definição do erro tipo I e constantes dos LC de X_bar e R
# função para achar a contante de abertura dos LC de R
# adotar LIC_R=0
GCR <- function (n,alfa) {
Fnw=0; ws=0
while (Fnw<=1-alfa) {
ws=ws+0.01
integrando <- function(z) {((1/(sqrt(2*pi)))*exp(-(z^2)/2))*(pnorm(z+ws)-pnorm(z))^(n-1)}
Fnw=integrate(integrando, lower=-Inf, upper=Inf)
Fnw=n*as.numeric(Fnw[1])
}
print(ws)
}
#n=4
#alfa=.0012
#GCR(n,alfa)
# escolha do erro alfa -> NMAo
# alfa < 0.0027 => NMAo >= 370.4
n=4
alfa_r=0.0012
alfa_xbar=0.0012
alfa=alfa_xbar+alfa_r - alfa_xbar*alfa_r
NMAo=1/alfa
#alfa=0.0012
# contantes dos limites de controle
k=-qnorm(alfa_xbar/2)
w=GCR(n,alfa)
[1] 4.99
print("NMAo"); NMAo
[1] "NMAo"
[1] 416.9168
print("contante para x_bar"); k
[1] "contante para x_bar"
[1] 3.23888
print("contante para R"); w
[1] "contante para R"
[1] 4.99
Cálculo do Poder/desempenho do GC X_barra e R
# GC de X_bar
# calculo do poder de X_bar
#n= ;k=
delta=0.0 # desvio na média;
lambda= 1 #desvio no desvio-padrão
i=1
result_xbar=matrix(c(NA),77,4)
while(lambda <= 2.1) {
while (delta <= 3) {
exp1 <- -(k+delta*sqrt(n))/lambda
exp2 <- (-k+delta*sqrt(n))/lambda
poder=pnorm(exp1)+pnorm(exp2)
result_xbar[i,1] <-delta;
result_xbar[i,2] <-lambda;
result_xbar[i,3] <-poder #poder
result_xbar[i,4] <-1/poder #NMA
i=i+1;
#print(i)
delta=delta+0.5 }
delta=0.0
lambda=lambda+0.1 }
colnames(result_xbar) <- c("delta","lambda", "Poder", "NMA")
kableExtra::kable(round(result_xbar,4))
|
delta
|
lambda
|
Poder
|
NMA
|
|
0.0
|
1.0
|
0.0012
|
833.3333
|
|
0.5
|
1.0
|
0.0126
|
79.4086
|
|
1.0
|
1.0
|
0.1077
|
9.2855
|
|
1.5
|
1.0
|
0.4056
|
2.4655
|
|
2.0
|
1.0
|
0.7767
|
1.2875
|
|
2.5
|
1.0
|
0.9609
|
1.0407
|
|
3.0
|
1.0
|
0.9971
|
1.0029
|
|
0.0
|
1.1
|
0.0032
|
309.0776
|
|
0.5
|
1.1
|
0.0210
|
47.6957
|
|
1.0
|
1.1
|
0.1300
|
7.6905
|
|
1.5
|
1.1
|
0.4140
|
2.4152
|
|
2.0
|
1.1
|
0.7555
|
1.3236
|
|
2.5
|
1.1
|
0.9453
|
1.0579
|
|
3.0
|
1.1
|
0.9940
|
1.0061
|
|
0.0
|
1.2
|
0.0070
|
143.8141
|
|
0.5
|
1.2
|
0.0312
|
32.0049
|
|
1.0
|
1.2
|
0.1509
|
6.6248
|
|
1.5
|
1.2
|
0.4211
|
2.3747
|
|
2.0
|
1.2
|
0.7370
|
1.3568
|
|
2.5
|
1.2
|
0.9289
|
1.0765
|
|
3.0
|
1.2
|
0.9893
|
1.0108
|
|
0.0
|
1.3
|
0.0127
|
78.6014
|
|
0.5
|
1.3
|
0.0431
|
23.2175
|
|
1.0
|
1.3
|
0.1703
|
5.8711
|
|
1.5
|
1.3
|
0.4271
|
2.3413
|
|
2.0
|
1.3
|
0.7209
|
1.3872
|
|
2.5
|
1.3
|
0.9122
|
1.0962
|
|
3.0
|
1.3
|
0.9832
|
1.0171
|
|
0.0
|
1.4
|
0.0207
|
48.3186
|
|
0.5
|
1.4
|
0.0561
|
17.8190
|
|
1.0
|
1.4
|
0.1882
|
5.3137
|
|
1.5
|
1.4
|
0.4323
|
2.3134
|
|
2.0
|
1.4
|
0.7067
|
1.4151
|
|
2.5
|
1.4
|
0.8958
|
1.1163
|
|
3.0
|
1.4
|
0.9757
|
1.0249
|
|
0.0
|
1.5
|
0.0308
|
32.4354
|
|
0.5
|
1.5
|
0.0701
|
14.2592
|
|
1.0
|
1.5
|
0.2047
|
4.8861
|
|
1.5
|
1.5
|
0.4368
|
2.2896
|
|
2.0
|
1.5
|
0.6941
|
1.4408
|
|
2.5
|
1.5
|
0.8798
|
1.1366
|
|
3.0
|
1.5
|
0.9672
|
1.0339
|
|
0.0
|
1.6
|
0.0429
|
23.2887
|
|
0.5
|
1.6
|
0.0849
|
11.7793
|
|
1.0
|
1.6
|
0.2199
|
4.5474
|
|
1.5
|
1.6
|
0.4407
|
2.2691
|
|
2.0
|
1.6
|
0.6829
|
1.4644
|
|
2.5
|
1.6
|
0.8645
|
1.1568
|
|
3.0
|
1.6
|
0.9578
|
1.0441
|
|
0.0
|
1.7
|
0.0568
|
17.6208
|
|
0.5
|
1.7
|
0.1002
|
9.9754
|
|
1.0
|
1.7
|
0.2341
|
4.2716
|
|
1.5
|
1.7
|
0.4442
|
2.2510
|
|
2.0
|
1.7
|
0.6728
|
1.4863
|
|
2.5
|
1.7
|
0.8499
|
1.1766
|
|
3.0
|
1.7
|
0.9478
|
1.0550
|
|
0.0
|
1.8
|
0.0720
|
13.8968
|
|
0.5
|
1.8
|
0.1160
|
8.6173
|
|
1.0
|
1.8
|
0.2474
|
4.0413
|
|
1.5
|
1.8
|
0.4475
|
2.2348
|
|
2.0
|
1.8
|
0.6638
|
1.5064
|
|
2.5
|
1.8
|
0.8361
|
1.1961
|
|
3.0
|
1.8
|
0.9375
|
1.0667
|
|
0.0
|
1.9
|
0.0883
|
11.3308
|
|
0.5
|
1.9
|
0.1322
|
7.5661
|
|
1.0
|
1.9
|
0.2601
|
3.8447
|
|
1.5
|
1.9
|
0.4505
|
2.2198
|
|
2.0
|
1.9
|
0.6557
|
1.5251
|
|
2.5
|
1.9
|
0.8230
|
1.2150
|
|
3.0
|
1.9
|
0.9269
|
1.0788
|
|
0.0
|
2.0
|
0.1054
|
9.4919
|
|
0.5
|
2.0
|
0.1485
|
6.7339
|
|
1.0
|
2.0
|
0.2722
|
3.6735
|
|
1.5
|
2.0
|
0.4534
|
2.2057
|
|
2.0
|
2.0
|
0.6484
|
1.5423
|
|
2.5
|
2.0
|
0.8107
|
1.2334
|
|
3.0
|
2.0
|
0.9163
|
1.0914
|
# GC de R
# calculo do poder do GC R
#k=3.24
Fnw=0; ws=0
while (Fnw<=1-alfa/2) {
ws=ws+0.01
integrando <- function(z) {((1/(sqrt(2*pi)))*exp(-(z^2)/2))*(pnorm(z+ws)-pnorm(z))^(n-1)}
Fnw=integrate(integrando, lower=-Inf, upper=Inf)
Fnw=n*as.numeric(Fnw[1])
}
lambda=1.0;i=1
result_r=matrix(c(NA),11,3)
while (lambda<=2.1) {
integrando <- function(z) {((1/(sqrt(2*pi)))*exp(-(z^2)/2))*(pnorm(z+ws/lambda)-pnorm(z))^(n-1)}
Fnw=integrate(integrando, lower=-Inf, upper=Inf) #list
Fnw=1-n*as.numeric(Fnw[1]) # poder Pr[W>Ws|n=n0]
result_r[i,1] <-lambda
result_r[i,2] <-Fnw #poder
result_r[i,3] <-1/Fnw #NMA
i=i+1; lambda=lambda+0.1
}
colnames(result_r) <- c("lambda", "Poder", "NMA")
kableExtra::kable(round(result_r,4))
|
lambda
|
Poder
|
NMA
|
|
1.0
|
0.0012
|
850.0642
|
|
1.1
|
0.0041
|
243.0293
|
|
1.2
|
0.0107
|
93.8212
|
|
1.3
|
0.0223
|
44.8167
|
|
1.4
|
0.0400
|
25.0008
|
|
1.5
|
0.0639
|
15.6553
|
|
1.6
|
0.0934
|
10.7024
|
|
1.7
|
0.1277
|
7.8296
|
|
1.8
|
0.1656
|
6.0402
|
|
1.9
|
0.2058
|
4.8603
|
|
2.0
|
0.2472
|
4.0453
|
Poder Global X_bar e R
kableExtra::kable(round(result_xbar,4))
|
delta
|
lambda
|
Poder
|
NMA
|
|
0.0
|
1.0
|
0.0012
|
833.3333
|
|
0.5
|
1.0
|
0.0126
|
79.4086
|
|
1.0
|
1.0
|
0.1077
|
9.2855
|
|
1.5
|
1.0
|
0.4056
|
2.4655
|
|
2.0
|
1.0
|
0.7767
|
1.2875
|
|
2.5
|
1.0
|
0.9609
|
1.0407
|
|
3.0
|
1.0
|
0.9971
|
1.0029
|
|
0.0
|
1.1
|
0.0032
|
309.0776
|
|
0.5
|
1.1
|
0.0210
|
47.6957
|
|
1.0
|
1.1
|
0.1300
|
7.6905
|
|
1.5
|
1.1
|
0.4140
|
2.4152
|
|
2.0
|
1.1
|
0.7555
|
1.3236
|
|
2.5
|
1.1
|
0.9453
|
1.0579
|
|
3.0
|
1.1
|
0.9940
|
1.0061
|
|
0.0
|
1.2
|
0.0070
|
143.8141
|
|
0.5
|
1.2
|
0.0312
|
32.0049
|
|
1.0
|
1.2
|
0.1509
|
6.6248
|
|
1.5
|
1.2
|
0.4211
|
2.3747
|
|
2.0
|
1.2
|
0.7370
|
1.3568
|
|
2.5
|
1.2
|
0.9289
|
1.0765
|
|
3.0
|
1.2
|
0.9893
|
1.0108
|
|
0.0
|
1.3
|
0.0127
|
78.6014
|
|
0.5
|
1.3
|
0.0431
|
23.2175
|
|
1.0
|
1.3
|
0.1703
|
5.8711
|
|
1.5
|
1.3
|
0.4271
|
2.3413
|
|
2.0
|
1.3
|
0.7209
|
1.3872
|
|
2.5
|
1.3
|
0.9122
|
1.0962
|
|
3.0
|
1.3
|
0.9832
|
1.0171
|
|
0.0
|
1.4
|
0.0207
|
48.3186
|
|
0.5
|
1.4
|
0.0561
|
17.8190
|
|
1.0
|
1.4
|
0.1882
|
5.3137
|
|
1.5
|
1.4
|
0.4323
|
2.3134
|
|
2.0
|
1.4
|
0.7067
|
1.4151
|
|
2.5
|
1.4
|
0.8958
|
1.1163
|
|
3.0
|
1.4
|
0.9757
|
1.0249
|
|
0.0
|
1.5
|
0.0308
|
32.4354
|
|
0.5
|
1.5
|
0.0701
|
14.2592
|
|
1.0
|
1.5
|
0.2047
|
4.8861
|
|
1.5
|
1.5
|
0.4368
|
2.2896
|
|
2.0
|
1.5
|
0.6941
|
1.4408
|
|
2.5
|
1.5
|
0.8798
|
1.1366
|
|
3.0
|
1.5
|
0.9672
|
1.0339
|
|
0.0
|
1.6
|
0.0429
|
23.2887
|
|
0.5
|
1.6
|
0.0849
|
11.7793
|
|
1.0
|
1.6
|
0.2199
|
4.5474
|
|
1.5
|
1.6
|
0.4407
|
2.2691
|
|
2.0
|
1.6
|
0.6829
|
1.4644
|
|
2.5
|
1.6
|
0.8645
|
1.1568
|
|
3.0
|
1.6
|
0.9578
|
1.0441
|
|
0.0
|
1.7
|
0.0568
|
17.6208
|
|
0.5
|
1.7
|
0.1002
|
9.9754
|
|
1.0
|
1.7
|
0.2341
|
4.2716
|
|
1.5
|
1.7
|
0.4442
|
2.2510
|
|
2.0
|
1.7
|
0.6728
|
1.4863
|
|
2.5
|
1.7
|
0.8499
|
1.1766
|
|
3.0
|
1.7
|
0.9478
|
1.0550
|
|
0.0
|
1.8
|
0.0720
|
13.8968
|
|
0.5
|
1.8
|
0.1160
|
8.6173
|
|
1.0
|
1.8
|
0.2474
|
4.0413
|
|
1.5
|
1.8
|
0.4475
|
2.2348
|
|
2.0
|
1.8
|
0.6638
|
1.5064
|
|
2.5
|
1.8
|
0.8361
|
1.1961
|
|
3.0
|
1.8
|
0.9375
|
1.0667
|
|
0.0
|
1.9
|
0.0883
|
11.3308
|
|
0.5
|
1.9
|
0.1322
|
7.5661
|
|
1.0
|
1.9
|
0.2601
|
3.8447
|
|
1.5
|
1.9
|
0.4505
|
2.2198
|
|
2.0
|
1.9
|
0.6557
|
1.5251
|
|
2.5
|
1.9
|
0.8230
|
1.2150
|
|
3.0
|
1.9
|
0.9269
|
1.0788
|
|
0.0
|
2.0
|
0.1054
|
9.4919
|
|
0.5
|
2.0
|
0.1485
|
6.7339
|
|
1.0
|
2.0
|
0.2722
|
3.6735
|
|
1.5
|
2.0
|
0.4534
|
2.2057
|
|
2.0
|
2.0
|
0.6484
|
1.5423
|
|
2.5
|
2.0
|
0.8107
|
1.2334
|
|
3.0
|
2.0
|
0.9163
|
1.0914
|
kableExtra::kable(round(result_r,4))
|
lambda
|
Poder
|
NMA
|
|
1.0
|
0.0012
|
850.0642
|
|
1.1
|
0.0041
|
243.0293
|
|
1.2
|
0.0107
|
93.8212
|
|
1.3
|
0.0223
|
44.8167
|
|
1.4
|
0.0400
|
25.0008
|
|
1.5
|
0.0639
|
15.6553
|
|
1.6
|
0.0934
|
10.7024
|
|
1.7
|
0.1277
|
7.8296
|
|
1.8
|
0.1656
|
6.0402
|
|
1.9
|
0.2058
|
4.8603
|
|
2.0
|
0.2472
|
4.0453
|
NA
LS0tDQp0aXRsZTogIkPDs2RpZ28gZm9udGUgcGFyYSBhdmFsaWFyIG8gZGVzZW1wZW5obyBjb25qdW50byBkbyBHQyBYX2JhcnJhIGUgUiINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCiMgZGVmaW5pw6fDo28gZG8gZXJybyB0aXBvIEkgZSBjb25zdGFudGVzIGRvcyBMQyBkZSBYX2JhciBlIFINCg0KYGBge3J9DQojIGZ1bsOnw6NvIHBhcmEgYWNoYXIgYSBjb250YW50ZSBkZSBhYmVydHVyYSBkb3MgTEMgZGUgUg0KIyBhZG90YXIgTElDX1I9MA0KR0NSIDwtIGZ1bmN0aW9uIChuLGFsZmEpIHsNCkZudz0wOyB3cz0wDQp3aGlsZSAoRm53PD0xLWFsZmEpICB7DQp3cz13cyswLjAxICAgDQppbnRlZ3JhbmRvIDwtIGZ1bmN0aW9uKHopIHsoKDEvKHNxcnQoMipwaSkpKSpleHAoLSh6XjIpLzIpKSoocG5vcm0oeit3cyktcG5vcm0oeikpXihuLTEpfQ0KRm53PWludGVncmF0ZShpbnRlZ3JhbmRvLCBsb3dlcj0tSW5mLCB1cHBlcj1JbmYpIA0KRm53PW4qYXMubnVtZXJpYyhGbndbMV0pDQp9DQpwcmludCh3cykNCn0NCiNuPTQNCiNhbGZhPS4wMDEyDQojR0NSKG4sYWxmYSkNCmBgYA0KDQpgYGB7cn0NCiMgZXNjb2xoYSBkbyBlcnJvIGFsZmEgIC0+IE5NQW8NCiMgYWxmYSA8IDAuMDAyNyAgPT4gTk1BbyA+PSAzNzAuNA0Kbj00DQphbGZhX3I9MC4wMDEyDQphbGZhX3hiYXI9MC4wMDEyDQphbGZhPWFsZmFfeGJhcithbGZhX3IgLSBhbGZhX3hiYXIqYWxmYV9yDQpOTUFvPTEvYWxmYQ0KDQojYWxmYT0wLjAwMTINCiMgY29udGFudGVzIGRvcyBsaW1pdGVzIGRlIGNvbnRyb2xlIA0Kaz0tcW5vcm0oYWxmYV94YmFyLzIpDQp3PUdDUihuLGFsZmEpDQoNCnByaW50KCJOTUFvIik7IE5NQW8NCnByaW50KCJjb250YW50ZSBwYXJhIHhfYmFyIik7IGsNCnByaW50KCJjb250YW50ZSBwYXJhIFIiKTsgdw0KYGBgDQoNCg0KIyBDw6FsY3VsbyBkbyBQb2Rlci9kZXNlbXBlbmhvIGRvIEdDIFhfYmFycmEgZSBSDQpgYGB7cn0NCiMgR0MgZGUgWF9iYXINCiMgY2FsY3VsbyBkbyBwb2RlciBkZSBYX2Jhcg0KI249IDtrPQ0KZGVsdGE9MC4wICMgZGVzdmlvIG5hIG3DqWRpYTsgDQpsYW1iZGE9IDEgI2Rlc3ZpbyBubyBkZXN2aW8tcGFkcsOjbw0KaT0xICAgIA0KDQpyZXN1bHRfeGJhcj1tYXRyaXgoYyhOQSksNzcsNCkNCndoaWxlKGxhbWJkYSA8PSAyLjEpIHsNCiAgIHdoaWxlIChkZWx0YSA8PSAzKSB7DQpleHAxIDwtIC0oaytkZWx0YSpzcXJ0KG4pKS9sYW1iZGENCmV4cDIgPC0gKC1rK2RlbHRhKnNxcnQobikpL2xhbWJkYQ0KcG9kZXI9cG5vcm0oZXhwMSkrcG5vcm0oZXhwMikNCnJlc3VsdF94YmFyW2ksMV0gPC1kZWx0YTsgDQpyZXN1bHRfeGJhcltpLDJdIDwtbGFtYmRhOyANCnJlc3VsdF94YmFyW2ksM10gPC1wb2RlciAjcG9kZXIgIA0KcmVzdWx0X3hiYXJbaSw0XSA8LTEvcG9kZXIgI05NQQ0KaT1pKzE7DQojcHJpbnQoaSkNCmRlbHRhPWRlbHRhKzAuNSAgfQ0KZGVsdGE9MC4wDQpsYW1iZGE9bGFtYmRhKzAuMSB9DQoNCmNvbG5hbWVzKHJlc3VsdF94YmFyKSA8LSBjKCJkZWx0YSIsImxhbWJkYSIsICJQb2RlciIsICJOTUEiKQ0Ka2FibGVFeHRyYTo6a2FibGUocm91bmQocmVzdWx0X3hiYXIsNCkpDQpgYGANCg0KYGBge3J9DQojIEdDIGRlIFINCiMgY2FsY3VsbyBkbyBwb2RlciBkbyBHQyBSDQoNCiNrPTMuMjQNCg0KRm53PTA7IHdzPTANCndoaWxlIChGbnc8PTEtYWxmYS8yKSAgew0Kd3M9d3MrMC4wMSAgIA0KaW50ZWdyYW5kbyA8LSBmdW5jdGlvbih6KSB7KCgxLyhzcXJ0KDIqcGkpKSkqZXhwKC0oel4yKS8yKSkqKHBub3JtKHord3MpLXBub3JtKHopKV4obi0xKX0NCkZudz1pbnRlZ3JhdGUoaW50ZWdyYW5kbywgbG93ZXI9LUluZiwgdXBwZXI9SW5mKSANCkZudz1uKmFzLm51bWVyaWMoRm53WzFdKQ0KfQ0KDQpsYW1iZGE9MS4wO2k9MSAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICANCnJlc3VsdF9yPW1hdHJpeChjKE5BKSwxMSwzKQ0Kd2hpbGUgKGxhbWJkYTw9Mi4xKSAgew0KaW50ZWdyYW5kbyA8LSBmdW5jdGlvbih6KSB7KCgxLyhzcXJ0KDIqcGkpKSkqZXhwKC0oel4yKS8yKSkqKHBub3JtKHord3MvbGFtYmRhKS1wbm9ybSh6KSleKG4tMSl9DQpGbnc9aW50ZWdyYXRlKGludGVncmFuZG8sIGxvd2VyPS1JbmYsIHVwcGVyPUluZikgICNsaXN0DQpGbnc9MS1uKmFzLm51bWVyaWMoRm53WzFdKSAjIHBvZGVyIFByW1c+V3N8bj1uMF0NCg0KcmVzdWx0X3JbaSwxXSA8LWxhbWJkYQ0KcmVzdWx0X3JbaSwyXSA8LUZudyAgICNwb2RlciAgDQpyZXN1bHRfcltpLDNdIDwtMS9GbncgI05NQQ0KaT1pKzE7IGxhbWJkYT1sYW1iZGErMC4xDQp9DQoNCmNvbG5hbWVzKHJlc3VsdF9yKSA8LSBjKCJsYW1iZGEiLCAiUG9kZXIiLCAiTk1BIikNCmthYmxlRXh0cmE6OmthYmxlKHJvdW5kKHJlc3VsdF9yLDQpKQ0KYGBgDQojIFBvZGVyIEdsb2JhbCBYX2JhciBlIFINCmBgYHtyfQ0Ka2FibGVFeHRyYTo6a2FibGUocm91bmQocmVzdWx0X3hiYXIsNCkpDQprYWJsZUV4dHJhOjprYWJsZShyb3VuZChyZXN1bHRfciw0KSkNCg0KYGBgDQoNCg0K