Bambi <- read.table(file = "clipboard",
                        sep = "\t", header = TRUE)
str(Bambi)
## 'data.frame':    8 obs. of  4 variables:
##  $ X1: num  2.9 2.4 2 2.3 3.2 ...
##  $ X2: num  9.2 8.7 7.2 8.5 9.6 ...
##  $ X3: num  13.2 11.5 10.8 12.3 12.6 ...
##  $ X4: int  2 3 4 2 3 5 1 3
columns <- c("No_of_fawn", "adult_population","annual_precipitation", "winter_condition")
colnames(Bambi) <- columns
library(ggplot2)
library(cowplot)
## 
## ********************************************************
## Note: As of version 1.0.0, cowplot does not change the
##   default ggplot2 theme anymore. To recover the previous
##   behavior, execute:
##   theme_set(theme_cowplot())
## ********************************************************
Pop <- ggplot(Bambi, aes(x=adult_population, y=No_of_fawn)) + geom_point() + theme_classic()
Rain <- ggplot(Bambi, aes(x=annual_precipitation, y=No_of_fawn)) + 
          geom_point() + theme_classic()
Winter <- ggplot(Bambi, aes(x=winter_condition, y=No_of_fawn)) +
          geom_point() + theme_classic()
plot_grid(Pop,Rain,Winter, nrow = 1, ncol = 3, labels = "AUTO")

modelOne <- lm(formula = No_of_fawn~ winter_condition, data = Bambi)
VizOne <-plot(Bambi$winter_condition,Bambi$No_of_fawn,
        main = "Fawn Birth/Response to Winter Condition",
        xlab = 'Winter Intesity', ylab = 'Expected Births')
abline(lm(No_of_fawn~winter_condition, data = Bambi), col = 'red')

summary(modelOne)
## 
## Call:
## lm(formula = No_of_fawn ~ winter_condition, data = Bambi)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.52069 -0.20431 -0.00172  0.13017  0.71724 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        3.4966     0.3904   8.957 0.000108 ***
## winter_condition  -0.3379     0.1258  -2.686 0.036263 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.415 on 6 degrees of freedom
## Multiple R-squared:  0.5459, Adjusted R-squared:  0.4702 
## F-statistic: 7.213 on 1 and 6 DF,  p-value: 0.03626
modelTwo <- lm(formula = No_of_fawn ~ adult_population + winter_condition, 
   data = Bambi)
plot(modelTwo)

summary(modelTwo)
## 
## Call:
## lm(formula = No_of_fawn ~ adult_population + winter_condition, 
##     data = Bambi)
## 
## Residuals:
##        1        2        3        4        5        6        7        8 
##  0.01231 -0.27531  0.10301 -0.19154  0.01535  0.15880  0.29992 -0.12256 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)  
## (Intercept)      -2.46009    1.53443  -1.603   0.1698  
## adult_population  0.56594    0.14439   3.920   0.0112 *
## winter_condition  0.07058    0.12461   0.566   0.5956  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2252 on 5 degrees of freedom
## Multiple R-squared:  0.8885, Adjusted R-squared:  0.8439 
## F-statistic: 19.92 on 2 and 5 DF,  p-value: 0.004152
modelThree <- lm(formula = No_of_fawn~ adult_population + 
                   winter_condition + annual_precipitation, data = Bambi)
plot(modelThree)

summary(modelThree)
## 
## Call:
## lm(formula = No_of_fawn ~ adult_population + winter_condition + 
##     annual_precipitation, data = Bambi)
## 
## Residuals:
##        1        2        3        4        5        6        7        8 
## -0.11533 -0.02661  0.09882 -0.11723  0.02734 -0.04854  0.11715  0.06441 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)   
## (Intercept)          -5.92201    1.25562  -4.716   0.0092 **
## adult_population      0.33822    0.09947   3.400   0.0273 * 
## winter_condition      0.26295    0.08514   3.089   0.0366 * 
## annual_precipitation  0.40150    0.10990   3.653   0.0217 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1209 on 4 degrees of freedom
## Multiple R-squared:  0.9743, Adjusted R-squared:  0.955 
## F-statistic: 50.52 on 3 and 4 DF,  p-value: 0.001229
#All the models work well, but I prefer the simplicity of model one. 
#I would then run all the variables independently against $No_of_fawn
#to see which variables would hod value in running in conjuntion.
#A high R^2 value indicates a statistical signifigance between independent and
# dependent variables. All three models indicate significant R^2 value > 50%.
#Since Model Three has the highest R^2 value, it works best.
#The pasimonious model:
BICONE<-BIC(modelOne)
print(BICONE)
## [1] 12.56635
BICTWO <-BIC(modelTwo)
print(BICTWO)
## [1] 3.411571
BICTHREE <- BIC(modelThree)
print(BICTHREE)
## [1] -6.245971
#modelThree is the most parsimonious