8 | 22 | 12 | 35 | 0 | 4 | 63 | 0 | 18 | 0 | 0 | 0 | 17 | 16 | 48 | 0 | 0 |
| villa hermosa | 2014 | 10.333333 | 3.5760144 | 22 | 22 | 19 | 57 | 0 | 4 | 97 | 1 | 26 | 1 | 0 | 0 | 28 | 4 | 91 | 0 | 0 |
| villa hermosa | 2015 | 9.416667 | 3.2039275 | 18 | 24 | 11 | 53 | 0 | 7 | 89 | 0 | 24 | 0 | 0 | 0 | 29 | 3 | 81 | 0 | 0 |
| villa hermosa | 2016 | 9.000000 | 3.3844564 | 16 | 13 | 10 | 64 | 0 | 5 | 76 | 0 | 32 | 0 | 0 | 0 | 20 | 5 | 83 | 0 | 0 |
| villa hermosa | 2017 | 8.166667 | 2.7906771 | 10 | 20 | 10 | 53 | 0 | 5 | 63 | 1 | 34 | 1 | 0 | 0 | 26 | 11 | 60 | 0 | 0 |
| villa hermosa | 2018 | 9.416667 | 4.5016832 | 15 | 19 | 17 | 55 | 0 | 7 | 81 | 0 | 32 | 0 | 0 | 1 | 30 | 26 | 56 | 0 | 0 |
| villa liliam | 2014 | 1.818182 | 1.2504545 | 5 | 6 | 3 | 5 | 0 | 1 | 18 | 0 | 2 | 0 | 0 | 0 | 2 | 1 | 17 | 0 | 0 |
| villa liliam | 2015 | 2.181818 | 1.1677484 | 2 | 9 | 4 | 8 | 0 | 1 | 18 | 0 | 6 | 0 | 1 | 0 | 0 | 1 | 22 | 0 | 0 |
| villa liliam | 2016 | 1.833333 | 0.8348471 | 3 | 6 | 4 | 9 | 0 | 0 | 19 | 0 | 3 | 0 | 1 | 0 | 1 | 3 | 17 | 0 | 0 |
| villa liliam | 2017 | 2.222222 | 1.2018504 | 4 | 6 | 2 | 8 | 0 | 0 | 15 | 0 | 5 | 0 | 0 | 0 | 4 | 5 | 11 | 0 | 0 |
| villa liliam | 2018 | 2.250000 | 1.4222262 | 1 | 10 | 4 | 9 | 0 | 3 | 23 | 0 | 4 | 0 | 0 | 0 | 1 | 11 | 15 | 0 | 0 |
| villa lilliam | 2014 | 1.000000 | 0.0000000 | 0 | 1 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
| villa lilliam | 2015 | 1.000000 | 0.0000000 | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| villa lilliam | 2016 | 1.000000 | NA | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| villa lilliam | 2017 | 1.000000 | NA | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| villa lilliam | 2018 | 1.000000 | NA | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| villa niza | 2014 | 3.800000 | 1.6193277 | 8 | 9 | 2 | 17 | 0 | 2 | 24 | 0 | 14 | 0 | 0 | 0 | 4 | 3 | 31 | 0 | 0 |
| villa niza | 2015 | 2.916667 | 1.5050420 | 6 | 10 | 3 | 14 | 0 | 2 | 20 | 1 | 14 | 1 | 0 | 0 | 4 | 0 | 30 | 0 | 0 |
| villa niza | 2016 | 2.181818 | 1.3280197 | 5 | 3 | 5 | 11 | 0 | 0 | 20 | 1 | 3 | 1 | 0 | 0 | 1 | 3 | 19 | 0 | 0 |
| villa niza | 2017 | 3.250000 | 1.7645499 | 3 | 7 | 7 | 21 | 0 | 1 | 28 | 0 | 11 | 0 | 0 | 0 | 3 | 3 | 33 | 0 | 0 |
| villa niza | 2018 | 3.454546 | 1.6949122 | 2 | 7 | 6 | 22 | 0 | 1 | 26 | 0 | 12 | 0 | 0 | 0 | 3 | 6 | 29 | 0 | 0 |
| villa nueva | 2014 | 50.166667 | 8.7472940 | 41 | 102 | 45 | 404 | 0 | 10 | 286 | 8 | 308 | 8 | 3 | 0 | 108 | 5 | 476 | 1 | 1 |
| villa nueva | 2015 | 53.166667 | 12.6694574 | 49 | 74 | 40 | 458 | 0 | 17 | 291 | 3 | 344 | 3 | 1 | 1 | 123 | 13 | 495 | 0 | 2 |
| villa nueva | 2016 | 46.000000 | 8.3883035 | 44 | 75 | 41 | 371 | 0 | 21 | 273 | 5 | 274 | 5 | 0 | 1 | 96 | 11 | 435 | 0 | 4 |
| villa nueva | 2017 | 47.333333 | 8.7835935 | 36 | 69 | 34 | 410 | 1 | 18 | 275 | 2 | 291 | 2 | 6 | 0 | 166 | 40 | 341 | 0 | 13 |
| villa nueva | 2018 | 45.666667 | 8.6269486 | 41 | 80 | 38 | 379 | 0 | 10 | 262 | 1 | 285 | 1 | 3 | 1 | 160 | 55 | 320 | 0 | 8 |
| villa turbay | 2014 | 1.250000 | 0.4629100 | 4 | 2 | 2 | 2 | 0 | 0 | 9 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 8 | 0 | 0 |
| villa turbay | 2015 | 1.428571 | 0.5345225 | 1 | 2 | 2 | 5 | 0 | 0 | 8 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 10 | 0 | 0 |
| villa turbay | 2016 | 1.571429 | 0.5345225 | 1 | 4 | 4 | 2 | 0 | 0 | 9 | 0 | 2 | 0 | 0 | 0 | 1 | 1 | 9 | 0 | 0 |
| villa turbay | 2017 | 1.333333 | 0.5773503 | 0 | 0 | 2 | 2 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
| villa turbay | 2018 | 1.600000 | 1.3416408 | 3 | 0 | 1 | 4 | 0 | 0 | 5 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 7 | 0 | 0 |
| villatina | 2014 | 7.416667 | 2.8109634 | 12 | 20 | 17 | 34 | 1 | 5 | 65 | 0 | 24 | 0 | 0 | 1 | 3 | 3 | 82 | 0 | 0 |
| villatina | 2015 | 7.916667 | 3.1176429 | 18 | 21 | 19 | 30 | 0 | 7 | 76 | 0 | 19 | 0 | 0 | 0 | 5 | 2 | 88 | 0 | 0 |
| villatina | 2016 | 8.583333 | 2.1933094 | 13 | 18 | 14 | 53 | 0 | 5 | 69 | 1 | 33 | 1 | 1 | 0 | 5 | 4 | 92 | 0 | 0 |
| villatina | 2017 | 7.000000 | 2.2156468 | 11 | 18 | 19 | 31 | 0 | 5 | 65 | 1 | 18 | 1 | 0 | 0 | 8 | 24 | 51 | 0 | 0 |
| villatina | 2018 | 8.333333 | 3.2003788 | 11 | 18 | 18 | 51 | 0 | 2 | 65 | 0 | 35 | 0 | 0 | 0 | 8 | 24 | 68 | 0 | 0 |
| volcana guayabal | 2018 | 1.000000 | NA | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| yolombo | 2014 | 1.000000 | NA | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| yolombo | 2016 | 1.000000 | NA | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| yolombo | 2017 | 1.000000 | 0.0000000 | 1 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
| yolombo | 2018 | 1.625000 | 0.9161254 | 1 | 1 | 0 | 10 | 0 | 1 | 5 | 0 | 8 | 0 | 0 | 0 | 0 | 1 | 12 | 0 | 0 |
Antes de realizar cualquier técnica de clustering, procederemos a realizar un imputado de variables en caso de que existan valores nulos. Para esto, usaremos la imputación por constante y será cero, ya que la variable más propensa a tener valores faltantes será la desviación estandar para los casos de los barrios que no tengan más de 1 registro en todo el año de choques, para los cuales tiene sentido hacer dicha imputación.
cluster_df_2014 <- cluster_df %>%
filter(PERIODO==2014) %>%
select(-c(PERIODO)) %>%
arrange(promedio_accidente_mes) %>%
mutate_at(.vars = vars(-BARRIO), .funs = funs(na.constant(.x=., .na = 0)))
## Warning: `funs()` is deprecated as of dplyr 0.8.0.
## Please use a list of either functions or lambdas:
##
## # Simple named list:
## list(mean = mean, median = median)
##
## # Auto named with `tibble::lst()`:
## tibble::lst(mean, median)
##
## # Using lambdas
## list(~ mean(., trim = .2), ~ median(., na.rm = TRUE))
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_warnings()` to see where this warning was generated.
cluster_df_2014 %>% select(-c(BARRIO)) %>% mutate_all(funs(is.na(.))) %>% colSums()
## promedio_accidente_mes std_accidentes_mes AVG_OTRO_ACCIDENTE
## 0 0 0
## AVG_ATROPELLOS AVG_CAIDA_OCUPANTE AVG_CHOQUE
## 0 0 0
## AVG_INCENDIO AVG_VOLCAMIENTOS AVG_HERIDO
## 0 0 0
## AVG_MUERTO AVG_SOLO_DANOS AVG_SIN_DISENO
## 0 0 0
## AVG_CICLO_RUTA AVG_GLORIETA AVG_INTERSECCION
## 0 0 0
## AVG_LOTE_PREDIO AVG_TRAMO_VIDA AVG_VIA_PEATOLNAL
## 0 0 0
## AVG_DISENO_TUNEL_PUENTE
## 0
Comprobamos que ninguna variable tiene valores faltantes, por lo que procedemos a realizar una estandarización de los datos para que la escala de algunas de las variables no afecte el algoritmo que busca minimizar las distancias, adicional por tener un importante número de variables, cualquier las escalas en un espacio de 30 dimensiones tiene un impacto significativamente en las métricas de distancias.
cluster_df_2014_sc <- cluster_df_2014 %>%
select(-c(BARRIO)) %>%
scale() %>%
data.frame(.)
fviz_nbclust(cluster_df_2014_sc, kmeans, method = "wss", k.max = 15)
Como se puede evidenciar, entre 3 y 5 clusters, la ganancia marginal en la suma total de cuadrados es poca en función del aumento del número de clusters, por lo que haremos 4 clusters para dicho año.
set.seed(0)
kmeans.2014 <- kmeans(x = cluster_df_2014_sc, centers = 4, iter.max = 200)
cluster_df_2014$cluster <- as.integer(kmeans.2014$cluster)
Veamos algunas estadísticas de los clusters
cluster_df_2014 %>%
select(-c(BARRIO)) %>%
group_by(cluster) %>%
summarise_all(funs(mean(.))) %>%
merge(cluster_df_2014 %>%
group_by(cluster) %>%
summarise(numero_barrios=n(), .groups="drop"), by="cluster") %>%
kable() %>%
kable_styling(bootstrap_options = c("striped"), position = "left") %>%
scroll_box(height = "300px")
| cluster | promedio_accidente_mes | std_accidentes_mes | AVG_OTRO_ACCIDENTE | AVG_ATROPELLOS | AVG_CAIDA_OCUPANTE | AVG_CHOQUE | AVG_INCENDIO | AVG_VOLCAMIENTOS | AVG_HERIDO | AVG_MUERTO | AVG_SOLO_DANOS | AVG_SIN_DISENO | AVG_CICLO_RUTA | AVG_GLORIETA | AVG_INTERSECCION | AVG_LOTE_PREDIO | AVG_TRAMO_VIDA | AVG_VIA_PEATOLNAL | AVG_DISENO_TUNEL_PUENTE | numero_barrios |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 9.701734 | 3.177636 | 14.927835 | 15.505155 | 14.237113 | 68.29897 | 0.0721649 | 3.3092784 | 72.07216 | 0.7010309 | 43.57732 | 0.7010309 | 0.5773196 | 0.5567010 | 14.505155 | 3.3402062 | 96.22680 | 0.0206186 | 0.4226804 | 97 |
| 2 | 2.780002 | 1.191549 | 3.260563 | 4.619718 | 3.049296 | 16.90845 | 0.0000000 | 0.6901408 | 17.61972 | 0.1408451 | 10.76761 | 0.1408451 | 0.1408451 | 0.0633803 | 3.338028 | 0.9507042 | 23.87324 | 0.0000000 | 0.0211268 | 142 |
| 3 | 54.219298 | 9.141590 | 54.210526 | 60.421053 | 47.894737 | 475.73684 | 0.0526316 | 12.3157895 | 298.89474 | 4.1578947 | 347.57895 | 4.1578947 | 2.6842105 | 19.4736842 | 69.263158 | 14.9473684 | 529.47368 | 0.0526316 | 10.5789474 | 19 |
| 4 | 21.442901 | 4.913191 | 29.259259 | 27.240741 | 26.537037 | 168.37037 | 0.0000000 | 5.9074074 | 146.38889 | 1.6481481 | 109.27778 | 1.6481481 | 1.2037037 | 4.9814815 | 39.037037 | 6.2962963 | 202.98148 | 0.1481481 | 1.0185185 | 54 |
A nivel general de todas las estadísticas, se observa que los clusters formados son a nivel general una descripción de barrios con diferentes niveles de accidentalidad, indiscriminadamente de la gravedad, clase o zona donde se produjo el accidente. Es importante recalcar, que las zonas de mayor accidentalidad se concentran en unos cuantos barrios, específicamente, 11 barrios. Estos barrios están teniendo aproximadamente 2 accidentes por día, seguido del siguiente grupo de barrios que pueden tener hasta casi 1 accidente diario. Los otros dos clusters son de una accidentalidad relativamente baja en comparación a los primeros dos grupos y contienen el 76% de los barrios de Medellín.
Es importante llevar el análisis al espacio geográfico para entender las características de ubicación de los barrios con alta accidentalidad dentro de los grupos.
cluster_2014_map <- df %>%
filter(PERIODO==2014, BARRIO!="") %>%
group_by(BARRIO) %>%
summarise(
lat=mean(LATITUD), lng=mean(LONGITUD), .groups="drop"
) %>% merge(cluster_df_2014 %>% select(BARRIO, cluster), by="BARRIO") %>%
mutate(
cluster_colors=as.character(ifelse(cluster==3, "red",
ifelse(cluster==4, "orange",
ifelse(cluster==1, "yellow", "green"))))
)
leaflet(cluster_2014_map) %>% addTiles() %>%
addCircleMarkers(
color = ~cluster_colors,
stroke = FALSE,
fillOpacity = 0.5,
lng = ~lng, lat = ~lat,
label = ~as.character(BARRIO)
)
La primera carácteristica que se puede evidenciar de los clusters de los barrios respecto a la ciudad de Medellín, es que aquellos barrios con mayor accidentalidad se encuentran ubicados por las zonas valle y mayormente transitadas en la ciudad, calles como la avenida del río, la avenida guayabal, la avenida de la 33 y sus altededores, y calles como la 30 a la altura de la 80, la 33 con la 65 y la alpujarra entre otros. Mientras que las zonas con menor accidentalidad justamente se encuentran en las periferías de la ciudad, específicamente en el oriente y occidente de la ciudad. Mientras que zonas con el poblado, belen, robledo, se encuentran los niveles de accidentalidad media-alta.
cluster_df_2015 <- cluster_df %>%
filter(PERIODO==2015) %>%
select(-c(PERIODO)) %>%
arrange(promedio_accidente_mes) %>%
mutate_at(.vars = vars(-BARRIO), .funs = funs(na.constant(.x=., .na = 0)))
cluster_df_2015_sc <- cluster_df_2015 %>%
select(-c(BARRIO)) %>%
scale() %>%
data.frame(.)
fviz_nbclust(cluster_df_2015_sc, kmeans, method = "wss", k.max = 15)
set.seed(0)
kmeans.2015 <- kmeans(x = cluster_df_2015_sc, centers = 4, iter.max = 200)
cluster_df_2015$cluster <- as.integer(kmeans.2015$cluster)
Veamos algunas estadísticas de los clusters
cluster_df_2015 %>%
select(-c(BARRIO)) %>%
group_by(cluster) %>%
summarise_all(funs(mean(.))) %>%
merge(cluster_df_2015 %>%
group_by(cluster) %>%
summarise(numero_barrios=n(), .groups="drop"), by="cluster") %>%
kable() %>%
kable_styling(bootstrap_options = c("striped"), position = "left") %>%
scroll_box(height = "300px")
| cluster | promedio_accidente_mes | std_accidentes_mes | AVG_OTRO_ACCIDENTE | AVG_ATROPELLOS | AVG_CAIDA_OCUPANTE | AVG_CHOQUE | AVG_INCENDIO | AVG_VOLCAMIENTOS | AVG_HERIDO | AVG_MUERTO | AVG_SOLO_DANOS | AVG_SIN_DISENO | AVG_CICLO_RUTA | AVG_GLORIETA | AVG_INTERSECCION | AVG_LOTE_PREDIO | AVG_TRAMO_VIDA | AVG_VIA_PEATOLNAL | AVG_DISENO_TUNEL_PUENTE | numero_barrios |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 11.762028 | 3.626827 | 16.206186 | 17.639175 | 14.247423 | 87.54639 | 0.0000000 | 5.505155 | 87.72165 | 0.7010309 | 52.72165 | 0.7010309 | 0.2577320 | 0.9175258 | 22.453608 | 4.402062 | 112.13402 | 0.0206186 | 0.2577320 | 97 |
| 2 | 3.238126 | 1.341640 | 3.512048 | 4.656626 | 3.343374 | 21.45783 | 0.0000000 | 1.198795 | 20.18072 | 0.2168675 | 13.77108 | 0.2168675 | 0.0722892 | 0.0903614 | 3.909639 | 1.343373 | 28.40964 | 0.0060241 | 0.1204819 | 166 |
| 3 | 56.986111 | 9.462775 | 55.666667 | 58.888889 | 47.000000 | 503.72222 | 0.0000000 | 18.555556 | 315.11111 | 4.8888889 | 363.83333 | 4.8888889 | 1.5000000 | 20.8333333 | 78.000000 | 15.111111 | 554.94444 | 0.2222222 | 8.3333333 | 18 |
| 4 | 24.780952 | 5.589009 | 30.342857 | 26.885714 | 25.942857 | 203.65714 | 0.0285714 | 10.514286 | 164.05714 | 1.6571429 | 131.65714 | 1.6571429 | 0.8285714 | 7.7714286 | 44.657143 | 8.485714 | 232.77143 | 0.0000000 | 1.2000000 | 35 |
Para el año 2015, vemos que se conserva una estructura muy similar a la clusterización de los barrios por los diferentes niveles de accidentes, se puede dividir entre niveles de muy alta, alta, moderada y baja accidentalidad.
cluster_2015_map <- df %>%
filter(PERIODO==2015, BARRIO!="") %>%
group_by(BARRIO) %>%
summarise(
lat=mean(LATITUD), lng=mean(LONGITUD), .groups="drop"
) %>% merge(cluster_df_2015 %>% select(BARRIO, cluster), by="BARRIO") %>%
mutate(
cluster_colors=as.character(ifelse(cluster==3, "red",
ifelse(cluster==4, "orange",
ifelse(cluster==1, "yellow", "green"))))
)
leaflet(cluster_2015_map) %>% addTiles() %>%
addCircleMarkers(
color = ~cluster_colors,
stroke = FALSE,
fillOpacity = 0.5,
lng = ~lng, lat = ~lat,
label = ~as.character(BARRIO)
)
cluster_df_2016 <- cluster_df %>%
filter(PERIODO==2016) %>%
select(-c(PERIODO)) %>%
arrange(promedio_accidente_mes) %>%
mutate_at(.vars = vars(-BARRIO), .funs = funs(na.constant(.x=., .na = 0)))
cluster_df_2016_sc <- cluster_df_2016 %>%
select(-c(BARRIO)) %>%
scale() %>%
data.frame(.)
fviz_nbclust(cluster_df_2016_sc, kmeans, method = "wss", k.max = 15)
Veamos algunas estadísticas de los clusters
set.seed(0)
kmeans.2016 <- kmeans(x = cluster_df_2016_sc, centers = 4, iter.max = 200)
cluster_df_2016$cluster <- as.integer(kmeans.2016$cluster)
cluster_df_2016 %>%
select(-c(BARRIO)) %>%
group_by(cluster) %>%
summarise_all(funs(mean(.))) %>%
merge(cluster_df_2016 %>%
group_by(cluster) %>%
summarise(numero_barrios=n(), .groups="drop"), by="cluster") %>%
kable() %>%
kable_styling(bootstrap_options = c("striped"), position = "left") %>%
scroll_box(height = "300px")
| cluster | promedio_accidente_mes | std_accidentes_mes | AVG_OTRO_ACCIDENTE | AVG_ATROPELLOS | AVG_CAIDA_OCUPANTE | AVG_CHOQUE | AVG_INCENDIO | AVG_VOLCAMIENTOS | AVG_HERIDO | AVG_MUERTO | AVG_SOLO_DANOS | AVG_SIN_DISENO | AVG_CICLO_RUTA | AVG_GLORIETA | AVG_INTERSECCION | AVG_LOTE_PREDIO | AVG_TRAMO_VIDA | AVG_VIA_PEATOLNAL | AVG_DISENO_TUNEL_PUENTE | numero_barrios |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 12.855611 | 3.564796 | 20.099010 | 17.128713 | 15.772277 | 95.22772 | 0.00 | 6.039604 | 96.74257 | 0.8217822 | 56.70297 | 0.8217822 | 0.2673267 | 1.2772277 | 24.376238 | 6.50495 | 120.44554 | 0.049505 | 0.5247525 | 101 |
| 2 | 3.446464 | 1.501098 | 4.469512 | 5.182927 | 3.987805 | 22.21341 | 0.00 | 1.518293 | 23.14024 | 0.2012195 | 14.03049 | 0.2012195 | 0.0792683 | 0.0853659 | 4.713415 | 1.72561 | 30.46951 | 0.000000 | 0.0975610 | 164 |
| 3 | 54.562500 | 8.356290 | 62.400000 | 51.000000 | 41.500000 | 481.80000 | 0.05 | 18.000000 | 309.95000 | 4.0500000 | 340.75000 | 4.0500000 | 1.3500000 | 25.0500000 | 85.850000 | 20.85000 | 506.95000 | 0.350000 | 10.3000000 | 20 |
| 4 | 26.786667 | 5.587381 | 34.560000 | 22.680000 | 24.120000 | 229.36000 | 0.12 | 10.600000 | 169.16000 | 1.5200000 | 150.76000 | 1.5200000 | 1.0400000 | 10.2800000 | 47.880000 | 9.52000 | 247.64000 | 0.280000 | 3.2800000 | 25 |
Entre los clusters del 2014, 2015 y 2016 se ve un ligero cambio en el número de barrios por cluster, en espacial para los clusters de más alta accidentalidad, lo cual refleja las matrices de transición denotadas en la parte superior del análisis.
cluster_2016_map <- df %>%
filter(PERIODO==2016, BARRIO!="") %>%
group_by(BARRIO) %>%
summarise(
lat=mean(LATITUD), lng=mean(LONGITUD), .groups="drop"
) %>% merge(cluster_df_2016 %>% select(BARRIO, cluster), by="BARRIO") %>%
mutate(
cluster_colors=as.character(ifelse(cluster==3, "red",
ifelse(cluster==4, "orange",
ifelse(cluster==1, "yellow", "green"))))
)
leaflet(cluster_2016_map) %>% addTiles() %>%
addCircleMarkers(
color = ~cluster_colors,
stroke = FALSE,
fillOpacity = 0.5,
lng = ~lng, lat = ~lat,
label = ~as.character(BARRIO)
)
cluster_df_2017 <- cluster_df %>%
filter(PERIODO==2017) %>%
select(-c(PERIODO)) %>%
arrange(promedio_accidente_mes) %>%
mutate_at(.vars = vars(-BARRIO), .funs = funs(na.constant(.x=., .na = 0)))
cluster_df_2017_sc <- cluster_df_2017 %>%
select(-c(BARRIO)) %>%
scale() %>%
data.frame(.)
fviz_nbclust(cluster_df_2017_sc, kmeans, method = "wss", k.max = 15)
Veamos algunas estadísticas de los clusters
set.seed(0)
kmeans.2017 <- kmeans(x = cluster_df_2017_sc, centers = 3, iter.max = 200)
cluster_df_2017$cluster <- as.integer(kmeans.2017$cluster)
cluster_df_2017 %>%
select(-c(BARRIO)) %>%
group_by(cluster) %>%
summarise_all(funs(mean(.))) %>%
merge(cluster_df_2017 %>%
group_by(cluster) %>%
summarise(numero_barrios=n(), .groups="drop"), by="cluster") %>%
kable() %>%
kable_styling(bootstrap_options = c("striped"), position = "left") %>%
scroll_box(height = "300px")
| cluster | promedio_accidente_mes | std_accidentes_mes | AVG_OTRO_ACCIDENTE | AVG_ATROPELLOS | AVG_CAIDA_OCUPANTE | AVG_CHOQUE | AVG_INCENDIO | AVG_VOLCAMIENTOS | AVG_HERIDO | AVG_MUERTO | AVG_SOLO_DANOS | AVG_SIN_DISENO | AVG_CICLO_RUTA | AVG_GLORIETA | AVG_INTERSECCION | AVG_LOTE_PREDIO | AVG_TRAMO_VIDA | AVG_VIA_PEATOLNAL | AVG_DISENO_TUNEL_PUENTE | numero_barrios |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 17.693841 | 4.596793 | 24.282609 | 16.521739 | 18.673913 | 144.96739 | 0.0217391 | 7.858696 | 117.50000 | 0.7065217 | 94.11957 | 0.7065217 | 0.9891304 | 5.663043 | 46.14130 | 24.043478 | 132.53261 | 0.0217391 | 2.2282609 | 92 |
| 2 | 4.073018 | 1.657475 | 5.407767 | 5.514563 | 3.941748 | 27.79126 | 0.0000000 | 1.805825 | 26.04369 | 0.3543689 | 18.06311 | 0.3543689 | 0.1553398 | 0.461165 | 8.61165 | 6.412621 | 28.21845 | 0.0048544 | 0.2427184 | 206 |
| 3 | 52.541667 | 9.121845 | 62.272727 | 44.727273 | 41.045454 | 460.68182 | 0.0909091 | 21.681818 | 304.09091 | 4.0909091 | 322.31818 | 4.0909091 | 3.1818182 | 34.090909 | 101.31818 | 54.318182 | 412.77273 | 0.1363636 | 20.5909091 | 22 |
Para el año 2017 se intentó realizar la clusterización con k = 4, sin embargo, agrupo no más de 5 barrios para la accidentalidad más baja y la diferencia en las estadísticas eran mínimas, por lo que hizó más sentido hacer el agrupamiento para un parámetro de k = 3.
cluster_2017_map <- df %>%
filter(PERIODO==2017, BARRIO!="") %>%
group_by(BARRIO) %>%
summarise(
lat=mean(LATITUD), lng=mean(LONGITUD), .groups="drop"
) %>% merge(cluster_df_2017 %>% select(BARRIO, cluster), by="BARRIO") %>%
mutate(
cluster_colors=as.character(
ifelse(
cluster==3, "red",
ifelse(cluster==1, "orange",
"green")
)
)
)
leaflet(cluster_2017_map) %>% addTiles() %>%
addCircleMarkers(
color = ~cluster_colors,
stroke = FALSE,
fillOpacity = 0.5,
lng = ~lng, lat = ~lat,
label = ~as.character(BARRIO)
)
cluster_df_2018 <- cluster_df %>%
filter(PERIODO==2018) %>%
select(-c(PERIODO)) %>%
arrange(promedio_accidente_mes) %>%
mutate_at(.vars = vars(-BARRIO), .funs = funs(na.constant(.x=., .na = 0)))
cluster_df_2018_sc <- cluster_df_2018 %>%
select(-c(BARRIO)) %>%
scale() %>%
data.frame(.)
fviz_nbclust(cluster_df_2018_sc, kmeans, method = "wss", k.max = 15)
Veamos algunas estadísticas de los clusters
set.seed(0)
kmeans.2018 <- kmeans(x = cluster_df_2018_sc, centers = 4, iter.max = 200)
cluster_df_2018$cluster <- as.integer(kmeans.2018$cluster)
cluster_df_2018 %>%
select(-c(BARRIO)) %>%
group_by(cluster) %>%
summarise_all(funs(mean(.))) %>%
merge(cluster_df_2018 %>%
group_by(cluster) %>%
summarise(numero_barrios=n(), .groups="drop"), by="cluster") %>%
kable() %>%
kable_styling(bootstrap_options = c("striped"), position = "left") %>%
scroll_box(height = "300px")
| cluster | promedio_accidente_mes | std_accidentes_mes | AVG_OTRO_ACCIDENTE | AVG_ATROPELLOS | AVG_CAIDA_OCUPANTE | AVG_CHOQUE | AVG_INCENDIO | AVG_VOLCAMIENTOS | AVG_HERIDO | AVG_MUERTO | AVG_SOLO_DANOS | AVG_SIN_DISENO | AVG_CICLO_RUTA | AVG_GLORIETA | AVG_INTERSECCION | AVG_LOTE_PREDIO | AVG_TRAMO_VIDA | AVG_VIA_PEATOLNAL | AVG_DISENO_TUNEL_PUENTE | numero_barrios |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 14.479854 | 3.998100 | 18.054945 | 16.901099 | 19.186813 | 113.96703 | 0.0109890 | 5.637363 | 100.79121 | 1.4175824 | 71.54945 | 1.0219780 | 0.5494505 | 2.8461538 | 37.747253 | 30.000000 | 100.28571 | 0.0219780 | 1.2857143 | 91 |
| 2 | 3.707659 | 1.499981 | 4.314433 | 4.603093 | 4.247423 | 26.21649 | 0.0051546 | 1.216495 | 22.71649 | 0.2628866 | 17.62371 | 0.2164948 | 0.0979381 | 0.3556701 | 7.520619 | 7.402062 | 24.81443 | 0.0000000 | 0.1958763 | 194 |
| 3 | 57.597222 | 8.792773 | 57.666667 | 53.666667 | 47.583333 | 512.75000 | 0.4166667 | 19.083333 | 327.66667 | 5.2500000 | 358.25000 | 3.8333333 | 2.4166667 | 25.2500000 | 120.416667 | 74.833333 | 444.83333 | 0.1666667 | 19.4166667 | 12 |
| 4 | 34.916667 | 7.156753 | 28.350000 | 26.750000 | 23.800000 | 330.30000 | 0.0000000 | 9.800000 | 174.00000 | 2.8500000 | 242.15000 | 2.0500000 | 1.8000000 | 33.5500000 | 78.600000 | 43.100000 | 243.15000 | 0.0500000 | 16.7000000 | 20 |
Para el año 2018, se mantuvo la estructura de 4 clusters con diferencias importantes entre las estadísticas de accidentes.
cluster_2018_map <- df %>%
filter(PERIODO==2018, BARRIO!="") %>%
group_by(BARRIO) %>%
summarise(
lat=mean(LATITUD), lng=mean(LONGITUD), .groups="drop"
) %>% merge(cluster_df_2018 %>% select(BARRIO, cluster), by="BARRIO") %>%
mutate(
cluster_colors=as.character(
ifelse(
cluster==3, "red",
ifelse(
cluster==4, "orange",
ifelse(
cluster==1, "yellow",
"green"
)
)
)
)
)
leaflet(cluster_2018_map) %>% addTiles() %>%
addCircleMarkers(
color = ~cluster_colors,
stroke = FALSE,
fillOpacity = 0.5,
lng = ~lng, lat = ~lat,
label = ~as.character(BARRIO)
)