definição do erro tipo I e constantes dos LC de X_bar e R

# função para achar a contante de abertura dos LC de R
# adotar LIC_R=0
GCR <- function (n,alfa) {
Fnw=0; ws=0
while (Fnw<=1-alfa)  {
ws=ws+0.01   
integrando <- function(z) {((1/(sqrt(2*pi)))*exp(-(z^2)/2))*(pnorm(z+ws)-pnorm(z))^(n-1)}
Fnw=integrate(integrando, lower=-Inf, upper=Inf) 
Fnw=n*as.numeric(Fnw[1])
}
print(ws)
}
#n=4
#alfa=.0012
#GCR(n,alfa)
# escolha do erro alfa  -> NMAo
# alfa < 0.0027  => NMAo >= 370.4
n=4
alfa_r=0.0012
alfa_xbar=0.0012
alfa=alfa_xbar+alfa_r - alfa_xbar*alfa_r
NMAo=1/alfa

#alfa=0.0012
# contantes dos limites de controle 
k=-qnorm(alfa_xbar/2)
w=GCR(n,alfa)
[1] 4.99
print("NMAo"); NMAo
[1] "NMAo"
[1] 416.9168
print("contante para x_bar"); k
[1] "contante para x_bar"
[1] 3.23888
print("contante para R"); w
[1] "contante para R"
[1] 4.99

Cálculo do Poder/desempenho do GC X_barra e R

# GC de X_bar
# calculo do poder de X_bar
#n= ;k=
delta=0.0 # desvio na média; 
lambda= 1 #desvio no desvio-padrão
i=1    

result_xbar=matrix(c(NA),77,4)
while(lambda <= 2.1) {
   while (delta <= 3) {
exp1 <- -(k+delta*sqrt(n))/lambda
exp2 <- (-k+delta*sqrt(n))/lambda
poder=pnorm(exp1)+pnorm(exp2)
result_xbar[i,1] <-delta; 
result_xbar[i,2] <-lambda; 
result_xbar[i,3] <-poder #poder  
result_xbar[i,4] <-1/poder #NMA
i=i+1;
#print(i)
delta=delta+0.5  }
delta=0.0
lambda=lambda+0.1 }

colnames(result_xbar) <- c("delta","lambda", "Poder", "NMA")
kableExtra::kable(round(result_xbar,4))
delta lambda Poder NMA
0.0 1.0 0.0012 833.3333
0.5 1.0 0.0126 79.4086
1.0 1.0 0.1077 9.2855
1.5 1.0 0.4056 2.4655
2.0 1.0 0.7767 1.2875
2.5 1.0 0.9609 1.0407
3.0 1.0 0.9971 1.0029
0.0 1.1 0.0032 309.0776
0.5 1.1 0.0210 47.6957
1.0 1.1 0.1300 7.6905
1.5 1.1 0.4140 2.4152
2.0 1.1 0.7555 1.3236
2.5 1.1 0.9453 1.0579
3.0 1.1 0.9940 1.0061
0.0 1.2 0.0070 143.8141
0.5 1.2 0.0312 32.0049
1.0 1.2 0.1509 6.6248
1.5 1.2 0.4211 2.3747
2.0 1.2 0.7370 1.3568
2.5 1.2 0.9289 1.0765
3.0 1.2 0.9893 1.0108
0.0 1.3 0.0127 78.6014
0.5 1.3 0.0431 23.2175
1.0 1.3 0.1703 5.8711
1.5 1.3 0.4271 2.3413
2.0 1.3 0.7209 1.3872
2.5 1.3 0.9122 1.0962
3.0 1.3 0.9832 1.0171
0.0 1.4 0.0207 48.3186
0.5 1.4 0.0561 17.8190
1.0 1.4 0.1882 5.3137
1.5 1.4 0.4323 2.3134
2.0 1.4 0.7067 1.4151
2.5 1.4 0.8958 1.1163
3.0 1.4 0.9757 1.0249
0.0 1.5 0.0308 32.4354
0.5 1.5 0.0701 14.2592
1.0 1.5 0.2047 4.8861
1.5 1.5 0.4368 2.2896
2.0 1.5 0.6941 1.4408
2.5 1.5 0.8798 1.1366
3.0 1.5 0.9672 1.0339
0.0 1.6 0.0429 23.2887
0.5 1.6 0.0849 11.7793
1.0 1.6 0.2199 4.5474
1.5 1.6 0.4407 2.2691
2.0 1.6 0.6829 1.4644
2.5 1.6 0.8645 1.1568
3.0 1.6 0.9578 1.0441
0.0 1.7 0.0568 17.6208
0.5 1.7 0.1002 9.9754
1.0 1.7 0.2341 4.2716
1.5 1.7 0.4442 2.2510
2.0 1.7 0.6728 1.4863
2.5 1.7 0.8499 1.1766
3.0 1.7 0.9478 1.0550
0.0 1.8 0.0720 13.8968
0.5 1.8 0.1160 8.6173
1.0 1.8 0.2474 4.0413
1.5 1.8 0.4475 2.2348
2.0 1.8 0.6638 1.5064
2.5 1.8 0.8361 1.1961
3.0 1.8 0.9375 1.0667
0.0 1.9 0.0883 11.3308
0.5 1.9 0.1322 7.5661
1.0 1.9 0.2601 3.8447
1.5 1.9 0.4505 2.2198
2.0 1.9 0.6557 1.5251
2.5 1.9 0.8230 1.2150
3.0 1.9 0.9269 1.0788
0.0 2.0 0.1054 9.4919
0.5 2.0 0.1485 6.7339
1.0 2.0 0.2722 3.6735
1.5 2.0 0.4534 2.2057
2.0 2.0 0.6484 1.5423
2.5 2.0 0.8107 1.2334
3.0 2.0 0.9163 1.0914
# GC de R
# calculo do poder do GC R

#k=3.24

Fnw=0; ws=0
while (Fnw<=1-alfa/2)  {
ws=ws+0.01   
integrando <- function(z) {((1/(sqrt(2*pi)))*exp(-(z^2)/2))*(pnorm(z+ws)-pnorm(z))^(n-1)}
Fnw=integrate(integrando, lower=-Inf, upper=Inf) 
Fnw=n*as.numeric(Fnw[1])
}

lambda=1.0;i=1                                                    
result_r=matrix(c(NA),11,3)
while (lambda<=2.1)  {
integrando <- function(z) {((1/(sqrt(2*pi)))*exp(-(z^2)/2))*(pnorm(z+ws/lambda)-pnorm(z))^(n-1)}
Fnw=integrate(integrando, lower=-Inf, upper=Inf)  #list
Fnw=1-n*as.numeric(Fnw[1]) # poder Pr[W>Ws|n=n0]

result_r[i,1] <-lambda
result_r[i,2] <-Fnw   #poder  
result_r[i,3] <-1/Fnw #NMA
i=i+1; lambda=lambda+0.1
}

colnames(result_r) <- c("lambda", "Poder", "NMA")
kableExtra::kable(round(result_r,4))
lambda Poder NMA
1.0 0.0012 850.0642
1.1 0.0041 243.0293
1.2 0.0107 93.8212
1.3 0.0223 44.8167
1.4 0.0400 25.0008
1.5 0.0639 15.6553
1.6 0.0934 10.7024
1.7 0.1277 7.8296
1.8 0.1656 6.0402
1.9 0.2058 4.8603
2.0 0.2472 4.0453

Poder Global X_bar e R

kableExtra::kable(round(result_xbar,4))

delta lambda Poder NMA
0.0 1.0 0.0012 833.3333
0.5 1.0 0.0126 79.4086
1.0 1.0 0.1077 9.2855
1.5 1.0 0.4056 2.4655
2.0 1.0 0.7767 1.2875
2.5 1.0 0.9609 1.0407
3.0 1.0 0.9971 1.0029
0.0 1.1 0.0032 309.0776
0.5 1.1 0.0210 47.6957
1.0 1.1 0.1300 7.6905
1.5 1.1 0.4140 2.4152
2.0 1.1 0.7555 1.3236
2.5 1.1 0.9453 1.0579
3.0 1.1 0.9940 1.0061
0.0 1.2 0.0070 143.8141
0.5 1.2 0.0312 32.0049
1.0 1.2 0.1509 6.6248
1.5 1.2 0.4211 2.3747
2.0 1.2 0.7370 1.3568
2.5 1.2 0.9289 1.0765
3.0 1.2 0.9893 1.0108
0.0 1.3 0.0127 78.6014
0.5 1.3 0.0431 23.2175
1.0 1.3 0.1703 5.8711
1.5 1.3 0.4271 2.3413
2.0 1.3 0.7209 1.3872
2.5 1.3 0.9122 1.0962
3.0 1.3 0.9832 1.0171
0.0 1.4 0.0207 48.3186
0.5 1.4 0.0561 17.8190
1.0 1.4 0.1882 5.3137
1.5 1.4 0.4323 2.3134
2.0 1.4 0.7067 1.4151
2.5 1.4 0.8958 1.1163
3.0 1.4 0.9757 1.0249
0.0 1.5 0.0308 32.4354
0.5 1.5 0.0701 14.2592
1.0 1.5 0.2047 4.8861
1.5 1.5 0.4368 2.2896
2.0 1.5 0.6941 1.4408
2.5 1.5 0.8798 1.1366
3.0 1.5 0.9672 1.0339
0.0 1.6 0.0429 23.2887
0.5 1.6 0.0849 11.7793
1.0 1.6 0.2199 4.5474
1.5 1.6 0.4407 2.2691
2.0 1.6 0.6829 1.4644
2.5 1.6 0.8645 1.1568
3.0 1.6 0.9578 1.0441
0.0 1.7 0.0568 17.6208
0.5 1.7 0.1002 9.9754
1.0 1.7 0.2341 4.2716
1.5 1.7 0.4442 2.2510
2.0 1.7 0.6728 1.4863
2.5 1.7 0.8499 1.1766
3.0 1.7 0.9478 1.0550
0.0 1.8 0.0720 13.8968
0.5 1.8 0.1160 8.6173
1.0 1.8 0.2474 4.0413
1.5 1.8 0.4475 2.2348
2.0 1.8 0.6638 1.5064
2.5 1.8 0.8361 1.1961
3.0 1.8 0.9375 1.0667
0.0 1.9 0.0883 11.3308
0.5 1.9 0.1322 7.5661
1.0 1.9 0.2601 3.8447
1.5 1.9 0.4505 2.2198
2.0 1.9 0.6557 1.5251
2.5 1.9 0.8230 1.2150
3.0 1.9 0.9269 1.0788
0.0 2.0 0.1054 9.4919
0.5 2.0 0.1485 6.7339
1.0 2.0 0.2722 3.6735
1.5 2.0 0.4534 2.2057
2.0 2.0 0.6484 1.5423
2.5 2.0 0.8107 1.2334
3.0 2.0 0.9163 1.0914

kableExtra::kable(round(result_r,4))

lambda Poder NMA
1.0 0.0012 850.0642
1.1 0.0041 243.0293
1.2 0.0107 93.8212
1.3 0.0223 44.8167
1.4 0.0400 25.0008
1.5 0.0639 15.6553
1.6 0.0934 10.7024
1.7 0.1277 7.8296
1.8 0.1656 6.0402
1.9 0.2058 4.8603
2.0 0.2472 4.0453

NA
LS0tDQp0aXRsZTogIkPDs2RpZ28gZm9udGUgcGFyYSBhdmFsaWFyIG8gZGVzZW1wZW5obyBjb25qdW50byBkbyBHQyBYX2JhcnJhIGUgUiINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCiMgZGVmaW5pw6fDo28gZG8gZXJybyB0aXBvIEkgZSBjb25zdGFudGVzIGRvcyBMQyBkZSBYX2JhciBlIFINCg0KYGBge3J9DQojIGZ1bsOnw6NvIHBhcmEgYWNoYXIgYSBjb250YW50ZSBkZSBhYmVydHVyYSBkb3MgTEMgZGUgUg0KIyBhZG90YXIgTElDX1I9MA0KR0NSIDwtIGZ1bmN0aW9uIChuLGFsZmEpIHsNCkZudz0wOyB3cz0wDQp3aGlsZSAoRm53PD0xLWFsZmEpICB7DQp3cz13cyswLjAxICAgDQppbnRlZ3JhbmRvIDwtIGZ1bmN0aW9uKHopIHsoKDEvKHNxcnQoMipwaSkpKSpleHAoLSh6XjIpLzIpKSoocG5vcm0oeit3cyktcG5vcm0oeikpXihuLTEpfQ0KRm53PWludGVncmF0ZShpbnRlZ3JhbmRvLCBsb3dlcj0tSW5mLCB1cHBlcj1JbmYpIA0KRm53PW4qYXMubnVtZXJpYyhGbndbMV0pDQp9DQpwcmludCh3cykNCn0NCiNuPTQNCiNhbGZhPS4wMDEyDQojR0NSKG4sYWxmYSkNCmBgYA0KDQpgYGB7cn0NCiMgZXNjb2xoYSBkbyBlcnJvIGFsZmEgIC0+IE5NQW8NCiMgYWxmYSA8IDAuMDAyNyAgPT4gTk1BbyA+PSAzNzAuNA0Kbj00DQphbGZhX3I9MC4wMDEyDQphbGZhX3hiYXI9MC4wMDEyDQphbGZhPWFsZmFfeGJhcithbGZhX3IgLSBhbGZhX3hiYXIqYWxmYV9yDQpOTUFvPTEvYWxmYQ0KDQojYWxmYT0wLjAwMTINCiMgY29udGFudGVzIGRvcyBsaW1pdGVzIGRlIGNvbnRyb2xlIA0Kaz0tcW5vcm0oYWxmYV94YmFyLzIpDQp3PUdDUihuLGFsZmEpDQoNCnByaW50KCJOTUFvIik7IE5NQW8NCnByaW50KCJjb250YW50ZSBwYXJhIHhfYmFyIik7IGsNCnByaW50KCJjb250YW50ZSBwYXJhIFIiKTsgdw0KYGBgDQoNCg0KIyBDw6FsY3VsbyBkbyBQb2Rlci9kZXNlbXBlbmhvIGRvIEdDIFhfYmFycmEgZSBSDQpgYGB7cn0NCiMgR0MgZGUgWF9iYXINCiMgY2FsY3VsbyBkbyBwb2RlciBkZSBYX2Jhcg0KI249IDtrPQ0KZGVsdGE9MC4wICMgZGVzdmlvIG5hIG3DqWRpYTsgDQpsYW1iZGE9IDEgI2Rlc3ZpbyBubyBkZXN2aW8tcGFkcsOjbw0KaT0xICAgIA0KDQpyZXN1bHRfeGJhcj1tYXRyaXgoYyhOQSksNzcsNCkNCndoaWxlKGxhbWJkYSA8PSAyLjEpIHsNCiAgIHdoaWxlIChkZWx0YSA8PSAzKSB7DQpleHAxIDwtIC0oaytkZWx0YSpzcXJ0KG4pKS9sYW1iZGENCmV4cDIgPC0gKC1rK2RlbHRhKnNxcnQobikpL2xhbWJkYQ0KcG9kZXI9cG5vcm0oZXhwMSkrcG5vcm0oZXhwMikNCnJlc3VsdF94YmFyW2ksMV0gPC1kZWx0YTsgDQpyZXN1bHRfeGJhcltpLDJdIDwtbGFtYmRhOyANCnJlc3VsdF94YmFyW2ksM10gPC1wb2RlciAjcG9kZXIgIA0KcmVzdWx0X3hiYXJbaSw0XSA8LTEvcG9kZXIgI05NQQ0KaT1pKzE7DQojcHJpbnQoaSkNCmRlbHRhPWRlbHRhKzAuNSAgfQ0KZGVsdGE9MC4wDQpsYW1iZGE9bGFtYmRhKzAuMSB9DQoNCmNvbG5hbWVzKHJlc3VsdF94YmFyKSA8LSBjKCJkZWx0YSIsImxhbWJkYSIsICJQb2RlciIsICJOTUEiKQ0Ka2FibGVFeHRyYTo6a2FibGUocm91bmQocmVzdWx0X3hiYXIsNCkpDQpgYGANCg0KYGBge3J9DQojIEdDIGRlIFINCiMgY2FsY3VsbyBkbyBwb2RlciBkbyBHQyBSDQoNCiNrPTMuMjQNCg0KRm53PTA7IHdzPTANCndoaWxlIChGbnc8PTEtYWxmYS8yKSAgew0Kd3M9d3MrMC4wMSAgIA0KaW50ZWdyYW5kbyA8LSBmdW5jdGlvbih6KSB7KCgxLyhzcXJ0KDIqcGkpKSkqZXhwKC0oel4yKS8yKSkqKHBub3JtKHord3MpLXBub3JtKHopKV4obi0xKX0NCkZudz1pbnRlZ3JhdGUoaW50ZWdyYW5kbywgbG93ZXI9LUluZiwgdXBwZXI9SW5mKSANCkZudz1uKmFzLm51bWVyaWMoRm53WzFdKQ0KfQ0KDQpsYW1iZGE9MS4wO2k9MSAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICANCnJlc3VsdF9yPW1hdHJpeChjKE5BKSwxMSwzKQ0Kd2hpbGUgKGxhbWJkYTw9Mi4xKSAgew0KaW50ZWdyYW5kbyA8LSBmdW5jdGlvbih6KSB7KCgxLyhzcXJ0KDIqcGkpKSkqZXhwKC0oel4yKS8yKSkqKHBub3JtKHord3MvbGFtYmRhKS1wbm9ybSh6KSleKG4tMSl9DQpGbnc9aW50ZWdyYXRlKGludGVncmFuZG8sIGxvd2VyPS1JbmYsIHVwcGVyPUluZikgICNsaXN0DQpGbnc9MS1uKmFzLm51bWVyaWMoRm53WzFdKSAjIHBvZGVyIFByW1c+V3N8bj1uMF0NCg0KcmVzdWx0X3JbaSwxXSA8LWxhbWJkYQ0KcmVzdWx0X3JbaSwyXSA8LUZudyAgICNwb2RlciAgDQpyZXN1bHRfcltpLDNdIDwtMS9GbncgI05NQQ0KaT1pKzE7IGxhbWJkYT1sYW1iZGErMC4xDQp9DQoNCmNvbG5hbWVzKHJlc3VsdF9yKSA8LSBjKCJsYW1iZGEiLCAiUG9kZXIiLCAiTk1BIikNCmthYmxlRXh0cmE6OmthYmxlKHJvdW5kKHJlc3VsdF9yLDQpKQ0KYGBgDQojIFBvZGVyIEdsb2JhbCBYX2JhciBlIFINCmBgYHtyfQ0Ka2FibGVFeHRyYTo6a2FibGUocm91bmQocmVzdWx0X3hiYXIsNCkpDQprYWJsZUV4dHJhOjprYWJsZShyb3VuZChyZXN1bHRfciw0KSkNCg0KYGBgDQoNCg0K