Moving 12-Month Total Vehicle Miles Traveled (M12MTVUSM227NFWA)

indicator <-fredr_series_observations(series_id = "M12MTVUSM227NFWA",
        observation_start = as.Date("2000-01-01")) 

colnames(indicator) <- c("date","series","miles")

indicator[,c(1,3)] %>% slice_sample(n = 10)%>% arrange(date)%>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "blue" ) 
date miles
2000-11-01 2750001
2002-01-01 2801140
2006-05-01 3003296
2008-05-01 3017314
2013-11-01 2985753
2014-05-01 2991322
2016-01-01 3101553
2016-06-01 3134860
2018-05-01 3223671
2018-10-01 3235599
indicator %>% ggplot() + 
   
   
  geom_line(mapping = aes(x=date,y=miles), color = "blue4",size=1) +
  labs(title = "Moving 12-Month Total Vehicle Miles Traveled_ Total", 
       subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
       x="Time", y="Millions of Miles",
       caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego")+
    theme_economist()

Vehicle Miles Traveled (TRFVOLUSM227NFWA)

indicator <-fredr_series_observations(series_id = "TRFVOLUSM227NFWA",
        observation_start = as.Date("2000-01-01")) 

colnames(indicator) <- c("date","series","miles")

indicator[,c(1,3)] %>% slice_sample(n = 10)%>% arrange(date)%>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "blue" ) 
date miles
2000-10-01 236491
2002-10-01 245556
2003-07-01 262105
2007-01-01 233621
2008-08-01 260609
2010-06-01 260083
2010-09-01 244682
2012-09-01 238867
2013-02-01 215803
2018-06-01 282648
indicator %>% ggplot() + 
   
   
  geom_line(mapping = aes(x=date,y=miles), color = "blue4",size=1) +
  labs(title = "Vehicle Miles Traveled", 
       subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
       x="Time", y="Millions of Miles",
       caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego")+
    theme_economist()

Load Factor for U.S. Air Carrier Domestic and International, Scheduled Passenger Flights (LOADFACTOR)

indicator <-fredr_series_observations(series_id = "LOADFACTOR",
        observation_start = as.Date("2000-01-01")) 

colnames(indicator) <- c("date","series","percent")

indicator[,c(1,3)] %>% slice_sample(n = 10)%>% arrange(date)%>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "blue" ) 
date percent
2000-05-01 74.2
2003-07-01 81.5
2003-09-01 69.3
2005-11-01 76.5
2009-02-01 73.3
2009-07-01 86.4
2011-03-01 80.8
2012-08-01 86.5
2012-10-01 83.4
2017-03-01 83.5
indicator %>% ggplot() + 
   
   
  geom_line(mapping = aes(x=date,y=percent), color = "blue4",size=1) +
  labs(title = "U.S. Air Passenger _ Load Factor", 
       subtitle = str_glue("Domestic & International\nFrom {min(indicator$date)} through {max(indicator$date)}"),
       x="Time", y="Percent of load",
       caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego")+
    theme_economist()

tail(indicator,n=12) %>%
  ggplot() + 
    geom_line(mapping = aes(x=date,y=percent), color = "blue4",size=1) +
  labs(title = "U.S. Air Passenger _ Load Factor", 
       subtitle = "May 2019 to May 2020",
       x="Time", y="Percent of load",
       caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego")+
    theme_economist()

## Public Transit Ridership (TRANSIT)

indicator <-fredr_series_observations(series_id = "TRANSIT",
        observation_start = as.Date("2000-01-01")) 

colnames(indicator) <- c("date","series","value")

indicator[,c(1,3)] %>% slice_sample(n = 12)%>% arrange(date)%>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "blue" ) 
date value
2001-05-01 850680
2002-02-01 756102
2002-04-01 824757
2003-02-01 732135
2004-05-01 781133
2013-07-01 868341
2014-07-01 886021
2014-11-01 841908
2015-12-01 850726
2016-11-01 839892
2018-06-01 822283
2019-03-01 832432
indicator %>% ggplot() + 
   geom_line(mapping = aes(x=date,y=value), color = "blue4",size=1) +
  labs(title = "Public Transit Ridership", 
       subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
       x="Time", y="Thousands of trip tickets",
       caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego")+
    theme_economist()

tail(indicator,n=12) %>%
  ggplot() + 
    geom_line(mapping = aes(x=date,y=value), color = "blue4",size=1) +
  labs(title = "Public Transit Ridership", 
       subtitle = "Most recent 12 months",
       x="Time", y="Thousands of trip tickets",
       caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego")+
    theme_economist()

Rail Passenger Miles (RAILPM)

indicator <-fredr_series_observations(series_id = "RAILPM",
        observation_start = as.Date("2000-01-01")) 

colnames(indicator) <- c("date","series","value")

indicator[,c(1,3)] %>% slice_sample(n = 12)%>% arrange(date)%>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "blue" ) 
date value
2000-06-01 517102460
2002-02-01 397948979
2004-12-01 476798294
2006-09-01 427768908
2008-11-01 484492078
2008-12-01 511270950
2009-04-01 469783200
2010-03-01 538675366
2014-07-01 672539892
2015-12-01 561992627
2017-08-01 628885839
2020-01-01 447564878
indicator %>% ggplot() + 
   geom_line(mapping = aes(x=date,y=value/1000000), color = "blue4",size=1) +
  labs(title = "Rail Passenger Miles", 
       subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
       x="Time", y="Millions of Miles",
       caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego")+
    theme_economist()

tail(indicator,n=12) %>%
  ggplot() + 
    geom_line(mapping = aes(x=date,y=value/1000000), color = "blue4",size=1) +
  labs(title = "Rail Passenger Miles", 
       subtitle = "Most recent 12 months",
       x="Time", y="Millions of Miles",
       caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego")+
    theme_economist()

Air Revenue Passenger Miles (AIRRPMTSID11)

indicator <-fredr_series_observations(series_id = "AIRRPMTSID11",
        observation_start = as.Date("2000-01-01")) 

colnames(indicator) <- c("date","series","value")

indicator[,c(1,3)] %>% slice_sample(n = 12)%>% arrange(date)%>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "blue" ) 
date value
2001-08-01 60798914
2002-03-01 53830817
2003-06-01 54773090
2004-05-01 61844342
2006-03-01 67569262
2006-08-01 66091699
2007-07-01 70149734
2012-03-01 69751788
2014-03-01 72285269
2017-07-01 81083691
2018-09-01 84018336
2019-04-01 87412627
indicator %>% ggplot() + 
   geom_line(mapping = aes(x=date,y=value/1000), color = "blue4",size=1) +
  labs(title = "Air Revenue Passenger Miles (RPM)", 
       subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
       x="Time", y="Millions",
       caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego")+
    theme_economist()

tail(indicator,n=12) %>%
  ggplot() + 
    geom_line(mapping = aes(x=date,y=value/1000), color = "blue4",size=1) +
  labs(title = "Air Revenue Passenger Miles (RMP)", 
       subtitle = "Most recent 12 months period",
       x="Time", y="Millions",
       caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego")+
    theme_economist()