library(rpart)
library(rpart.plot)
## Warning: package 'rpart.plot' was built under R version 3.6.3
library(vcd)
## Warning: package 'vcd' was built under R version 3.6.3
## Loading required package: grid
library(vcdExtra)
## Warning: package 'vcdExtra' was built under R version 3.6.3
## Loading required package: gnm
## Warning: package 'gnm' was built under R version 3.6.3
library(ca)
## Warning: package 'ca' was built under R version 3.6.3
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.6.3
library(kernlab)
##
## Attaching package: 'kernlab'
## The following object is masked from 'package:ggplot2':
##
## alpha
library(C50)
## Warning: package 'C50' was built under R version 3.6.3
library(MASS)
## Warning: package 'MASS' was built under R version 3.6.3
credit <- read.csv("C:/Users/punthakur/Documents/HU - ANALYTICS/530-Machine Learning/credit.csv")
str(credit)
## 'data.frame': 1000 obs. of 21 variables:
## $ Creditability : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Account.Balance : int 1 1 2 1 1 1 1 1 4 2 ...
## $ Duration.of.Credit..month. : int 18 9 12 12 12 10 8 6 18 24 ...
## $ Payment.Status.of.Previous.Credit: int 4 4 2 4 4 4 4 4 4 2 ...
## $ Purpose : int 2 0 9 0 0 0 0 0 3 3 ...
## $ Credit.Amount : int 1049 2799 841 2122 2171 2241 3398 1361 1098 3758 ...
## $ Value.Savings.Stocks : int 1 1 2 1 1 1 1 1 1 3 ...
## $ Length.of.current.employment : int 2 3 4 3 3 2 4 2 1 1 ...
## $ Instalment.per.cent : int 4 2 2 3 4 1 1 2 4 1 ...
## $ Sex...Marital.Status : int 2 3 2 3 3 3 3 3 2 2 ...
## $ Guarantors : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Duration.in.Current.address : int 4 2 4 2 4 3 4 4 4 4 ...
## $ Most.valuable.available.asset : int 2 1 1 1 2 1 1 1 3 4 ...
## $ Age..years. : int 21 36 23 39 38 48 39 40 65 23 ...
## $ Concurrent.Credits : int 3 3 3 3 1 3 3 3 3 3 ...
## $ Type.of.apartment : int 1 1 1 1 2 1 2 2 2 1 ...
## $ No.of.Credits.at.this.Bank : int 1 2 1 2 2 2 2 1 2 1 ...
## $ Occupation : int 3 3 2 2 2 2 2 2 1 1 ...
## $ No.of.dependents : int 1 2 1 2 1 2 1 2 1 1 ...
## $ Telephone : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Foreign.Worker : int 1 1 1 2 2 2 2 2 1 1 ...
#Step 2: Exploring the data
summary(credit$Credit.Amount)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 250 1366 2320 3271 3972 18424
table(credit$Creditability)
##
## 0 1
## 300 700
set.seed(12345)
credit_rand <-credit[order(runif(1000)),]
summary(credit$Credit.Amount)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 250 1366 2320 3271 3972 18424
credit_train <- credit_rand[1:900, ]
credit_test <- credit_rand[901:1000, ]
prop.table(table(credit_train$ Creditability))
##
## 0 1
## 0.3088889 0.6911111
prop.table(table(credit_test$ Creditability))
##
## 0 1
## 0.22 0.78
#Step 3: Training a model on the data
library(C50)
str(credit_train$Creditability)
## int [1:900] 1 1 1 1 1 1 1 1 1 0 ...
credit_train$Creditability<- factor(credit_train$Creditability)
str(credit_train$Creditability)
## Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 1 ...
credit_model<-C5.0(x = credit_train[-17], y = credit_train$Creditability)
credit_model
##
## Call:
## C5.0.default(x = credit_train[-17], y = credit_train$Creditability)
##
## Classification Tree
## Number of samples: 900
## Number of predictors: 20
##
## Tree size: 2
##
## Non-standard options: attempt to group attributes
summary(credit_model)
##
## Call:
## C5.0.default(x = credit_train[-17], y = credit_train$Creditability)
##
##
## C5.0 [Release 2.07 GPL Edition] Fri Aug 28 16:49:51 2020
## -------------------------------
##
## Class specified by attribute `outcome'
##
## Read 900 cases (21 attributes) from undefined.data
##
## Decision tree:
##
## Creditability = 0: 0 (278)
## Creditability = 1: 1 (622)
##
##
## Evaluation on training data (900 cases):
##
## Decision Tree
## ----------------
## Size Errors
##
## 2 0( 0.0%) <<
##
##
## (a) (b) <-classified as
## ---- ----
## 278 (a): class 0
## 622 (b): class 1
##
##
## Attribute usage:
##
## 100.00% Creditability
##
##
## Time: 0.0 secs
#Evaluating Model Performance
cred_pred <- predict(credit_model, credit_test)
library (gmodels)
## Warning: package 'gmodels' was built under R version 3.6.3
CrossTable(credit_test$Creditability, cred_pred, prop.chisq = FALSE, prop.c = FALSE, prop.r = FALSE, dnn = c('Actual Creditability', 'Predicted Creditability'))
##
##
## Cell Contents
## |-------------------------|
## | N |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 100
##
##
## | Predicted Creditability
## Actual Creditability | 0 | 1 | Row Total |
## ---------------------|-----------|-----------|-----------|
## 0 | 22 | 0 | 22 |
## | 0.220 | 0.000 | |
## ---------------------|-----------|-----------|-----------|
## 1 | 0 | 78 | 78 |
## | 0.000 | 0.780 | |
## ---------------------|-----------|-----------|-----------|
## Column Total | 22 | 78 | 100 |
## ---------------------|-----------|-----------|-----------|
##
##
(p <- table(cred_pred, credit_test$Creditability))
##
## cred_pred 0 1
## 0 22 0
## 1 0 78
(Accuracy <- sum(diag(p))/sum(p)*100)
## [1] 100
#Q1- If you see an accuracy of 100%, what does it mean? Does this mean that we design a perfect model? This is some thing that needs more discussion. Write a few sentences about accuracy of 100%.
#Since we see an accuracy of 100%, this means that the model is overfitting the data and compensating for the inefficiencies by design.
DT <- rpart(Creditability ~ Account.Balance + Credit.Amount + Payment.Status.of.Previous.Credit, data = credit_train)
summary(DT)
## Call:
## rpart(formula = Creditability ~ Account.Balance + Credit.Amount +
## Payment.Status.of.Previous.Credit, data = credit_train)
## n= 900
##
## CP nsplit rel error xerror xstd
## 1 0.04496403 0 1.0000000 1.0000000 0.04985992
## 2 0.01618705 3 0.8417266 0.8848921 0.04809394
## 3 0.01079137 5 0.8093525 0.8992806 0.04833488
## 4 0.01000000 9 0.7661871 0.8848921 0.04809394
##
## Variable importance
## Account.Balance Credit.Amount
## 55 25
## Payment.Status.of.Previous.Credit
## 20
##
## Node number 1: 900 observations, complexity param=0.04496403
## predicted class=1 expected loss=0.3088889 P(node) =1
## class counts: 278 622
## probabilities: 0.309 0.691
## left son=2 (491 obs) right son=3 (409 obs)
## Primary splits:
## Account.Balance < 2.5 to the left, improve=44.34223, (0 missing)
## Payment.Status.of.Previous.Credit < 1.5 to the left, improve=15.03636, (0 missing)
## Credit.Amount < 3909.5 to the right, improve=12.09960, (0 missing)
## Surrogate splits:
## Payment.Status.of.Previous.Credit < 2.5 to the left, agree=0.596, adj=0.11, (0 split)
##
## Node number 2: 491 observations, complexity param=0.04496403
## predicted class=1 expected loss=0.4521385 P(node) =0.5455556
## class counts: 222 269
## probabilities: 0.452 0.548
## left son=4 (61 obs) right son=5 (430 obs)
## Primary splits:
## Payment.Status.of.Previous.Credit < 1.5 to the left, improve=8.901367, (0 missing)
## Credit.Amount < 3998 to the right, improve=8.139155, (0 missing)
## Account.Balance < 1.5 to the left, improve=1.618609, (0 missing)
## Surrogate splits:
## Credit.Amount < 15901 to the right, agree=0.88, adj=0.033, (0 split)
##
## Node number 3: 409 observations
## predicted class=1 expected loss=0.1369193 P(node) =0.4544444
## class counts: 56 353
## probabilities: 0.137 0.863
##
## Node number 4: 61 observations
## predicted class=0 expected loss=0.295082 P(node) =0.06777778
## class counts: 43 18
## probabilities: 0.705 0.295
##
## Node number 5: 430 observations, complexity param=0.04496403
## predicted class=1 expected loss=0.4162791 P(node) =0.4777778
## class counts: 179 251
## probabilities: 0.416 0.584
## left son=10 (33 obs) right son=11 (397 obs)
## Primary splits:
## Credit.Amount < 8015.5 to the right, improve=9.871261, (0 missing)
## Payment.Status.of.Previous.Credit < 3.5 to the left, improve=3.396525, (0 missing)
## Account.Balance < 1.5 to the left, improve=1.266883, (0 missing)
##
## Node number 10: 33 observations
## predicted class=0 expected loss=0.2121212 P(node) =0.03666667
## class counts: 26 7
## probabilities: 0.788 0.212
##
## Node number 11: 397 observations, complexity param=0.01618705
## predicted class=1 expected loss=0.3853904 P(node) =0.4411111
## class counts: 153 244
## probabilities: 0.385 0.615
## left son=22 (88 obs) right son=23 (309 obs)
## Primary splits:
## Credit.Amount < 3910 to the right, improve=2.970205, (0 missing)
## Payment.Status.of.Previous.Credit < 3.5 to the left, improve=2.647846, (0 missing)
## Account.Balance < 1.5 to the left, improve=2.611827, (0 missing)
##
## Node number 22: 88 observations, complexity param=0.01618705
## predicted class=0 expected loss=0.5 P(node) =0.09777778
## class counts: 44 44
## probabilities: 0.500 0.500
## left son=44 (43 obs) right son=45 (45 obs)
## Primary splits:
## Account.Balance < 1.5 to the left, improve=1.84186000, (0 missing)
## Credit.Amount < 7413 to the left, improve=1.29870100, (0 missing)
## Payment.Status.of.Previous.Credit < 3.5 to the right, improve=0.02793651, (0 missing)
## Surrogate splits:
## Credit.Amount < 4289 to the left, agree=0.591, adj=0.163, (0 split)
## Payment.Status.of.Previous.Credit < 2.5 to the left, agree=0.545, adj=0.070, (0 split)
##
## Node number 23: 309 observations, complexity param=0.01079137
## predicted class=1 expected loss=0.3527508 P(node) =0.3433333
## class counts: 109 200
## probabilities: 0.353 0.647
## left son=46 (286 obs) right son=47 (23 obs)
## Primary splits:
## Credit.Amount < 3504 to the left, improve=6.184240, (0 missing)
## Payment.Status.of.Previous.Credit < 3.5 to the left, improve=4.016779, (0 missing)
## Account.Balance < 1.5 to the left, improve=1.347176, (0 missing)
##
## Node number 44: 43 observations
## predicted class=0 expected loss=0.3953488 P(node) =0.04777778
## class counts: 26 17
## probabilities: 0.605 0.395
##
## Node number 45: 45 observations
## predicted class=1 expected loss=0.4 P(node) =0.05
## class counts: 18 27
## probabilities: 0.400 0.600
##
## Node number 46: 286 observations, complexity param=0.01079137
## predicted class=1 expected loss=0.3811189 P(node) =0.3177778
## class counts: 109 177
## probabilities: 0.381 0.619
## left son=92 (215 obs) right son=93 (71 obs)
## Primary splits:
## Payment.Status.of.Previous.Credit < 3.5 to the left, improve=3.791813, (0 missing)
## Credit.Amount < 624 to the right, improve=2.520480, (0 missing)
## Account.Balance < 1.5 to the left, improve=1.615261, (0 missing)
##
## Node number 47: 23 observations
## predicted class=1 expected loss=0 P(node) =0.02555556
## class counts: 0 23
## probabilities: 0.000 1.000
##
## Node number 92: 215 observations, complexity param=0.01079137
## predicted class=1 expected loss=0.427907 P(node) =0.2388889
## class counts: 92 123
## probabilities: 0.428 0.572
## left son=184 (107 obs) right son=185 (108 obs)
## Primary splits:
## Account.Balance < 1.5 to the left, improve=3.88193900, (0 missing)
## Credit.Amount < 614.5 to the right, improve=2.25536000, (0 missing)
## Payment.Status.of.Previous.Credit < 2.5 to the right, improve=0.08735044, (0 missing)
## Surrogate splits:
## Credit.Amount < 1254 to the right, agree=0.549, adj=0.093, (0 split)
## Payment.Status.of.Previous.Credit < 2.5 to the left, agree=0.549, adj=0.093, (0 split)
##
## Node number 93: 71 observations
## predicted class=1 expected loss=0.2394366 P(node) =0.07888889
## class counts: 17 54
## probabilities: 0.239 0.761
##
## Node number 184: 107 observations, complexity param=0.01079137
## predicted class=0 expected loss=0.4766355 P(node) =0.1188889
## class counts: 56 51
## probabilities: 0.523 0.477
## left son=368 (38 obs) right son=369 (69 obs)
## Primary splits:
## Credit.Amount < 1348.5 to the left, improve=2.132987, (0 missing)
##
## Node number 185: 108 observations
## predicted class=1 expected loss=0.3333333 P(node) =0.12
## class counts: 36 72
## probabilities: 0.333 0.667
##
## Node number 368: 38 observations
## predicted class=0 expected loss=0.3421053 P(node) =0.04222222
## class counts: 25 13
## probabilities: 0.658 0.342
##
## Node number 369: 69 observations
## predicted class=1 expected loss=0.4492754 P(node) =0.07666667
## class counts: 31 38
## probabilities: 0.449 0.551
rpart.plot(DT, type = 1, extra = 102)

#Method#2: Random FOrest
library(randomForest)
## Warning: package 'randomForest' was built under R version 3.6.3
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
## margin
credit_train$Creditability <- as.factor(credit_train$Creditability)
random_model <- randomForest(Creditability ~ . , data= credit_train)
summary(random_model)
## Length Class Mode
## call 3 -none- call
## type 1 -none- character
## predicted 900 factor numeric
## err.rate 1500 -none- numeric
## confusion 6 -none- numeric
## votes 1800 matrix numeric
## oob.times 900 -none- numeric
## classes 2 -none- character
## importance 20 -none- numeric
## importanceSD 0 -none- NULL
## localImportance 0 -none- NULL
## proximity 0 -none- NULL
## ntree 1 -none- numeric
## mtry 1 -none- numeric
## forest 14 -none- list
## y 900 factor numeric
## test 0 -none- NULL
## inbag 0 -none- NULL
## terms 3 terms call
cred_pred <- predict(random_model, credit_test)
(p <- table(cred_pred, credit_test$Creditability))
##
## cred_pred 0 1
## 0 12 11
## 1 10 67
(Accuracy <- sum(diag(p))/sum(p)*100)
## [1] 79
#Q2- What are the three most important features in this model.
importance(random_model)
## MeanDecreaseGini
## Account.Balance 43.178206
## Duration.of.Credit..month. 37.302433
## Payment.Status.of.Previous.Credit 22.765043
## Purpose 23.635785
## Credit.Amount 52.337429
## Value.Savings.Stocks 19.241822
## Length.of.current.employment 19.885455
## Instalment.per.cent 16.451002
## Sex...Marital.Status 13.387221
## Guarantors 7.883390
## Duration.in.Current.address 15.540894
## Most.valuable.available.asset 17.390452
## Age..years. 37.106310
## Concurrent.Credits 8.774178
## Type.of.apartment 9.631784
## No.of.Credits.at.this.Bank 7.921031
## Occupation 11.934154
## No.of.dependents 5.622503
## Telephone 7.582114
## Foreign.Worker 1.863587
#Top 3 features by importance: Credit Amount, Account Balance and Duration of Credut Month
DT2 <- rpart(Creditability ~ Account.Balance + Credit.Amount + Payment.Status.of.Previous.Credit, data = credit_train)
summary(DT2)
## Call:
## rpart(formula = Creditability ~ Account.Balance + Credit.Amount +
## Payment.Status.of.Previous.Credit, data = credit_train)
## n= 900
##
## CP nsplit rel error xerror xstd
## 1 0.04496403 0 1.0000000 1.0000000 0.04985992
## 2 0.01618705 3 0.8417266 0.8956835 0.04827520
## 3 0.01079137 5 0.8093525 0.9100719 0.04851168
## 4 0.01000000 9 0.7661871 0.8920863 0.04821516
##
## Variable importance
## Account.Balance Credit.Amount
## 55 25
## Payment.Status.of.Previous.Credit
## 20
##
## Node number 1: 900 observations, complexity param=0.04496403
## predicted class=1 expected loss=0.3088889 P(node) =1
## class counts: 278 622
## probabilities: 0.309 0.691
## left son=2 (491 obs) right son=3 (409 obs)
## Primary splits:
## Account.Balance < 2.5 to the left, improve=44.34223, (0 missing)
## Payment.Status.of.Previous.Credit < 1.5 to the left, improve=15.03636, (0 missing)
## Credit.Amount < 3909.5 to the right, improve=12.09960, (0 missing)
## Surrogate splits:
## Payment.Status.of.Previous.Credit < 2.5 to the left, agree=0.596, adj=0.11, (0 split)
##
## Node number 2: 491 observations, complexity param=0.04496403
## predicted class=1 expected loss=0.4521385 P(node) =0.5455556
## class counts: 222 269
## probabilities: 0.452 0.548
## left son=4 (61 obs) right son=5 (430 obs)
## Primary splits:
## Payment.Status.of.Previous.Credit < 1.5 to the left, improve=8.901367, (0 missing)
## Credit.Amount < 3998 to the right, improve=8.139155, (0 missing)
## Account.Balance < 1.5 to the left, improve=1.618609, (0 missing)
## Surrogate splits:
## Credit.Amount < 15901 to the right, agree=0.88, adj=0.033, (0 split)
##
## Node number 3: 409 observations
## predicted class=1 expected loss=0.1369193 P(node) =0.4544444
## class counts: 56 353
## probabilities: 0.137 0.863
##
## Node number 4: 61 observations
## predicted class=0 expected loss=0.295082 P(node) =0.06777778
## class counts: 43 18
## probabilities: 0.705 0.295
##
## Node number 5: 430 observations, complexity param=0.04496403
## predicted class=1 expected loss=0.4162791 P(node) =0.4777778
## class counts: 179 251
## probabilities: 0.416 0.584
## left son=10 (33 obs) right son=11 (397 obs)
## Primary splits:
## Credit.Amount < 8015.5 to the right, improve=9.871261, (0 missing)
## Payment.Status.of.Previous.Credit < 3.5 to the left, improve=3.396525, (0 missing)
## Account.Balance < 1.5 to the left, improve=1.266883, (0 missing)
##
## Node number 10: 33 observations
## predicted class=0 expected loss=0.2121212 P(node) =0.03666667
## class counts: 26 7
## probabilities: 0.788 0.212
##
## Node number 11: 397 observations, complexity param=0.01618705
## predicted class=1 expected loss=0.3853904 P(node) =0.4411111
## class counts: 153 244
## probabilities: 0.385 0.615
## left son=22 (88 obs) right son=23 (309 obs)
## Primary splits:
## Credit.Amount < 3910 to the right, improve=2.970205, (0 missing)
## Payment.Status.of.Previous.Credit < 3.5 to the left, improve=2.647846, (0 missing)
## Account.Balance < 1.5 to the left, improve=2.611827, (0 missing)
##
## Node number 22: 88 observations, complexity param=0.01618705
## predicted class=0 expected loss=0.5 P(node) =0.09777778
## class counts: 44 44
## probabilities: 0.500 0.500
## left son=44 (43 obs) right son=45 (45 obs)
## Primary splits:
## Account.Balance < 1.5 to the left, improve=1.84186000, (0 missing)
## Credit.Amount < 7413 to the left, improve=1.29870100, (0 missing)
## Payment.Status.of.Previous.Credit < 3.5 to the right, improve=0.02793651, (0 missing)
## Surrogate splits:
## Credit.Amount < 4289 to the left, agree=0.591, adj=0.163, (0 split)
## Payment.Status.of.Previous.Credit < 2.5 to the left, agree=0.545, adj=0.070, (0 split)
##
## Node number 23: 309 observations, complexity param=0.01079137
## predicted class=1 expected loss=0.3527508 P(node) =0.3433333
## class counts: 109 200
## probabilities: 0.353 0.647
## left son=46 (286 obs) right son=47 (23 obs)
## Primary splits:
## Credit.Amount < 3504 to the left, improve=6.184240, (0 missing)
## Payment.Status.of.Previous.Credit < 3.5 to the left, improve=4.016779, (0 missing)
## Account.Balance < 1.5 to the left, improve=1.347176, (0 missing)
##
## Node number 44: 43 observations
## predicted class=0 expected loss=0.3953488 P(node) =0.04777778
## class counts: 26 17
## probabilities: 0.605 0.395
##
## Node number 45: 45 observations
## predicted class=1 expected loss=0.4 P(node) =0.05
## class counts: 18 27
## probabilities: 0.400 0.600
##
## Node number 46: 286 observations, complexity param=0.01079137
## predicted class=1 expected loss=0.3811189 P(node) =0.3177778
## class counts: 109 177
## probabilities: 0.381 0.619
## left son=92 (215 obs) right son=93 (71 obs)
## Primary splits:
## Payment.Status.of.Previous.Credit < 3.5 to the left, improve=3.791813, (0 missing)
## Credit.Amount < 624 to the right, improve=2.520480, (0 missing)
## Account.Balance < 1.5 to the left, improve=1.615261, (0 missing)
##
## Node number 47: 23 observations
## predicted class=1 expected loss=0 P(node) =0.02555556
## class counts: 0 23
## probabilities: 0.000 1.000
##
## Node number 92: 215 observations, complexity param=0.01079137
## predicted class=1 expected loss=0.427907 P(node) =0.2388889
## class counts: 92 123
## probabilities: 0.428 0.572
## left son=184 (107 obs) right son=185 (108 obs)
## Primary splits:
## Account.Balance < 1.5 to the left, improve=3.88193900, (0 missing)
## Credit.Amount < 614.5 to the right, improve=2.25536000, (0 missing)
## Payment.Status.of.Previous.Credit < 2.5 to the right, improve=0.08735044, (0 missing)
## Surrogate splits:
## Credit.Amount < 1254 to the right, agree=0.549, adj=0.093, (0 split)
## Payment.Status.of.Previous.Credit < 2.5 to the left, agree=0.549, adj=0.093, (0 split)
##
## Node number 93: 71 observations
## predicted class=1 expected loss=0.2394366 P(node) =0.07888889
## class counts: 17 54
## probabilities: 0.239 0.761
##
## Node number 184: 107 observations, complexity param=0.01079137
## predicted class=0 expected loss=0.4766355 P(node) =0.1188889
## class counts: 56 51
## probabilities: 0.523 0.477
## left son=368 (38 obs) right son=369 (69 obs)
## Primary splits:
## Credit.Amount < 1348.5 to the left, improve=2.132987, (0 missing)
##
## Node number 185: 108 observations
## predicted class=1 expected loss=0.3333333 P(node) =0.12
## class counts: 36 72
## probabilities: 0.333 0.667
##
## Node number 368: 38 observations
## predicted class=0 expected loss=0.3421053 P(node) =0.04222222
## class counts: 25 13
## probabilities: 0.658 0.342
##
## Node number 369: 69 observations
## predicted class=1 expected loss=0.4492754 P(node) =0.07666667
## class counts: 31 38
## probabilities: 0.449 0.551
rpart.plot(DT2, type = 1, extra = 102)

#Now, Change the random seed to 23458 and find the new accuracy of random forest.
set.seed(23458)
credit_train$Creditability <- as.factor(credit_train$Creditability)
random_model <- randomForest(Creditability ~ . , data= credit_train)
summary(random_model)
## Length Class Mode
## call 3 -none- call
## type 1 -none- character
## predicted 900 factor numeric
## err.rate 1500 -none- numeric
## confusion 6 -none- numeric
## votes 1800 matrix numeric
## oob.times 900 -none- numeric
## classes 2 -none- character
## importance 20 -none- numeric
## importanceSD 0 -none- NULL
## localImportance 0 -none- NULL
## proximity 0 -none- NULL
## ntree 1 -none- numeric
## mtry 1 -none- numeric
## forest 14 -none- list
## y 900 factor numeric
## test 0 -none- NULL
## inbag 0 -none- NULL
## terms 3 terms call
cred_pred <- predict(random_model, credit_test)
(p <- table(cred_pred, credit_test$Creditability))
##
## cred_pred 0 1
## 0 12 10
## 1 10 68
(Accuracy <- sum(diag(p))/sum(p)*100)
## [1] 80
#Accuracy increases slightly
#Method#3: Adding Regression to Trees
wine<-read.csv("C:/Users/punthakur/Documents/HU - ANALYTICS/530-Machine Learning/whitewines.csv")
str(wine)
## 'data.frame': 4898 obs. of 12 variables:
## $ fixed.acidity : num 6.7 5.7 5.9 5.3 6.4 7 7.9 6.6 7 6.5 ...
## $ volatile.acidity : num 0.62 0.22 0.19 0.47 0.29 0.14 0.12 0.38 0.16 0.37 ...
## $ citric.acid : num 0.24 0.2 0.26 0.1 0.21 0.41 0.49 0.28 0.3 0.33 ...
## $ residual.sugar : num 1.1 16 7.4 1.3 9.65 0.9 5.2 2.8 2.6 3.9 ...
## $ chlorides : num 0.039 0.044 0.034 0.036 0.041 0.037 0.049 0.043 0.043 0.027 ...
## $ free.sulfur.dioxide : num 6 41 33 11 36 22 33 17 34 40 ...
## $ total.sulfur.dioxide: num 62 113 123 74 119 95 152 67 90 130 ...
## $ density : num 0.993 0.999 0.995 0.991 0.993 ...
## $ pH : num 3.41 3.22 3.49 3.48 2.99 3.25 3.18 3.21 2.88 3.28 ...
## $ sulphates : num 0.32 0.46 0.42 0.54 0.34 0.43 0.47 0.47 0.47 0.39 ...
## $ alcohol : num 10.4 8.9 10.1 11.2 10.9 ...
## $ quality : int 5 6 6 4 6 6 6 6 6 7 ...
hist(wine$quality)

#Data is normal
#Step 2: Exploring and Preparing the Data
wine_train <- wine[1:3750, ]
wine_test <- wine[3751:4898, ]
#Step 3: Training a Model on the Data
m.rpart <- rpart(quality ~ ., data=wine_train)
m.rpart
## n= 3750
##
## node), split, n, deviance, yval
## * denotes terminal node
##
## 1) root 3750 2945.53200 5.870933
## 2) alcohol< 10.85 2372 1418.86100 5.604975
## 4) volatile.acidity>=0.2275 1611 821.30730 5.432030
## 8) volatile.acidity>=0.3025 688 278.97670 5.255814 *
## 9) volatile.acidity< 0.3025 923 505.04230 5.563380 *
## 5) volatile.acidity< 0.2275 761 447.36400 5.971091 *
## 3) alcohol>=10.85 1378 1070.08200 6.328737
## 6) free.sulfur.dioxide< 10.5 84 95.55952 5.369048 *
## 7) free.sulfur.dioxide>=10.5 1294 892.13600 6.391036
## 14) alcohol< 11.76667 629 430.11130 6.173291
## 28) volatile.acidity>=0.465 11 10.72727 4.545455 *
## 29) volatile.acidity< 0.465 618 389.71680 6.202265 *
## 15) alcohol>=11.76667 665 403.99400 6.596992 *
rpart.plot(m.rpart, digits=3)

rpart.plot(m.rpart, digits=4, fallen.leaves = TRUE, type = 3, extra = 101)

#Step 4: Evaluating Model Performance
p.rpart <- predict(m.rpart, wine_test)
summary(p.rpart)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.545 5.563 5.971 5.893 6.202 6.597
summary(wine_test$quality)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.000 5.000 6.000 5.901 6.000 9.000
cor(p.rpart, wine_test$quality)
## [1] 0.5369525
#Q3- What is your interpretation about this amount of RMSE?
if (!require("Metrics")) {
install.packages("Metrics")
library(Metrics)
}
## Loading required package: Metrics
## Warning: package 'Metrics' was built under R version 3.6.3
##
## Attaching package: 'Metrics'
## The following object is masked from 'package:gnm':
##
## se
rmse(wine_test$quality, p.rpart)
## [1] 0.7448093
#The root-mean-square error is 0.74, which is high, the lower RMSE value, the better the model fits the observed data.
#News Popularity
news <- read.csv("C:/Users/punthakur/Documents/HU - ANALYTICS/530-Machine Learning/OnlineNewsPopularity_for_R.csv")
str(news)
## 'data.frame': 39644 obs. of 61 variables:
## $ url : Factor w/ 39644 levels "http://mashable.com/2013/01/07/amazon-instant-video-browser/",..: 1 2 3 4 5 6 7 8 9 10 ...
## $ timedelta : num 731 731 731 731 731 731 731 731 731 731 ...
## $ n_tokens_title : num 12 9 9 9 13 10 8 12 11 10 ...
## $ n_tokens_content : num 219 255 211 531 1072 ...
## $ n_unique_tokens : num 0.664 0.605 0.575 0.504 0.416 ...
## $ n_non_stop_words : num 1 1 1 1 1 ...
## $ n_non_stop_unique_tokens : num 0.815 0.792 0.664 0.666 0.541 ...
## $ num_hrefs : num 4 3 3 9 19 2 21 20 2 4 ...
## $ num_self_hrefs : num 2 1 1 0 19 2 20 20 0 1 ...
## $ num_imgs : num 1 1 1 1 20 0 20 20 0 1 ...
## $ num_videos : num 0 0 0 0 0 0 0 0 0 1 ...
## $ average_token_length : num 4.68 4.91 4.39 4.4 4.68 ...
## $ num_keywords : num 5 4 6 7 7 9 10 9 7 5 ...
## $ data_channel_is_lifestyle : num 0 0 0 0 0 0 1 0 0 0 ...
## $ data_channel_is_entertainment: num 1 0 0 1 0 0 0 0 0 0 ...
## $ data_channel_is_bus : num 0 1 1 0 0 0 0 0 0 0 ...
## $ data_channel_is_socmed : num 0 0 0 0 0 0 0 0 0 0 ...
## $ data_channel_is_tech : num 0 0 0 0 1 1 0 1 1 0 ...
## $ data_channel_is_world : num 0 0 0 0 0 0 0 0 0 1 ...
## $ kw_min_min : num 0 0 0 0 0 0 0 0 0 0 ...
## $ kw_max_min : num 0 0 0 0 0 0 0 0 0 0 ...
## $ kw_avg_min : num 0 0 0 0 0 0 0 0 0 0 ...
## $ kw_min_max : num 0 0 0 0 0 0 0 0 0 0 ...
## $ kw_max_max : num 0 0 0 0 0 0 0 0 0 0 ...
## $ kw_avg_max : num 0 0 0 0 0 0 0 0 0 0 ...
## $ kw_min_avg : num 0 0 0 0 0 0 0 0 0 0 ...
## $ kw_max_avg : num 0 0 0 0 0 0 0 0 0 0 ...
## $ kw_avg_avg : num 0 0 0 0 0 0 0 0 0 0 ...
## $ self_reference_min_shares : num 496 0 918 0 545 8500 545 545 0 0 ...
## $ self_reference_max_shares : num 496 0 918 0 16000 8500 16000 16000 0 0 ...
## $ self_reference_avg_sharess : num 496 0 918 0 3151 ...
## $ weekday_is_monday : num 1 1 1 1 1 1 1 1 1 1 ...
## $ weekday_is_tuesday : num 0 0 0 0 0 0 0 0 0 0 ...
## $ weekday_is_wednesday : num 0 0 0 0 0 0 0 0 0 0 ...
## $ weekday_is_thursday : num 0 0 0 0 0 0 0 0 0 0 ...
## $ weekday_is_friday : num 0 0 0 0 0 0 0 0 0 0 ...
## $ weekday_is_saturday : num 0 0 0 0 0 0 0 0 0 0 ...
## $ weekday_is_sunday : num 0 0 0 0 0 0 0 0 0 0 ...
## $ is_weekend : num 0 0 0 0 0 0 0 0 0 0 ...
## $ LDA_00 : num 0.5003 0.7998 0.2178 0.0286 0.0286 ...
## $ LDA_01 : num 0.3783 0.05 0.0333 0.4193 0.0288 ...
## $ LDA_02 : num 0.04 0.0501 0.0334 0.4947 0.0286 ...
## $ LDA_03 : num 0.0413 0.0501 0.0333 0.0289 0.0286 ...
## $ LDA_04 : num 0.0401 0.05 0.6822 0.0286 0.8854 ...
## $ global_subjectivity : num 0.522 0.341 0.702 0.43 0.514 ...
## $ global_sentiment_polarity : num 0.0926 0.1489 0.3233 0.1007 0.281 ...
## $ global_rate_positive_words : num 0.0457 0.0431 0.0569 0.0414 0.0746 ...
## $ global_rate_negative_words : num 0.0137 0.01569 0.00948 0.02072 0.01213 ...
## $ rate_positive_words : num 0.769 0.733 0.857 0.667 0.86 ...
## $ rate_negative_words : num 0.231 0.267 0.143 0.333 0.14 ...
## $ avg_positive_polarity : num 0.379 0.287 0.496 0.386 0.411 ...
## $ min_positive_polarity : num 0.1 0.0333 0.1 0.1364 0.0333 ...
## $ max_positive_polarity : num 0.7 0.7 1 0.8 1 0.6 1 1 0.8 0.5 ...
## $ avg_negative_polarity : num -0.35 -0.119 -0.467 -0.37 -0.22 ...
## $ min_negative_polarity : num -0.6 -0.125 -0.8 -0.6 -0.5 -0.4 -0.5 -0.5 -0.125 -0.5 ...
## $ max_negative_polarity : num -0.2 -0.1 -0.133 -0.167 -0.05 ...
## $ title_subjectivity : num 0.5 0 0 0 0.455 ...
## $ title_sentiment_polarity : num -0.188 0 0 0 0.136 ...
## $ abs_title_subjectivity : num 0 0.5 0.5 0.5 0.0455 ...
## $ abs_title_sentiment_polarity : num 0.188 0 0 0 0.136 ...
## $ shares : int 593 711 1500 1200 505 855 556 891 3600 710 ...
#minify instances
newsShort <- data.frame(news$n_tokens_title, news$n_tokens_content, news$n_unique_tokens, news$n_non_stop_words, news$num_hrefs, news$num_imgs, news$num_videos, news$average_token_length, news$num_keywords, news$kw_max_max, news$global_sentiment_polarity, news$avg_positive_polarity, news$title_subjectivity, news$title_sentiment_polarity, news$abs_title_subjectivity, news$abs_title_sentiment_polarity, news$shares)
colnames(newsShort) <- c("n_tokens_title", "n_tokens_content", "n_unique_tokens", "n_non_stop_words", "num_hrefs", "num_imgs", "num_videos", "average_token_length", "num_keywords", "kw_max_max", "global_sentiment_polarity", "avg_positive_polarity", "title_subjectivity", "title_sentiment_polarity", "abs_title_subjectivity", "abs_title_sentiment_polarity", "shares")
str(newsShort)
## 'data.frame': 39644 obs. of 17 variables:
## $ n_tokens_title : num 12 9 9 9 13 10 8 12 11 10 ...
## $ n_tokens_content : num 219 255 211 531 1072 ...
## $ n_unique_tokens : num 0.664 0.605 0.575 0.504 0.416 ...
## $ n_non_stop_words : num 1 1 1 1 1 ...
## $ num_hrefs : num 4 3 3 9 19 2 21 20 2 4 ...
## $ num_imgs : num 1 1 1 1 20 0 20 20 0 1 ...
## $ num_videos : num 0 0 0 0 0 0 0 0 0 1 ...
## $ average_token_length : num 4.68 4.91 4.39 4.4 4.68 ...
## $ num_keywords : num 5 4 6 7 7 9 10 9 7 5 ...
## $ kw_max_max : num 0 0 0 0 0 0 0 0 0 0 ...
## $ global_sentiment_polarity : num 0.0926 0.1489 0.3233 0.1007 0.281 ...
## $ avg_positive_polarity : num 0.379 0.287 0.496 0.386 0.411 ...
## $ title_subjectivity : num 0.5 0 0 0 0.455 ...
## $ title_sentiment_polarity : num -0.188 0 0 0 0.136 ...
## $ abs_title_subjectivity : num 0 0.5 0.5 0.5 0.0455 ...
## $ abs_title_sentiment_polarity: num 0.188 0 0 0 0.136 ...
## $ shares : int 593 711 1500 1200 505 855 556 891 3600 710 ...
#Pre-Processing the Data
newsShort$popular = rep('na', nrow(newsShort))
for(i in 1:39644) {
if(newsShort$shares[i] >= 1400) {
newsShort$popular[i] = "yes"}
else {newsShort$popular[i] = "no"}
}
newsShort$shares = newsShort$popular
newsShort$shares <- as.factor(newsShort$shares)
set.seed(12345)
news_rand <- newsShort[order(runif(10000)), ]
#CLASSIFICATION
#Train & Test Data
news_train <- news_rand[1:9000, ]
news_test <- news_rand[9001:10000, ]
prop.table(table(news_train$shares))
##
## no yes
## 0.4308889 0.5691111
prop.table(table(news_test$shares))
##
## no yes
## 0.414 0.586
#Train the model
news_model <- C5.0(news_train[-17], news_train$shares)
summary(news_model)
##
## Call:
## C5.0.default(x = news_train[-17], y = news_train$shares)
##
##
## C5.0 [Release 2.07 GPL Edition] Fri Aug 28 16:50:16 2020
## -------------------------------
##
## Class specified by attribute `outcome'
##
## Read 9000 cases (18 attributes) from undefined.data
##
## Decision tree:
##
## popular = no: no (3878)
## popular = yes: yes (5122)
##
##
## Evaluation on training data (9000 cases):
##
## Decision Tree
## ----------------
## Size Errors
##
## 2 0( 0.0%) <<
##
##
## (a) (b) <-classified as
## ---- ----
## 3878 (a): class no
## 5122 (b): class yes
##
##
## Attribute usage:
##
## 100.00% popular
##
##
## Time: 0.2 secs
#EValuate the Model
news_pred <- predict(news_model, news_test)
(p <- table(news_pred, news_test$shares))
##
## news_pred no yes
## no 414 0
## yes 0 586
(Accuracy <- sum(diag(p))/sum(p)*100)
## [1] 100
plot(newsShort$shares)

summary(news_test$shares)
## no yes
## 414 586
library(gmodels)
CrossTable(news_test$shares, news_pred, prop.chisq = FALSE, prop.c = FALSE, prop.r = FALSE, dnn = c('actual shares', 'predicted shares'))
##
##
## Cell Contents
## |-------------------------|
## | N |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 1000
##
##
## | predicted shares
## actual shares | no | yes | Row Total |
## --------------|-----------|-----------|-----------|
## no | 414 | 0 | 414 |
## | 0.414 | 0.000 | |
## --------------|-----------|-----------|-----------|
## yes | 0 | 586 | 586 |
## | 0.000 | 0.586 | |
## --------------|-----------|-----------|-----------|
## Column Total | 414 | 586 | 1000 |
## --------------|-----------|-----------|-----------|
##
##
#Decision Tree and Random Forest
news <- news[,-(1:2)]
#check for outliers
news=news[!news$n_unique_tokens==701,]
#minify instances
newsShort <- data.frame(news$n_tokens_title, news$n_tokens_content, news$n_unique_tokens, news$n_non_stop_words, news$num_hrefs, news$num_imgs, news$num_videos, news$average_token_length, news$num_keywords, news$kw_max_max, news$global_sentiment_polarity, news$avg_positive_polarity, news$title_subjectivity, news$title_sentiment_polarity, news$abs_title_subjectivity, news$abs_title_sentiment_polarity, news$shares)
colnames(newsShort) <- c("n_tokens_title", "n_tokens_content", "n_unique_tokens", "n_non_stop_words", "num_hrefs", "num_imgs", "num_videos", "average_token_length", "num_keywords", "kw_max_max", "global_sentiment_polarity", "avg_positive_polarity", "title_subjectivity", "title_sentiment_polarity", "abs_title_subjectivity", "abs_title_sentiment_polarity", "shares")
#standardize the dataset
for(i in ncol(news)-1){
news[,i]<-scale(news[,i], center = TRUE, scale = TRUE)
}
#define popular articles
newsShort$shares <- as.factor(ifelse(newsShort$shares > 1400,1,0))
set.seed(23589)
news_rand <- newsShort[order(runif(39643)), ]
news_train <- news_rand[1:4000, ]
news_test <- news_rand[4001:39643, ]
news_train$shares <- as.factor(news_train$shares)
random_modelNews <- randomForest(news_train$shares ~ . , data= news_train)
#Model training
cred_pridRF <- predict(random_modelNews, news_test)
(p2 <- table(cred_pridRF, news_test$shares))
##
## cred_pridRF 0 1
## 0 10595 7695
## 1 7474 9879
#Accuracy
(Accuracy <- sum(diag(p2))/sum(p2)*100)
## [1] 57.44185
#importance
importance(random_modelNews)
## MeanDecreaseGini
## n_tokens_title 110.84760
## n_tokens_content 170.83073
## n_unique_tokens 188.13582
## n_non_stop_words 167.57842
## num_hrefs 140.36733
## num_imgs 94.87513
## num_videos 59.29693
## average_token_length 195.19758
## num_keywords 101.41642
## kw_max_max 50.64025
## global_sentiment_polarity 204.22721
## avg_positive_polarity 191.68324
## title_subjectivity 79.69770
## title_sentiment_polarity 85.79501
## abs_title_subjectivity 73.58037
## abs_title_sentiment_polarity 69.09077
#Decision Tree
news_model <- C5.0(news_train[-17], news_train$shares)
summary(news_model)
##
## Call:
## C5.0.default(x = news_train[-17], y = news_train$shares)
##
##
## C5.0 [Release 2.07 GPL Edition] Fri Aug 28 16:50:26 2020
## -------------------------------
##
## Class specified by attribute `outcome'
##
## Read 4000 cases (17 attributes) from undefined.data
##
## Decision tree:
##
## num_hrefs > 13:
## :...num_keywords <= 5: 0 (125/47)
## : num_keywords > 5:
## : :...n_unique_tokens <= 0.3550296: 1 (43/5)
## : n_unique_tokens > 0.3550296:
## : :...kw_max_max <= 80400:
## : :...title_sentiment_polarity > 0.8: 1 (3)
## : : title_sentiment_polarity <= 0.8:
## : : :...global_sentiment_polarity <= 0.1593333: 1 (23/9)
## : : global_sentiment_polarity > 0.1593333: 0 (24/4)
## : kw_max_max > 80400:
## : :...n_tokens_title > 11:
## : :...num_imgs <= 14: 0 (180/85)
## : : num_imgs > 14: 1 (42/10)
## : n_tokens_title <= 11:
## : :...global_sentiment_polarity > 0.0637982: 1 (438/139)
## : global_sentiment_polarity <= 0.0637982:
## : :...num_videos > 2: 1 (10/1)
## : num_videos <= 2:
## : :...n_tokens_content <= 381: 1 (22/5)
## : n_tokens_content > 381: 0 (71/21)
## num_hrefs <= 13:
## :...kw_max_max <= 617900:
## :...n_tokens_title <= 10: 1 (282/105)
## : n_tokens_title > 10:
## : :...n_tokens_title <= 12: 0 (131/60)
## : n_tokens_title > 12: 1 (36/14)
## kw_max_max > 617900:
## :...num_imgs > 1: 1 (830/413)
## num_imgs <= 1:
## :...n_non_stop_words <= 0.9999999: 1 (99/44)
## n_non_stop_words > 0.9999999:
## :...num_videos > 9: 1 (51/19)
## num_videos <= 9:
## :...kw_max_max > 690400: 0 (1333/535)
## kw_max_max <= 690400:
## :...num_imgs > 0: 0 (171/72)
## num_imgs <= 0:
## :...num_keywords > 9: 0 (9/3)
## num_keywords <= 9:
## :...num_hrefs <= 10: 1 (73/28)
## num_hrefs > 10: 0 (4)
##
##
## Evaluation on training data (4000 cases):
##
## Decision Tree
## ----------------
## Size Errors
##
## 22 1619(40.5%) <<
##
##
## (a) (b) <-classified as
## ---- ----
## 1221 792 (a): class 0
## 827 1160 (b): class 1
##
##
## Attribute usage:
##
## 100.00% num_hrefs
## 95.80% kw_max_max
## 69.80% num_imgs
## 43.60% num_videos
## 43.50% n_non_stop_words
## 30.30% n_tokens_title
## 26.67% num_keywords
## 21.40% n_unique_tokens
## 14.70% global_sentiment_polarity
## 2.33% n_tokens_content
## 1.25% title_sentiment_polarity
##
##
## Time: 0.1 secs
#Model training
news_pred <- predict(news_model, news_test)
CrossTable(news_test$shares, news_pred, prop.chisq = FALSE, prop.c = FALSE, prop.r = FALSE, dnn = c('actual shares', 'predicted shares'))
##
##
## Cell Contents
## |-------------------------|
## | N |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 35643
##
##
## | predicted shares
## actual shares | 0 | 1 | Row Total |
## --------------|-----------|-----------|-----------|
## 0 | 10344 | 7725 | 18069 |
## | 0.290 | 0.217 | |
## --------------|-----------|-----------|-----------|
## 1 | 8056 | 9518 | 17574 |
## | 0.226 | 0.267 | |
## --------------|-----------|-----------|-----------|
## Column Total | 18400 | 17243 | 35643 |
## --------------|-----------|-----------|-----------|
##
##
(p3 <- table(news_pred, news_test$shares))
##
## news_pred 0 1
## 0 10344 8056
## 1 7725 9518
#Accuracy
(Accuracy <- sum(diag(p3))/sum(p3)*100)
## [1] 55.72483