setwd("C:/Users/asus/Desktop/我的文件")
d6.1<- read.table("fisher.txt",header = T)
attach(d6.1)#绑定数据
plot(x1,x2)
text(x1,x2,G,adj=-0.5)#标识点所属类别G

library(MASS)
(ld=lda(G~x1+x2))#线性判别模型
## Call:
## lda(G ~ x1 + x2)
##
## Prior probabilities of groups:
## 1 2
## 0.5 0.5
##
## Group means:
## x1 x2
## 1 0.92 2.10
## 2 -0.38 8.85
##
## Coefficients of linear discriminants:
## LD1
## x1 -0.1035305
## x2 0.2247957
Z=predict(ld)#根据线性判别模型预测所属类别
newG=Z$class#预测的所属类别结果
cbind(G,Z$x,newG)#显示结果
## G LD1 newG
## 1 1 -0.28674901 1
## 2 1 -0.39852439 1
## 3 1 -1.29157053 1
## 4 1 -1.15846657 1
## 5 1 -1.95857603 1
## 6 1 0.94809469 2
## 7 1 -2.50987753 1
## 8 1 -0.47066104 1
## 9 1 -1.06586461 1
## 10 1 -0.06760842 1
## 11 2 0.17022402 2
## 12 2 0.49351760 2
## 13 2 2.03780185 2
## 14 2 0.38346871 2
## 15 2 -1.24038077 1
## 16 2 0.24005867 2
## 17 2 1.42347182 2
## 18 2 2.01119984 2
## 19 2 1.40540244 2
## 20 2 1.33503926 2
(tab=table(G,newG))#混淆矩阵
## newG
## G 1 2
## 1 9 1
## 2 1 9
sum(diag(prop.table(tab)))#判对率
## [1] 0.9