Notch Analysis

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ bs(novel_locations, knots = c(1, 26), degree = 1) *  
##     lockdown + dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 64690.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8297 -0.5532  0.0468  0.6016  4.1258 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 120.9    11.00   
##  Residual             295.3    17.18   
## Number of obs: 7519, groups:  subject, 249
## 
## Fixed effects:
##                                                              Estimate
## (Intercept)                                                   55.7335
## bs(novel_locations, knots = c(1, 26), degree = 1)1            -3.8737
## bs(novel_locations, knots = c(1, 26), degree = 1)2            -1.6572
## bs(novel_locations, knots = c(1, 26), degree = 1)3            29.4089
## lockdown                                                      -8.8954
## dowMonday                                                     -1.7918
## dowSaturday                                                    3.3314
## dowSunday                                                      0.7781
## dowThursday                                                   -2.1945
## dowTuesday                                                    -4.1084
## dowWednesday                                                  -2.1109
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown    4.9280
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown    4.9171
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown  -30.3410
##                                                             Std. Error
## (Intercept)                                                     1.6800
## bs(novel_locations, knots = c(1, 26), degree = 1)1              1.6541
## bs(novel_locations, knots = c(1, 26), degree = 1)2              1.4744
## bs(novel_locations, knots = c(1, 26), degree = 1)3              4.7938
## lockdown                                                        1.4979
## dowMonday                                                       0.7685
## dowSaturday                                                     0.7962
## dowSunday                                                       0.7921
## dowThursday                                                     0.7589
## dowTuesday                                                      0.7536
## dowWednesday                                                    0.7778
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown     1.8847
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown     1.6882
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown    14.3926
##                                                                    df t value
## (Intercept)                                                 4031.0414  33.176
## bs(novel_locations, knots = c(1, 26), degree = 1)1          7364.3940  -2.342
## bs(novel_locations, knots = c(1, 26), degree = 1)2          7379.6091  -1.124
## bs(novel_locations, knots = c(1, 26), degree = 1)3          7330.3034   6.135
## lockdown                                                    7338.4248  -5.939
## dowMonday                                                   7269.2723  -2.332
## dowSaturday                                                 7272.1576   4.184
## dowSunday                                                   7272.5381   0.982
## dowThursday                                                 7269.6114  -2.892
## dowTuesday                                                  7270.5816  -5.452
## dowWednesday                                                7268.2996  -2.714
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown 7329.9540   2.615
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown 7334.3065   2.913
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown 7314.8365  -2.108
##                                                             Pr(>|t|)    
## (Intercept)                                                  < 2e-16 ***
## bs(novel_locations, knots = c(1, 26), degree = 1)1           0.01921 *  
## bs(novel_locations, knots = c(1, 26), degree = 1)2           0.26106    
## bs(novel_locations, knots = c(1, 26), degree = 1)3          8.97e-10 ***
## lockdown                                                    3.01e-09 ***
## dowMonday                                                    0.01975 *  
## dowSaturday                                                 2.89e-05 ***
## dowSunday                                                    0.32597    
## dowThursday                                                  0.00384 ** 
## dowTuesday                                                  5.15e-08 ***
## dowWednesday                                                 0.00667 ** 
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown  0.00895 ** 
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown  0.00360 ** 
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown  0.03506 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## [1] "BIC: "
## [1] 64833.51
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ bs(novel_locations, knots = c(1, 26), degree = 1) *  
##     lockdown + dow + distance + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 64701.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8252 -0.5544  0.0478  0.6027  4.1251 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 120.9    11.00   
##  Residual             295.3    17.18   
## Number of obs: 7519, groups:  subject, 249
## 
## Fixed effects:
##                                                                 Estimate
## (Intercept)                                                   55.7526168
## bs(novel_locations, knots = c(1, 26), degree = 1)1            -3.8508438
## bs(novel_locations, knots = c(1, 26), degree = 1)2            -1.6673547
## bs(novel_locations, knots = c(1, 26), degree = 1)3            27.3109669
## lockdown                                                      -8.8977797
## dowMonday                                                     -1.8038112
## dowSaturday                                                    3.3229714
## dowSunday                                                      0.7159411
## dowThursday                                                   -2.2051463
## dowTuesday                                                    -4.1286609
## dowWednesday                                                  -2.1249660
## distance                                                       0.0009696
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown    4.9116086
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown    4.9131425
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown  -29.0816146
##                                                               Std. Error
## (Intercept)                                                    1.6799685
## bs(novel_locations, knots = c(1, 26), degree = 1)1             1.6540623
## bs(novel_locations, knots = c(1, 26), degree = 1)2             1.4743830
## bs(novel_locations, knots = c(1, 26), degree = 1)3             5.0493894
## lockdown                                                       1.4978218
## dowMonday                                                      0.7685165
## dowSaturday                                                    0.7961427
## dowSunday                                                      0.7934094
## dowThursday                                                    0.7588913
## dowTuesday                                                     0.7537053
## dowWednesday                                                   0.7778798
## distance                                                       0.0007335
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown    1.8846311
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown    1.6881181
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown   14.4232832
##                                                                       df
## (Intercept)                                                 4030.3223808
## bs(novel_locations, knots = c(1, 26), degree = 1)1          7363.6352693
## bs(novel_locations, knots = c(1, 26), degree = 1)2          7378.5430781
## bs(novel_locations, knots = c(1, 26), degree = 1)3          7334.4544159
## lockdown                                                    7337.3952863
## dowMonday                                                   7268.3293973
## dowSaturday                                                 7271.1498738
## dowSunday                                                   7271.7111991
## dowThursday                                                 7268.6051832
## dowTuesday                                                  7269.6170519
## dowWednesday                                                7267.3521557
## distance                                                    7311.4786302
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown 7329.0639908
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown 7333.3003627
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown 7314.4687570
##                                                             t value
## (Intercept)                                                  33.187
## bs(novel_locations, knots = c(1, 26), degree = 1)1           -2.328
## bs(novel_locations, knots = c(1, 26), degree = 1)2           -1.131
## bs(novel_locations, knots = c(1, 26), degree = 1)3            5.409
## lockdown                                                     -5.940
## dowMonday                                                    -2.347
## dowSaturday                                                   4.174
## dowSunday                                                     0.902
## dowThursday                                                  -2.906
## dowTuesday                                                   -5.478
## dowWednesday                                                 -2.732
## distance                                                      1.322
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown   2.606
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown   2.910
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown  -2.016
##                                                                  Pr(>|t|)    
## (Intercept)                                                       < 2e-16 ***
## bs(novel_locations, knots = c(1, 26), degree = 1)1                0.01993 *  
## bs(novel_locations, knots = c(1, 26), degree = 1)2                0.25814    
## bs(novel_locations, knots = c(1, 26), degree = 1)3          0.00000006546 ***
## lockdown                                                    0.00000000297 ***
## dowMonday                                                         0.01895 *  
## dowSaturday                                                 0.00003030011 ***
## dowSunday                                                         0.36690    
## dowThursday                                                       0.00367 ** 
## dowTuesday                                                  0.00000004450 ***
## dowWednesday                                                      0.00632 ** 
## distance                                                          0.18625    
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown       0.00918 ** 
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown       0.00362 ** 
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown       0.04381 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling

## [1] "BIC: "
## [1] 64853.28

< 200 Novel Locations

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ bs(novel_locations, knots = c(1, 26), degree = 1) *  
##     lockdown + dow + (1 | subject)
##    Data: df[which(df$novel_locations < 200), ]
## 
## REML criterion at convergence: 63395.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9735 -0.5641  0.0446  0.6081  4.0978 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 121.5    11.02   
##  Residual             291.4    17.07   
## Number of obs: 7378, groups:  subject, 249
## 
## Fixed effects:
##                                                              Estimate
## (Intercept)                                                   55.4845
## bs(novel_locations, knots = c(1, 26), degree = 1)1            -3.2244
## bs(novel_locations, knots = c(1, 26), degree = 1)2            -3.0892
## bs(novel_locations, knots = c(1, 26), degree = 1)3             9.3404
## lockdown                                                      -8.8417
## dowMonday                                                     -1.6274
## dowSaturday                                                    3.1957
## dowSunday                                                      0.9916
## dowThursday                                                   -1.6817
## dowTuesday                                                    -3.5429
## dowWednesday                                                  -1.9915
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown    4.1323
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown    6.6292
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown   -8.6961
##                                                             Std. Error
## (Intercept)                                                     1.6751
## bs(novel_locations, knots = c(1, 26), degree = 1)1              1.6468
## bs(novel_locations, knots = c(1, 26), degree = 1)2              1.4820
## bs(novel_locations, knots = c(1, 26), degree = 1)3              1.8281
## lockdown                                                        1.4883
## dowMonday                                                       0.7708
## dowSaturday                                                     0.8041
## dowSunday                                                       0.7977
## dowThursday                                                     0.7635
## dowTuesday                                                      0.7574
## dowWednesday                                                    0.7819
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown     1.8769
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown     1.7074
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown     3.2598
##                                                                    df t value
## (Intercept)                                                 3958.4603  33.124
## bs(novel_locations, knots = c(1, 26), degree = 1)1          7220.5714  -1.958
## bs(novel_locations, knots = c(1, 26), degree = 1)2          7236.1725  -2.084
## bs(novel_locations, knots = c(1, 26), degree = 1)3          7239.1171   5.109
## lockdown                                                    7195.5480  -5.941
## dowMonday                                                   7130.3418  -2.111
## dowSaturday                                                 7132.6400   3.974
## dowSunday                                                   7133.7933   1.243
## dowThursday                                                 7130.7769  -2.202
## dowTuesday                                                  7132.2719  -4.678
## dowWednesday                                                7129.4148  -2.547
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown 7187.4829   2.202
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown 7192.5953   3.883
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown 7199.8941  -2.668
##                                                                  Pr(>|t|)    
## (Intercept)                                                       < 2e-16 ***
## bs(novel_locations, knots = c(1, 26), degree = 1)1               0.050265 .  
## bs(novel_locations, knots = c(1, 26), degree = 1)2               0.037154 *  
## bs(novel_locations, knots = c(1, 26), degree = 1)3          0.00000033146 ***
## lockdown                                                    0.00000000297 ***
## dowMonday                                                        0.034786 *  
## dowSaturday                                                 0.00007127603 ***
## dowSunday                                                        0.213868    
## dowThursday                                                      0.027666 *  
## dowTuesday                                                  0.00000295674 ***
## dowWednesday                                                     0.010885 *  
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown      0.027717 *  
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown      0.000104 ***
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown      0.007655 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## [1] "BIC: "
## [1] 63538.31
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ bs(novel_locations, knots = c(1, 26), degree = 1) *  
##     lockdown + dow + distance + (1 | subject)
##    Data: df[which(df$novel_locations < 200), ]
## 
## REML criterion at convergence: 63407.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9690 -0.5647  0.0463  0.6094  4.0973 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 121.5    11.02   
##  Residual             291.4    17.07   
## Number of obs: 7378, groups:  subject, 249
## 
## Fixed effects:
##                                                                 Estimate
## (Intercept)                                                   55.5002558
## bs(novel_locations, knots = c(1, 26), degree = 1)1            -3.2139900
## bs(novel_locations, knots = c(1, 26), degree = 1)2            -3.0867328
## bs(novel_locations, knots = c(1, 26), degree = 1)3             9.0271143
## lockdown                                                      -8.8440939
## dowMonday                                                     -1.6379640
## dowSaturday                                                    3.1911737
## dowSunday                                                      0.9443726
## dowThursday                                                   -1.6867981
## dowTuesday                                                    -3.5604067
## dowWednesday                                                  -2.0014943
## distance                                                       0.0006941
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown    4.1269698
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown    6.6147252
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown   -8.4898158
##                                                               Std. Error
## (Intercept)                                                    1.6751353
## bs(novel_locations, knots = c(1, 26), degree = 1)1             1.6468300
## bs(novel_locations, knots = c(1, 26), degree = 1)2             1.4820171
## bs(novel_locations, knots = c(1, 26), degree = 1)3             1.8606340
## lockdown                                                       1.4883583
## dowMonday                                                      0.7709387
## dowSaturday                                                    0.8041277
## dowSunday                                                      0.7994173
## dowThursday                                                    0.7635698
## dowTuesday                                                     0.7576794
## dowWednesday                                                   0.7819916
## distance                                                       0.0007674
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown    1.8769050
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown    1.7075069
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown    3.2678316
##                                                                       df
## (Intercept)                                                 3959.3370113
## bs(novel_locations, knots = c(1, 26), degree = 1)1          7219.7459526
## bs(novel_locations, knots = c(1, 26), degree = 1)2          7235.1967365
## bs(novel_locations, knots = c(1, 26), degree = 1)3          7240.0842804
## lockdown                                                    7194.5528778
## dowMonday                                                   7129.4314667
## dowSaturday                                                 7131.6327901
## dowSunday                                                   7133.0919503
## dowThursday                                                 7129.7873100
## dowTuesday                                                  7131.3771293
## dowWednesday                                                7128.4928187
## distance                                                    7168.0217096
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown 7186.5454107
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown 7191.7242834
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown 7199.6509251
##                                                             t value
## (Intercept)                                                  33.132
## bs(novel_locations, knots = c(1, 26), degree = 1)1           -1.952
## bs(novel_locations, knots = c(1, 26), degree = 1)2           -2.083
## bs(novel_locations, knots = c(1, 26), degree = 1)3            4.852
## lockdown                                                     -5.942
## dowMonday                                                    -2.125
## dowSaturday                                                   3.968
## dowSunday                                                     1.181
## dowThursday                                                  -2.209
## dowTuesday                                                   -4.699
## dowWednesday                                                 -2.559
## distance                                                      0.904
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown   2.199
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown   3.874
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown  -2.598
##                                                                  Pr(>|t|)    
## (Intercept)                                                       < 2e-16 ***
## bs(novel_locations, knots = c(1, 26), degree = 1)1               0.051022 .  
## bs(novel_locations, knots = c(1, 26), degree = 1)2               0.037305 *  
## bs(novel_locations, knots = c(1, 26), degree = 1)3          0.00000125008 ***
## lockdown                                                    0.00000000294 ***
## dowMonday                                                        0.033651 *  
## dowSaturday                                                 0.00007303859 ***
## dowSunday                                                        0.237513    
## dowThursday                                                      0.027200 *  
## dowTuesday                                                  0.00000266219 ***
## dowWednesday                                                     0.010503 *  
## distance                                                         0.365761    
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown      0.027923 *  
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown      0.000108 ***
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown      0.009396 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling

## [1] "BIC: "
## [1] 63558.91

< 100 KM

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ bs(novel_locations, knots = c(1, 26), degree = 1) *  
##     lockdown + dow + (1 | subject)
##    Data: df[which(df$distance < 100), ]
## 
## REML criterion at convergence: 61230.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0843 -0.5601  0.0450  0.6097  4.1440 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 124.3    11.15   
##  Residual             285.8    16.91   
## Number of obs: 7140, groups:  subject, 248
## 
## Fixed effects:
##                                                              Estimate
## (Intercept)                                                   55.4380
## bs(novel_locations, knots = c(1, 26), degree = 1)1            -3.2100
## bs(novel_locations, knots = c(1, 26), degree = 1)2            -3.2036
## bs(novel_locations, knots = c(1, 26), degree = 1)3            18.5458
## lockdown                                                      -8.8683
## dowMonday                                                     -1.6647
## dowSaturday                                                    3.3443
## dowSunday                                                      0.9715
## dowThursday                                                   -1.6893
## dowTuesday                                                    -3.3428
## dowWednesday                                                  -2.1954
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown    4.1735
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown    6.9327
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown  -20.6701
##                                                             Std. Error
## (Intercept)                                                     1.6700
## bs(novel_locations, knots = c(1, 26), degree = 1)1              1.6331
## bs(novel_locations, knots = c(1, 26), degree = 1)2              1.4720
## bs(novel_locations, knots = c(1, 26), degree = 1)3              2.8502
## lockdown                                                        1.4749
## dowMonday                                                       0.7745
## dowSaturday                                                     0.8144
## dowSunday                                                       0.8079
## dowThursday                                                     0.7666
## dowTuesday                                                      0.7619
## dowWednesday                                                    0.7859
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown     1.8609
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown     1.7035
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown     6.5188
##                                                                    df t value
## (Intercept)                                                 3786.9314  33.197
## bs(novel_locations, knots = c(1, 26), degree = 1)1          6979.7538  -1.966
## bs(novel_locations, knots = c(1, 26), degree = 1)2          6994.9174  -2.176
## bs(novel_locations, knots = c(1, 26), degree = 1)3          6992.8091   6.507
## lockdown                                                    6954.3956  -6.013
## dowMonday                                                   6892.0631  -2.149
## dowSaturday                                                 6895.5933   4.106
## dowSunday                                                   6895.6097   1.202
## dowThursday                                                 6892.5125  -2.204
## dowTuesday                                                  6893.8974  -4.388
## dowWednesday                                                6891.3587  -2.794
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown 6947.5264   2.243
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown 6953.5592   4.070
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown 6961.4092  -3.171
##                                                             Pr(>|t|)    
## (Intercept)                                                  < 2e-16 ***
## bs(novel_locations, knots = c(1, 26), degree = 1)1           0.04938 *  
## bs(novel_locations, knots = c(1, 26), degree = 1)2           0.02956 *  
## bs(novel_locations, knots = c(1, 26), degree = 1)3          8.21e-11 ***
## lockdown                                                    1.91e-09 ***
## dowMonday                                                    0.03165 *  
## dowSaturday                                                 4.07e-05 ***
## dowSunday                                                    0.22925    
## dowThursday                                                  0.02759 *  
## dowTuesday                                                  1.16e-05 ***
## dowWednesday                                                 0.00523 ** 
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown  0.02495 *  
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown 4.76e-05 ***
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown  0.00153 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## [1] "BIC: "
## [1] 61372.6
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ bs(novel_locations, knots = c(1, 26), degree = 1) *  
##     lockdown + dow + distance + (1 | subject)
##    Data: df[which(df$distance < 100), ]
## 
## REML criterion at convergence: 61236.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0794 -0.5603  0.0453  0.6093  4.1444 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 124.4    11.15   
##  Residual             285.9    16.91   
## Number of obs: 7140, groups:  subject, 248
## 
## Fixed effects:
##                                                                Estimate
## (Intercept)                                                   55.430264
## bs(novel_locations, knots = c(1, 26), degree = 1)1            -3.201216
## bs(novel_locations, knots = c(1, 26), degree = 1)2            -3.155746
## bs(novel_locations, knots = c(1, 26), degree = 1)3            19.594379
## lockdown                                                      -8.863022
## dowMonday                                                     -1.667925
## dowSaturday                                                    3.349554
## dowSunday                                                      0.983222
## dowThursday                                                   -1.693930
## dowTuesday                                                    -3.350845
## dowWednesday                                                  -2.200191
## distance                                                      -0.006407
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown    4.163086
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown    6.968758
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown  -20.583978
##                                                              Std. Error
## (Intercept)                                                    1.670314
## bs(novel_locations, knots = c(1, 26), degree = 1)1             1.633460
## bs(novel_locations, knots = c(1, 26), degree = 1)2             1.481036
## bs(novel_locations, knots = c(1, 26), degree = 1)3             4.549760
## lockdown                                                       1.475051
## dowMonday                                                      0.774643
## dowSaturday                                                    0.814648
## dowSunday                                                      0.808954
## dowThursday                                                    0.766822
## dowTuesday                                                     0.762399
## dowWednesday                                                   0.786082
## distance                                                       0.021668
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown    1.861316
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown    1.707958
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown    6.525685
##                                                                      df t value
## (Intercept)                                                 3785.317653  33.186
## bs(novel_locations, knots = c(1, 26), degree = 1)1          6979.272046  -1.960
## bs(novel_locations, knots = c(1, 26), degree = 1)2          6998.046821  -2.131
## bs(novel_locations, knots = c(1, 26), degree = 1)3          7008.395783   4.307
## lockdown                                                    6953.528874  -6.009
## dowMonday                                                   6891.128417  -2.153
## dowSaturday                                                 6894.677108   4.112
## dowSunday                                                   6894.585952   1.215
## dowThursday                                                 6891.580948  -2.209
## dowTuesday                                                  6892.909001  -4.395
## dowWednesday                                                6890.350011  -2.799
## distance                                                    7017.231111  -0.296
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown 6946.947016   2.237
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown 6951.096883   4.080
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown 6960.718275  -3.154
##                                                                  Pr(>|t|)    
## (Intercept)                                                       < 2e-16 ***
## bs(novel_locations, knots = c(1, 26), degree = 1)1                0.05006 .  
## bs(novel_locations, knots = c(1, 26), degree = 1)2                0.03314 *  
## bs(novel_locations, knots = c(1, 26), degree = 1)3          0.00001679805 ***
## lockdown                                                    0.00000000197 ***
## dowMonday                                                         0.03134 *  
## dowSaturday                                                 0.00003973927 ***
## dowSunday                                                         0.22425    
## dowThursday                                                       0.02721 *  
## dowTuesday                                                  0.00001123659 ***
## dowWednesday                                                      0.00514 ** 
## distance                                                          0.76746    
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown       0.02534 *  
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown 0.00004550644 ***
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown       0.00162 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## [1] "BIC: "
## [1] 61387.21

Z Novel Locations & < 100 KM

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1) *  
##     lockdown + dow + distance + (1 | subject)
##    Data: df[which(df$distance < 100), ]
## 
## REML criterion at convergence: 61236.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0794 -0.5603  0.0453  0.6093  4.1445 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 124.4    11.15   
##  Residual             285.9    16.91   
## Number of obs: 7140, groups:  subject, 248
## 
## Fixed effects:
##                                                                       Estimate
## (Intercept)                                                          55.430307
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)1            -3.202324
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)2            -3.153349
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)3            19.604698
## lockdown                                                             -8.863034
## dowMonday                                                            -1.667950
## dowSaturday                                                           3.349495
## dowSunday                                                             0.983132
## dowThursday                                                          -1.693885
## dowTuesday                                                           -3.351004
## dowWednesday                                                         -2.200187
## distance                                                             -0.006421
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)1:lockdown    4.059114
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)2:lockdown    6.968536
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)3:lockdown  -20.605229
##                                                                     Std. Error
## (Intercept)                                                           1.670313
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)1             1.652159
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)2             1.481172
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)3             4.550797
## lockdown                                                              1.475050
## dowMonday                                                             0.774642
## dowSaturday                                                           0.814648
## dowSunday                                                             0.808950
## dowThursday                                                           0.766821
## dowTuesday                                                            0.762398
## dowWednesday                                                          0.786081
## distance                                                              0.021668
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)1:lockdown    1.892474
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)2:lockdown    1.708202
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)3:lockdown    6.530120
##                                                                             df
## (Intercept)                                                        3785.312645
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)1          6978.687049
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)2          6998.062608
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)3          7008.355880
## lockdown                                                           6953.528711
## dowMonday                                                          6891.128363
## dowSaturday                                                        6894.677287
## dowSunday                                                          6894.586140
## dowThursday                                                        6891.580929
## dowTuesday                                                         6892.909389
## dowWednesday                                                       6890.349899
## distance                                                           7017.234069
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)1:lockdown 6946.938492
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)2:lockdown 6951.085699
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)3:lockdown 6960.678914
##                                                                    t value
## (Intercept)                                                         33.186
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)1           -1.938
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)2           -2.129
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)3            4.308
## lockdown                                                            -6.009
## dowMonday                                                           -2.153
## dowSaturday                                                          4.112
## dowSunday                                                            1.215
## dowThursday                                                         -2.209
## dowTuesday                                                          -4.395
## dowWednesday                                                        -2.799
## distance                                                            -0.296
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)1:lockdown   2.145
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)2:lockdown   4.079
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)3:lockdown  -3.155
##                                                                         Pr(>|t|)
## (Intercept)                                                              < 2e-16
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)1                0.05263
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)2                0.03329
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)3          0.00001670089
## lockdown                                                           0.00000000197
## dowMonday                                                                0.03134
## dowSaturday                                                        0.00003975101
## dowSunday                                                                0.22429
## dowThursday                                                              0.02721
## dowTuesday                                                         0.00001122551
## dowWednesday                                                             0.00514
## distance                                                                 0.76698
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)1:lockdown       0.03200
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)2:lockdown 0.00004564547
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)3:lockdown       0.00161
##                                                                       
## (Intercept)                                                        ***
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)1          .  
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)2          *  
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)3          ***
## lockdown                                                           ***
## dowMonday                                                          *  
## dowSaturday                                                        ***
## dowSunday                                                             
## dowThursday                                                        *  
## dowTuesday                                                         ***
## dowWednesday                                                       ** 
## distance                                                              
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)1:lockdown *  
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)2:lockdown ***
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)3:lockdown ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

26 Median Knots

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50,  
##     60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1) *  
##     lockdown + dow + (1 | subject)
##    Data: df[which(df$distance < 100), ]
## 
## REML criterion at convergence: 61096.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8350 -0.5572  0.0471  0.6025  4.1396 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 124.3    11.15   
##  Residual             286.1    16.92   
## Number of obs: 7140, groups:  subject, 248
## 
## Fixed effects:
##                                                                                                                             Estimate
## (Intercept)                                                                                                                  55.3877
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)1             -3.6415
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)2             -3.2230
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)3             -2.5339
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)4             -3.7092
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)5             -1.6932
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)6             -2.5092
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)7              0.7200
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)8             -0.4711
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)9              0.7135
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)10             1.2355
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)11             1.4399
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)12             4.9141
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)13            -0.4897
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)14             2.4623
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)15             4.9453
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)16             8.0388
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)17            20.4783
## lockdown                                                                                                                     -8.8617
## dowMonday                                                                                                                    -1.6330
## dowSaturday                                                                                                                   3.3198
## dowSunday                                                                                                                     1.0410
## dowThursday                                                                                                                  -1.6149
## dowTuesday                                                                                                                   -3.2906
## dowWednesday                                                                                                                 -2.1535
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)1:lockdown     4.5694
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)2:lockdown     4.8158
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)3:lockdown     6.6535
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)4:lockdown     6.4183
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)5:lockdown     5.9754
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)6:lockdown     5.0019
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)7:lockdown     1.4759
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)8:lockdown     4.7191
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)9:lockdown    -2.0913
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)10:lockdown   10.1980
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)11:lockdown    4.7799
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)12:lockdown   -0.4319
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)13:lockdown   -2.3886
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)14:lockdown    3.7986
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)15:lockdown  -21.3048
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)16:lockdown   -8.4824
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)17:lockdown  -39.5062
##                                                                                                                            Std. Error
## (Intercept)                                                                                                                    1.6714
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)1               1.9052
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)2               1.7314
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)3               1.6546
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)4               1.7124
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)5               1.7519
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)6               1.8864
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)7               1.9612
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)8               2.0780
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)9               2.1605
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)10              2.2587
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)11              2.4595
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)12              2.5977
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)13              2.9290
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)14              3.4437
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)15              4.2245
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)16              2.9981
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)17             10.8648
## lockdown                                                                                                                       1.4757
## dowMonday                                                                                                                      0.7769
## dowSaturday                                                                                                                    0.8168
## dowSunday                                                                                                                      0.8107
## dowThursday                                                                                                                    0.7691
## dowTuesday                                                                                                                     0.7639
## dowWednesday                                                                                                                   0.7879
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)1:lockdown      2.1749
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)2:lockdown      2.1320
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)3:lockdown      2.1777
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)4:lockdown      2.2747
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)5:lockdown      2.6260
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)6:lockdown      2.8790
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)7:lockdown      3.1851
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)8:lockdown      3.8485
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)9:lockdown      4.1945
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)10:lockdown     5.1405
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)11:lockdown     5.2782
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)12:lockdown     6.4599
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)13:lockdown     7.6483
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)14:lockdown     8.0036
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)15:lockdown     9.9154
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)16:lockdown    10.5937
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)17:lockdown    33.7653
##                                                                                                                                   df
## (Intercept)                                                                                                                3786.2341
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)1           6927.4824
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)2           6954.2527
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)3           6954.1597
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)4           6954.3986
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)5           6943.2967
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)6           6944.3827
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)7           6936.6273
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)8           6938.3925
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)9           6941.1727
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)10          6927.1325
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)11          6923.7142
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)12          6930.9172
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)13          6907.7075
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)14          6911.8309
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)15          6888.6553
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)16          6910.7882
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)17          6919.9435
## lockdown                                                                                                                   6926.2953
## dowMonday                                                                                                                  6864.3321
## dowSaturday                                                                                                                6868.4340
## dowSunday                                                                                                                  6867.3391
## dowThursday                                                                                                                6864.9645
## dowTuesday                                                                                                                 6866.8590
## dowWednesday                                                                                                               6863.7241
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)1:lockdown  6908.5729
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)2:lockdown  6916.6775
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)3:lockdown  6914.2564
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)4:lockdown  6907.9260
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)5:lockdown  6901.1184
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)6:lockdown  6899.1961
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)7:lockdown  6899.1857
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)8:lockdown  6894.0398
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)9:lockdown  6903.4594
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)10:lockdown 6881.3170
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)11:lockdown 6882.3640
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)12:lockdown 6888.1995
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)13:lockdown 6896.7661
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)14:lockdown 6908.7352
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)15:lockdown 6890.6839
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)16:lockdown 6872.2326
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)17:lockdown 6888.4145
##                                                                                                                            t value
## (Intercept)                                                                                                                 33.139
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)1            -1.911
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)2            -1.862
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)3            -1.531
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)4            -2.166
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)5            -0.967
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)6            -1.330
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)7             0.367
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)8            -0.227
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)9             0.330
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)10            0.547
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)11            0.585
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)12            1.892
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)13           -0.167
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)14            0.715
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)15            1.171
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)16            2.681
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)17            1.885
## lockdown                                                                                                                    -6.005
## dowMonday                                                                                                                   -2.102
## dowSaturday                                                                                                                  4.064
## dowSunday                                                                                                                    1.284
## dowThursday                                                                                                                 -2.100
## dowTuesday                                                                                                                  -4.308
## dowWednesday                                                                                                                -2.733
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)1:lockdown    2.101
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)2:lockdown    2.259
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)3:lockdown    3.055
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)4:lockdown    2.822
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)5:lockdown    2.275
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)6:lockdown    1.737
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)7:lockdown    0.463
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)8:lockdown    1.226
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)9:lockdown   -0.499
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)10:lockdown   1.984
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)11:lockdown   0.906
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)12:lockdown  -0.067
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)13:lockdown  -0.312
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)14:lockdown   0.475
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)15:lockdown  -2.149
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)16:lockdown  -0.801
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)17:lockdown  -1.170
##                                                                                                                                 Pr(>|t|)
## (Intercept)                                                                                                                      < 2e-16
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)1                 0.05600
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)2                 0.06271
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)3                 0.12572
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)4                 0.03034
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)5                 0.33382
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)6                 0.18351
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)7                 0.71352
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)8                 0.82067
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)9                 0.74123
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)10                0.58439
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)11                0.55827
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)12                0.05857
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)13                0.86724
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)14                0.47462
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)15                0.24179
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)16                0.00735
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)17                0.05949
## lockdown                                                                                                                   0.00000000201
## dowMonday                                                                                                                        0.03560
## dowSaturday                                                                                                                0.00004870143
## dowSunday                                                                                                                        0.19920
## dowThursday                                                                                                                      0.03579
## dowTuesday                                                                                                                 0.00001671647
## dowWednesday                                                                                                                     0.00629
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)1:lockdown        0.03568
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)2:lockdown        0.02392
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)3:lockdown        0.00226
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)4:lockdown        0.00479
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)5:lockdown        0.02291
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)6:lockdown        0.08237
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)7:lockdown        0.64310
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)8:lockdown        0.22016
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)9:lockdown        0.61810
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)10:lockdown       0.04731
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)11:lockdown       0.36518
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)12:lockdown       0.94670
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)13:lockdown       0.75482
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)14:lockdown       0.63508
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)15:lockdown       0.03170
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)16:lockdown       0.42333
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)17:lockdown       0.24203
##                                                                                                                               
## (Intercept)                                                                                                                ***
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)1           .  
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)2           .  
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)3              
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)4           *  
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)5              
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)6              
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)7              
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)8              
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)9              
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)10             
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)11             
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)12          .  
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)13             
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)14             
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)15             
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)16          ** 
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)17          .  
## lockdown                                                                                                                   ***
## dowMonday                                                                                                                  *  
## dowSaturday                                                                                                                ***
## dowSunday                                                                                                                     
## dowThursday                                                                                                                *  
## dowTuesday                                                                                                                 ***
## dowWednesday                                                                                                               ** 
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)1:lockdown  *  
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)2:lockdown  *  
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)3:lockdown  ** 
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)4:lockdown  ** 
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)5:lockdown  *  
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)6:lockdown  .  
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)7:lockdown     
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)8:lockdown     
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)9:lockdown     
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)10:lockdown *  
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)11:lockdown    
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)12:lockdown    
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)13:lockdown    
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)14:lockdown    
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)15:lockdown *  
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)16:lockdown    
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)17:lockdown    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## [1] "BIC: "
## [1] 61487.05