Punto 1

The American Community Survey distributes downloadable data about United States communities. Download the 2006 microdata survey about housing for the state of Idaho using download.file() from here:

https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2Fss06hid.csv

and load the data into R. The code book, describing the variable names is here:

https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2FPUMSDataDict06.pdf

Create a logical vector that identifies the households on greater than 10 acres who sold more than $10,000 worth of agriculture products. Assign that logical vector to the variable agricultureLogical. Apply the which() function like this to identify the rows of the data frame where the logical vector is TRUE.

which(agricultureLogical)

What are the first 3 values that result?

A 125, 238,262
B 25, 36, 45
C 59, 460, 474
D 403, 756, 798
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.0.2
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
setwd("E:/Personal/especializacion/ciencia de datos/curso3/semana3/")
fileUrl <- "https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2Fss06hid.csv"
download.file(url = fileUrl, destfile = "data.csv", method = "curl")
data <- read.table("data.csv", header = TRUE, sep = ",")
head(data)
##   RT SERIALNO DIVISION PUMA REGION ST  ADJUST WGTP NP TYPE ACR AGS BDS BLD BUS
## 1  H      186        8  700      4 16 1015675   89  4    1   1  NA   4   2   2
## 2  H      306        8  700      4 16 1015675  310  1    1  NA  NA   1   7  NA
## 3  H      395        8  100      4 16 1015675  106  2    1   1  NA   3   2   2
## 4  H      506        8  700      4 16 1015675  240  4    1   1  NA   4   2   2
## 5  H      835        8  800      4 16 1015675  118  4    1   2   1   5   2   2
## 6  H      989        8  700      4 16 1015675  115  4    1   1  NA   3   2   2
##   CONP ELEP FS FULP GASP HFL INSP KIT MHP MRGI MRGP MRGT MRGX PLM RMS RNTM RNTP
## 1   NA  180  0    2    3   3  600   1  NA    1 1300    1    1   1   9   NA   NA
## 2   NA   60  0    2    3   3   NA   1  NA   NA   NA   NA   NA   1   2    2  600
## 3   NA   70  0    2   30   1  200   1  NA   NA   NA   NA    3   1   7   NA   NA
## 4   NA   40  0    2   80   1  200   1  NA    1  860    1    1   1   6   NA   NA
## 5   NA  250  0    2    3   3  700   1  NA    1 1900    1    1   1   7   NA   NA
## 6   NA  130  0    2    3   3  250   1  NA    1  700    1    1   1   6   NA   NA
##   SMP TEL TEN VACS VAL VEH WATP YBL FES  FINCP FPARC GRNTP GRPIP HHL HHT  HINCP
## 1  NA   1   1   NA  17   3  840   5   2 105600     2    NA    NA   1   1 105600
## 2  NA   1   3   NA  NA   1    1   3  NA     NA    NA   660    23   1   4  34000
## 3  NA   1   2   NA  18   2   50   5   7   9400     2    NA    NA   1   3   9400
## 4 400   1   1   NA  19   3  500   2   1  66000     1    NA    NA   1   1  66000
## 5 650   1   1   NA  20   5    2   3   1  93000     2    NA    NA   1   1  93000
## 6 400   1   1   NA  15   2 1200   5   2  61000     1    NA    NA   1   1  61000
##   HUGCL HUPAC HUPAOC HUPARC LNGI MV NOC NPF NPP NR NRC OCPIP PARTNER PSF R18
## 1     0     2      2      2    1  4   2   4   0  0   2    18       0   0   1
## 2     0     4      4      4    1  3   0  NA   0  0   0    NA       0   0   0
## 3     0     2      2      2    1  2   1   2   0  0   1    23       0   0   1
## 4     0     1      1      1    1  3   2   4   0  0   2    26       0   0   1
## 5     0     2      2      2    1  1   1   4   0  0   1    36       0   0   1
## 6     0     1      1      1    1  4   2   4   0  0   2    26       0   0   1
##   R60 R65 RESMODE SMOCP SMX SRNT SVAL TAXP WIF WKEXREL WORKSTAT FACRP FAGSP
## 1   0   0       1  1550   3    0    1   24   3       2        3     0     0
## 2   0   0       2    NA  NA    1    0   NA  NA      NA       NA     0     0
## 3   0   0       1   179  NA    0    1   16   1      13       13     0     0
## 4   0   0       2  1422   1    0    1   31   2       2        1     0     0
## 5   0   0       1  2800   1    0    1   25   3       1        1     0     0
## 6   0   0       2  1330   2    0    1    7   1       7        3     0     0
##   FBDSP FBLDP FBUSP FCONP FELEP FFSP FFULP FGASP FHFLP FINSP FKITP FMHP FMRGIP
## 1     0     0     0     0     0    0     0     0     0     0     0    0      0
## 2     0     0     0     0     0    0     0     0     0     0     0    0      0
## 3     0     0     0     0     0    0     0     0     0     0     0    0      0
## 4     0     0     0     0     0    0     0     0     0     0     0    0      0
## 5     0     0     0     0     0    0     0     0     0     0     0    0      0
## 6     0     0     0     0     0    0     0     0     0     1     0    0      0
##   FMRGP FMRGTP FMRGXP FMVYP FPLMP FRMSP FRNTMP FRNTP FSMP FSMXHP FSMXSP FTAXP
## 1     0      0      0     0     0     0      0     0    0      0      0     0
## 2     0      0      0     0     0     0      0     0    0      0      0     0
## 3     0      0      0     0     0     0      0     0    0      0      0     0
## 4     0      0      0     0     0     0      0     0    0      0      0     0
## 5     0      0      0     0     0     0      0     0    0      0      0     0
## 6     0      0      0     0     0     0      0     0    0      0      0     1
##   FTELP FTENP FVACSP FVALP FVEHP FWATP FYBLP wgtp1 wgtp2 wgtp3 wgtp4 wgtp5
## 1     0     0      0     0     0     0     0    87    28   156    95    26
## 2     0     0      0     0     0     0     1   539   363   293   422   566
## 3     0     0      0     0     0     0     0   187    35   184   178    83
## 4     0     0      0     0     0     0     0   232   406   234   270   249
## 5     0     0      0     0     0     0     0   107   194   129    41   156
## 6     0     0      0     0     0     1     0   191   197   127   115   115
##   wgtp6 wgtp7 wgtp8 wgtp9 wgtp10 wgtp11 wgtp12 wgtp13 wgtp14 wgtp15 wgtp16
## 1    25    95    93    93     91     87    166     90     25    153     89
## 2   289    87   242   453    453    334    358    414    102    281     99
## 3    95    31    32   177    118    110    114    184    107     95    115
## 4   242   406   249   287     67     72    413    399     77    245    424
## 5   174    47   113   101     33    115     52    113     95    135    206
## 6   107   119    34    32     30    123    199    117     33    109    117
##   wgtp17 wgtp18 wgtp19 wgtp20 wgtp21 wgtp22 wgtp23 wgtp24 wgtp25 wgtp26 wgtp27
## 1    148     82     25    180     90     24    140     92     25     27     86
## 2    108    278    131    407    447    264    352    238    390    336    122
## 3     33    118    120     37    184     35    176    176    110    103     29
## 4     67     63    226    254    238     69    238    255    239    248     69
## 5    100    185    135    279    116     33    105    244     38     30    230
## 6     31    115    201    190    184    198    113    109    117    111    110
##   wgtp28 wgtp29 wgtp30 wgtp31 wgtp32 wgtp33 wgtp34 wgtp35 wgtp36 wgtp37 wgtp38
## 1     84     87     93     90    149     91     28    143     81    144     95
## 2    374    482    468    335    251    613    104    284    116     91    326
## 3     30    197    127     92    118    177     99     99    109     34    100
## 4    234    247    437    423     74     61    401    267     72    388    335
## 5    123    123    243    120    238     98     90    107     44    122     32
## 6     33     37     36    110    183    114     35    134    119     32    121
##   wgtp39 wgtp40 wgtp41 wgtp42 wgtp43 wgtp44 wgtp45 wgtp46 wgtp47 wgtp48 wgtp49
## 1     27     22     90    171     27     83    153    148     92     91     91
## 2    102    361    107    253    321    289     96    343    564    274    118
## 3    105     33    173     36    168    175     99    103     30     35    155
## 4    229    236    239     65    259    247    230    225     82    220    233
## 5    127    195    116     36    135    237     33     33    249    102     84
## 6    188     33     34     32    109    115    115    112    119    192    186
##   wgtp50 wgtp51 wgtp52 wgtp53 wgtp54 wgtp55 wgtp56 wgtp57 wgtp58 wgtp59 wgtp60
## 1     93     90     26     94    142     24     91     29     84    148     30
## 2    118    321    261    130    463    294    479    391    307    476    283
## 3    102     95    107    185    120    114    113     36    115    103     29
## 4    419    390     69     74    391    276     70    422    409    223    245
## 5    224    119    250    119    125    126     32    112     33    131     45
## 6    213    106     34    124    179    106    107    190    112     34     35
##   wgtp61 wgtp62 wgtp63 wgtp64 wgtp65 wgtp66 wgtp67 wgtp68 wgtp69 wgtp70 wgtp71
## 1     93    143     24     88    147    145     91     83     83     86     81
## 2    116    353    323    374    106    236    380    313     90     94    292
## 3    183     35    179    169     95    110     28     34    233     97    123
## 4    269    488    221    250    247    240    415    234    219     66     68
## 5    101    165    125     41    191    195     49    119     92     44    127
## 6     32     34    119    123    122    121    123    196    196    207    120
##   wgtp72 wgtp73 wgtp74 wgtp75 wgtp76 wgtp77 wgtp78 wgtp79 wgtp80
## 1     27     93    151     28     79     25    101    157    129
## 2    401     81    494    346    496    615    286    454    260
## 3    119    168    107     95    101     30    124    106     31
## 4    359    385     71    234    421     76     77    242    231
## 5     36    119    121    116    209     97    176    144     38
## 6     34    109    199    116    110    211    120     31    189
agricultureLogical <- data$ACR == 3 & data$AGS ==6
#agricultureLogical
cat("Los tres primeros valores son :")
## Los tres primeros valores son :
head(which(agricultureLogical), 3)
## [1] 125 238 262

Punto 2

Using the jpeg package read in the following picture of your instructor into R

https://d396qusza40orc.cloudfront.net/getdata%2Fjeff.jpg

Use the parameter native=TRUE. What are the 30th and 80th quantiles of the resulting data? (some Linux systems may produce an answer 638 different for the 30th quantile)

A 10904118 -594524
B 15259150 -10575416
C 10904118 -10575416
D 16776430 -15390165
library(jpeg)
fileUrl <- "https://d396qusza40orc.cloudfront.net/getdata%2Fjeff.jpg"
download.file(url = fileUrl, destfile = "jeff.jpg", method = "curl")
jpg <- readJPEG("jeff.jpg", native = TRUE)
cat (" The 30th and 80th quntiles are:")
##  The 30th and 80th quntiles are:
quantile(jpg, probs = c(0.3, 0.8))
##       30%       80% 
## -15258512 -10575416

Punto 3

Load the Gross Domestic Product data for the 190 ranked countries in this data set:

https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2FGDP.csv

Load the educational data from this data set:

https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2FEDSTATS_Country.csv

Match the data based on the country shortcode. How many of the IDs match? Sort the data frame in descending order by GDP rank (so United States is last). What is the 13th country in the resulting data frame?

Original data sources:

http://data.worldbank.org/data-catalog/GDP-ranking-table

http://data.worldbank.org/data-catalog/ed-stats

A 190 matches, 13th country is St. Kitts and Nevis

B 190 matches, 13th country is Spain

C 189 matches, 13th country is Spain

D 189 matches, 13th country is St. Kitts and Nevis

E 234 matches, 13th country is Spain

F 234 matches, 13th country is St. Kitts and Nevis

fileUrl1 <- "https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2FGDP.csv"
fileUrl2 <- "https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2FEDSTATS_Country.csv"
download.file(fileUrl1, destfile = "GDP.csv", method = "curl")
download.file(fileUrl2, destfile = "country.csv", method = "curl")

gdp <- read.csv("GDP.csv", header = TRUE, skip =4, sep = ",", nrows = 190)
edu <- read.csv("country.csv", header = TRUE, nrows =234 )

gdps<-select(gdp, X, X.1 , X.3 , X.4)
names(gdps)<-c("CountryCode", "Rank","Economy","Total")
gdps[,2]<- as.numeric(gdps[,2])


head(gdps)
##   CountryCode Rank        Economy        Total
## 1         USA    1  United States  16,244,600 
## 2         CHN    2          China   8,227,103 
## 3         JPN    3          Japan   5,959,718 
## 4         DEU    4        Germany   3,428,131 
## 5         FRA    5         France   2,612,878 
## 6         GBR    6 United Kingdom   2,471,784
head(edu)
##   CountryCode                    Long.Name         Income.Group
## 1         ABW                        Aruba High income: nonOECD
## 2         ADO      Principality of Andorra High income: nonOECD
## 3         AFG Islamic State of Afghanistan           Low income
## 4         AGO  People's Republic of Angola  Lower middle income
## 5         ALB          Republic of Albania  Upper middle income
## 6         ARE         United Arab Emirates High income: nonOECD
##                       Region Lending.category Other.groups  Currency.Unit
## 1  Latin America & Caribbean                                Aruban florin
## 2      Europe & Central Asia                                         Euro
## 3                 South Asia              IDA         HIPC Afghan afghani
## 4         Sub-Saharan Africa              IDA              Angolan kwanza
## 5      Europe & Central Asia             IBRD                Albanian lek
## 6 Middle East & North Africa                                U.A.E. dirham
##   Latest.population.census  Latest.household.survey
## 1                     2000                         
## 2           Register based                         
## 3                     1979               MICS, 2003
## 4                     1970 MICS, 2001, MIS, 2006/07
## 5                     2001               MICS, 2005
## 6                     2005                         
##                                                                 Special.Notes
## 1                                                                            
## 2                                                                            
## 3 Fiscal year end: March 20; reporting period for national accounts data: FY.
## 4                                                                            
## 5                                                                            
## 6                                                                            
##   National.accounts.base.year National.accounts.reference.year
## 1                        1995                               NA
## 2                                                           NA
## 3                   2002/2003                               NA
## 4                        1997                               NA
## 5                                                         1996
## 6                        1995                               NA
##   System.of.National.Accounts SNA.price.valuation Alternative.conversion.factor
## 1                          NA                                                  
## 2                          NA                                                  
## 3                          NA                 VAB                              
## 4                          NA                 VAP                       1991-96
## 5                        1993                 VAB                              
## 6                          NA                 VAB                              
##   PPP.survey.year Balance.of.Payments.Manual.in.use
## 1              NA                                  
## 2              NA                                  
## 3              NA                                  
## 4            2005                              BPM5
## 5            2005                              BPM5
## 6              NA                              BPM4
##   External.debt.Reporting.status System.of.trade Government.Accounting.concept
## 1                                        Special                              
## 2                                        General                              
## 3                         Actual         General                  Consolidated
## 4                         Actual         Special                              
## 5                         Actual         General                  Consolidated
## 6                                        General                  Consolidated
##   IMF.data.dissemination.standard
## 1                                
## 2                                
## 3                            GDDS
## 4                            GDDS
## 5                            GDDS
## 6                            GDDS
##   Source.of.most.recent.Income.and.expenditure.data Vital.registration.complete
## 1                                                                              
## 2                                                                           Yes
## 3                                                                              
## 4                                         IHS, 2000                            
## 5                                        LSMS, 2005                         Yes
## 6                                                                              
##   Latest.agricultural.census Latest.industrial.data Latest.trade.data
## 1                                                NA              2008
## 2                                                NA              2006
## 3                                                NA              2008
## 4                    1964-65                     NA              1991
## 5                       1998                   2005              2008
## 6                       1998                     NA              2008
##   Latest.water.withdrawal.data X2.alpha.code WB.2.code           Table.Name
## 1                           NA            AW        AW                Aruba
## 2                           NA            AD        AD              Andorra
## 3                         2000            AF        AF          Afghanistan
## 4                         2000            AO        AO               Angola
## 5                         2000            AL        AL              Albania
## 6                         2005            AE        AE United Arab Emirates
##             Short.Name
## 1                Aruba
## 2              Andorra
## 3          Afghanistan
## 4               Angola
## 5              Albania
## 6 United Arab Emirates
joinData <- inner_join(edu,gdps, by = "CountryCode")
cat ("  the number of matching rows are: ")
##   the number of matching rows are:
nrow( joinData )
## [1] 189
joinData <- arrange(joinData,desc(Rank))
sum(!is.na(joinData[,2]))
## [1] 189
head(joinData)
##   CountryCode                                    Long.Name        Income.Group
## 1         TUV                                       Tuvalu Lower middle income
## 2         KIR                         Republic of Kiribati Lower middle income
## 3         MHL             Republic of the Marshall Islands Lower middle income
## 4         PLW                            Republic of Palau Upper middle income
## 5         STP Democratic Republic of São Tomé and Principe Lower middle income
## 6         FSM               Federated States of Micronesia Lower middle income
##                Region Lending.category Other.groups               Currency.Unit
## 1 East Asia & Pacific                                         Australian dollar
## 2 East Asia & Pacific              IDA                        Australian dollar
## 3 East Asia & Pacific             IBRD                              U.S. dollar
## 4 East Asia & Pacific             IBRD                              U.S. dollar
## 5  Sub-Saharan Africa              IDA         HIPC São Tomé and Principe dobra
## 6 East Asia & Pacific             IBRD                              U.S. dollar
##   Latest.population.census Latest.household.survey
## 1                                                 
## 2                     2005                        
## 3                     1999                        
## 4                     2005                        
## 5                     2001                        
## 6                     2000                        
##                                                                         Special.Notes
## 1                                                                                    
## 2 The government statistical office has revised national accounts data for 1970-2008.
## 3                                                                                    
## 4                                                                                    
## 5                                                                                    
## 6 The government statistical office has revised national accounts data for 1995-2008.
##   National.accounts.base.year National.accounts.reference.year
## 1                                                           NA
## 2                        1991                               NA
## 3                        1991                               NA
## 4                        1995                               NA
## 5                        2001                               NA
## 6                        1998                               NA
##   System.of.National.Accounts SNA.price.valuation Alternative.conversion.factor
## 1                          NA                                                  
## 2                          NA                 VAB                              
## 3                          NA                 VAB                              
## 4                          NA                 VAB                              
## 5                          NA                 VAP                              
## 6                          NA                 VAB                              
##   PPP.survey.year Balance.of.Payments.Manual.in.use
## 1              NA                                  
## 2              NA                                  
## 3              NA                                  
## 4              NA                                  
## 5            2005                                  
## 6              NA                                  
##   External.debt.Reporting.status System.of.trade Government.Accounting.concept
## 1                                                                             
## 2                                        General                              
## 3                                                                             
## 4                                                                             
## 5                    Preliminary         Special                              
## 6                                                                             
##   IMF.data.dissemination.standard
## 1                                
## 2                            GDDS
## 3                                
## 4                                
## 5                            GDDS
## 6                                
##   Source.of.most.recent.Income.and.expenditure.data Vital.registration.complete
## 1                                                                              
## 2                                                                              
## 3                                                                              
## 4                                                                           Yes
## 5                                        PS 2000-01                            
## 6                                                                              
##   Latest.agricultural.census Latest.industrial.data Latest.trade.data
## 1                                                NA                NA
## 2                                                NA              2005
## 3                                                NA                NA
## 4                                                NA                NA
## 5                                                NA              2008
## 6                                                NA                NA
##   Latest.water.withdrawal.data X2.alpha.code WB.2.code            Table.Name
## 1                           NA            TV        TV                Tuvalu
## 2                           NA            KI        KI              Kiribati
## 3                           NA            MH        MH      Marshall Islands
## 4                           NA            PW        PW                 Palau
## 5                           NA            ST        ST São Tomé and Principe
## 6                           NA            FM        FM Micronesia, Fed. Sts.
##              Short.Name Rank               Economy Total
## 1                Tuvalu  190                Tuvalu   40 
## 2              Kiribati  189              Kiribati  175 
## 3      Marshall Islands  188      Marshall Islands  182 
## 4                 Palau  187                 Palau  228 
## 5 São Tomé and Principe  186 São Tomé and Principe  263 
## 6            Micronesia  185 Micronesia, Fed. Sts.  326
arrange(joinData, desc(Rank))[13, "Economy"]
## [1] "St. Kitts and Nevis"

Punto 4

What is the average GDP ranking for the “High income: OECD” and “High income: nonOECD” group?

a 23, 45

b 23.966667, 30.91304

c 133.72973, 32.96667

d 32.96667, 91.91304

e 23, 30

f 30, 37

#La función tapply aplica (de ahí parte de su nombre) una #función a un vector en los subvectores que define otro #vector máscara:
#en este caso aplica la funcion mean  de rank del joinData de # IncomeGroup 

  str(joinData)
## 'data.frame':    189 obs. of  34 variables:
##  $ CountryCode                                      : chr  "TUV" "KIR" "MHL" "PLW" ...
##  $ Long.Name                                        : chr  "Tuvalu" "Republic of Kiribati" "Republic of the Marshall Islands" "Republic of Palau" ...
##  $ Income.Group                                     : chr  "Lower middle income" "Lower middle income" "Lower middle income" "Upper middle income" ...
##  $ Region                                           : chr  "East Asia & Pacific" "East Asia & Pacific" "East Asia & Pacific" "East Asia & Pacific" ...
##  $ Lending.category                                 : chr  "" "IDA" "IBRD" "IBRD" ...
##  $ Other.groups                                     : chr  "" "" "" "" ...
##  $ Currency.Unit                                    : chr  "Australian dollar" "Australian dollar" "U.S. dollar" "U.S. dollar" ...
##  $ Latest.population.census                         : chr  "" "2005" "1999" "2005" ...
##  $ Latest.household.survey                          : chr  "" "" "" "" ...
##  $ Special.Notes                                    : chr  "" "The government statistical office has revised national accounts data for 1970-2008." "" "" ...
##  $ National.accounts.base.year                      : chr  "" "1991" "1991" "1995" ...
##  $ National.accounts.reference.year                 : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ System.of.National.Accounts                      : int  NA NA NA NA NA NA NA 1993 NA NA ...
##  $ SNA.price.valuation                              : chr  "" "VAB" "VAB" "VAB" ...
##  $ Alternative.conversion.factor                    : chr  "" "" "" "" ...
##  $ PPP.survey.year                                  : int  NA NA NA NA 2005 NA NA NA 2005 NA ...
##  $ Balance.of.Payments.Manual.in.use                : chr  "" "" "" "" ...
##  $ External.debt.Reporting.status                   : chr  "" "" "" "" ...
##  $ System.of.trade                                  : chr  "" "General" "" "" ...
##  $ Government.Accounting.concept                    : chr  "" "" "" "" ...
##  $ IMF.data.dissemination.standard                  : chr  "" "GDDS" "" "" ...
##  $ Source.of.most.recent.Income.and.expenditure.data: chr  "" "" "" "" ...
##  $ Vital.registration.complete                      : chr  "" "" "" "Yes" ...
##  $ Latest.agricultural.census                       : chr  "" "" "" "" ...
##  $ Latest.industrial.data                           : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ Latest.trade.data                                : int  NA 2005 NA NA 2008 NA 2007 2008 2007 2008 ...
##  $ Latest.water.withdrawal.data                     : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ X2.alpha.code                                    : chr  "TV" "KI" "MH" "PW" ...
##  $ WB.2.code                                        : chr  "TV" "KI" "MH" "PW" ...
##  $ Table.Name                                       : chr  "Tuvalu" "Kiribati" "Marshall Islands" "Palau" ...
##  $ Short.Name                                       : chr  "Tuvalu" "Kiribati" "Marshall Islands" "Palau" ...
##  $ Rank                                             : num  190 189 188 187 186 185 184 183 182 181 ...
##  $ Economy                                          : chr  "Tuvalu" "Kiribati" "Marshall Islands" "Palau" ...
##  $ Total                                            : chr  " 40 " " 175 " " 182 " " 228 " ...
  tapply(joinData$Rank,joinData$Income.Group,mean)
## High income: nonOECD    High income: OECD           Low income 
##             91.91304             32.96667            133.72973 
##  Lower middle income  Upper middle income 
##            107.70370             92.13333

Punto 5

Cut the GDP ranking into 5 separate quantile groups. Make a table versus Income.Group. How many countries are Lower middle income but among the 38 nations with highest GDP?

A 5
B 13
C 12
D 0
joinData$rank.groups <- cut(joinData$Rank,breaks = quantile(joinData$Rank,c(0,0.2,0.4,0.6,0.8,1)))
table(joinData$rank.groups,joinData$Income.Group)
##              
##               High income: nonOECD High income: OECD Low income
##   (1,38.6]                       4                17          0
##   (38.6,76.2]                    5                10          1
##   (76.2,114]                     8                 1          9
##   (114,152]                      4                 1         16
##   (152,190]                      2                 0         11
##              
##               Lower middle income Upper middle income
##   (1,38.6]                      5                  11
##   (38.6,76.2]                  13                   9
##   (76.2,114]                   11                   8
##   (114,152]                     9                   8
##   (152,190]                    16                   9