Profesor: Felipe González
Elaborado por Daniela Pinto Veizaga
Parte 1: descenso en gradiente
Resolveremos un problema de minimización usando descenso en gradiente. Considera la siguiente función
library(tidyverse)
h <- function(x) {
w <- x - 4
(1/50) * (w^4 + w^2 + 100 * w)
}
Pregunta. grafica la función h. ¿Dónde está el mÃnimo? ¿Cuál es el valor que toma la función en el mÃnimo?
x <- c(-100:100)
h_x<- tibble(h(x),x)
h_x
h_x<- tibble(h(x),x)
ggplot(h_x) + geom_line(aes(x=x, y=h(x))) + labs(title = 'Función h')
print(paste0('El valor mÃnimo está en x=1, en ese punto, la función h_x() toma el siguiente valor: ', min(h_x$`h(x)`)))
[1] "El valor mÃnimo está en x=1, en ese punto, la función h_x() toma el siguiente valor: -4.2"
Pregunta: Ahora calcula la derivada en la siguiente función (rellena):
# calcula la derivada
h_deriv <- function(x) {
# aquà tu calculo, debe regresar la derivada de h
# evaluada en x
w <- x - 4
deriv <- (1/25) * (2*(w**3) + w + 50)
#deriv <- (4*(x-4)^3 + 2*(x-4) +100)*1/150
deriv
}
Usaremos el código de la clase anterior:
# función para descenso
descenso <- function(n, z_0, eta, h_deriv){
z <- matrix(0,n, length(z_0))
z[1, ] <- z_0
for(i in 1:(n-1)){
# paso de descenso
z[i+1, ] <- z[i, ] - eta * h_deriv(z[i, ])
}
z
}
Pregunta: Empezamos las iteraciones en 0. En el siguiente código, escoge un tamaño de paso (\(eta\)) demasiado grande (diverge), demasiado chico (tarda mucho en converger) y uno intermedio donde alcances el mÃnimo en un número de iteraciones razonable. Puede ser necesario que ajustes el número de iteraciones, y puede ser que obtengas desbordes si pones tamaños de paso demasiado grandes:
# pon un valor grande y uno chico para eta. ¿Qué pasa?
z_0 <- 0
for (i in c(0.001, 0.01, 0.1, 0.3, 0.345, 1)){
eta <- i
name = paste('Learning rate',i,sep=" ")
z <- descenso(100, z_0, eta, h_deriv)
#Grafica las iteraciones
dat_iteraciones <- tibble(iteracion = 1:nrow(z),
x = z[, 1], y = h(z[, 1]))
p<-ggplot(dat_iteraciones, aes(x = iteracion, y = x)) + geom_point() + geom_line()+ ggtitle(name)
assign(paste0("plot", i), p)
}
library(cowplot)
plot_grid(plot0.001, plot0.01, plot0.1, plot0.3, plot0.345, plot1,
labels = 'AUTO', label_fontfamily = "serif", label_fontface = "plain",
label_colour = "black", ncol = 2)
Parte 2: descenso en gradiente para regresión
Pregunta: en el siguiente ejercicio ajustamos un modelo de regresión para el problema de precio de casas que vimos en clase. Escoge
Cargamos los datos:
casas_receta <- read_rds("casas_receta.rds")
x_ent <- casas_receta %>% prep %>% juice %>% select(tiene_piso_2, calidad) %>% as.matrix()
y_ent <- casas_receta %>% prep %>% juice %>% pull(precio_m2_miles)
Pregunta: qué contienen x_ent y y_ent?
x_ent %>% summary
tiene_piso_2 calidad
Min. :0.0000 Min. :-5
1st Qu.:0.0000 1st Qu.:-1
Median :0.0000 Median : 0
Mean :0.4468 Mean : 0
3rd Qu.:1.0000 3rd Qu.: 1
Max. :1.0000 Max. : 4
x_ent y y_ent caracterizan a los datos de entrenamiento.
Definimos un modelo de regresión lineal en keras (nota: si quieres hacer corridas desde cero empieza con estas lÃneas que siguen. De otra manera vas a iterar desde el punto donde te hayas quedado en la corrida anterior):
library(tidyverse)
library(tidymodels)
library(keras)
# ajusta este valor, es le tamaño de paso o tasa de aprendizaje
casas_receta <- read_rds("casas_receta.rds")
x_ent <- casas_receta %>% prep %>% juice %>% select(tiene_piso_2, calidad) %>% as.matrix()
y_ent <- casas_receta %>% prep %>% juice %>% pull(precio_m2_miles)
for (i in c(0.001, 0.01, 0.1, 0.2, 0.3)){
i= as.character(i)
name = paste('logs/run_',i,sep="")
n_entrena <- nrow(x_ent)
modelo_casas <- keras_model_sequential()
modelo_casas %>%
layer_dense(units = 1,activation = "linear",
kernel_initializer = initializer_constant(0),
bias_initializer = initializer_constant(0))
modelo_casas %>% compile(
loss = "mean_squared_error", # pérdida cuadrática
optimizer = optimizer_sgd(lr = lr), # descenso en gradiente
#metrics = list("mean_squared_error"),
metrics = c('accuracy')
)
historia <- modelo_casas %>% fit(
as.matrix(x_ent), # x entradas
y_ent, # y salida o target
batch_size = nrow(x_ent), # para descenso en gradiente
callbacks = callback_tensorboard(name),
view_metrics = FALSE,
epochs = 20 # número de iteraciones
)
}
Epoch 1/20
1/1 [==============================] - 0s 26us/step - loss: 1.7096 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 4ms/step - loss: 1.7096 - accuracy: 0.0000e+00
Epoch 2/20
1/1 [==============================] - 0s 13us/step - loss: 0.1943 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 3ms/step - loss: 0.1943 - accuracy: 0.0000e+00
Epoch 3/20
1/1 [==============================] - 0s 12us/step - loss: 0.1473 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 3ms/step - loss: 0.1473 - accuracy: 0.0000e+00
Epoch 4/20
1/1 [==============================] - 0s 14us/step - loss: 0.1179 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 3ms/step - loss: 0.1179 - accuracy: 0.0000e+00
Epoch 5/20
1/1 [==============================] - 0s 11us/step - loss: 0.0976 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 3ms/step - loss: 0.0976 - accuracy: 0.0000e+00
Epoch 6/20
1/1 [==============================] - 0s 11us/step - loss: 0.0832 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 3ms/step - loss: 0.0832 - accuracy: 0.0000e+00
Epoch 7/20
1/1 [==============================] - 0s 11us/step - loss: 0.0729 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 3ms/step - loss: 0.0729 - accuracy: 0.0000e+00
Epoch 8/20
1/1 [==============================] - 0s 14us/step - loss: 0.0655 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 3ms/step - loss: 0.0655 - accuracy: 0.0000e+00
Epoch 9/20
1/1 [==============================] - 0s 10us/step - loss: 0.0602 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 3ms/step - loss: 0.0602 - accuracy: 0.0000e+00
Epoch 10/20
1/1 [==============================] - 0s 10us/step - loss: 0.0564 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 3ms/step - loss: 0.0564 - accuracy: 0.0000e+00
Epoch 11/20
1/1 [==============================] - 0s 11us/step - loss: 0.0537 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 3ms/step - loss: 0.0537 - accuracy: 0.0000e+00
Epoch 12/20
1/1 [==============================] - 0s 10us/step - loss: 0.0517 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 3ms/step - loss: 0.0517 - accuracy: 0.0000e+00
Epoch 13/20
1/1 [==============================] - 0s 10us/step - loss: 0.0503 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 3ms/step - loss: 0.0503 - accuracy: 0.0000e+00
Epoch 14/20
1/1 [==============================] - 0s 11us/step - loss: 0.0493 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 3ms/step - loss: 0.0493 - accuracy: 0.0000e+00
Epoch 15/20
1/1 [==============================] - 0s 11us/step - loss: 0.0486 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 3ms/step - loss: 0.0486 - accuracy: 0.0000e+00
Epoch 16/20
1/1 [==============================] - 0s 10us/step - loss: 0.0481 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0481 - accuracy: 0.0000e+00
Epoch 17/20
1/1 [==============================] - 0s 10us/step - loss: 0.0477 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0477 - accuracy: 0.0000e+00
Epoch 18/20
1/1 [==============================] - 0s 10us/step - loss: 0.0474 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0474 - accuracy: 0.0000e+00
Epoch 19/20
1/1 [==============================] - 0s 10us/step - loss: 0.0472 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0472 - accuracy: 0.0000e+00
Epoch 20/20
1/1 [==============================] - 0s 10us/step - loss: 0.0471 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0471 - accuracy: 0.0000e+00
Epoch 1/20
1/1 [==============================] - 0s 17us/step - loss: 1.7096 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 3ms/step - loss: 1.7096 - accuracy: 0.0000e+00
Epoch 2/20
1/1 [==============================] - 0s 11us/step - loss: 0.1943 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 3ms/step - loss: 0.1943 - accuracy: 0.0000e+00
Epoch 3/20
1/1 [==============================] - 0s 11us/step - loss: 0.1473 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.1473 - accuracy: 0.0000e+00
Epoch 4/20
1/1 [==============================] - 0s 10us/step - loss: 0.1179 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.1179 - accuracy: 0.0000e+00
Epoch 5/20
1/1 [==============================] - 0s 10us/step - loss: 0.0976 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0976 - accuracy: 0.0000e+00
Epoch 6/20
1/1 [==============================] - 0s 10us/step - loss: 0.0832 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0832 - accuracy: 0.0000e+00
Epoch 7/20
1/1 [==============================] - 0s 10us/step - loss: 0.0729 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0729 - accuracy: 0.0000e+00
Epoch 8/20
1/1 [==============================] - 0s 10us/step - loss: 0.0655 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0655 - accuracy: 0.0000e+00
Epoch 9/20
1/1 [==============================] - 0s 10us/step - loss: 0.0602 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0602 - accuracy: 0.0000e+00
Epoch 10/20
1/1 [==============================] - 0s 11us/step - loss: 0.0564 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0564 - accuracy: 0.0000e+00
Epoch 11/20
1/1 [==============================] - 0s 10us/step - loss: 0.0537 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0537 - accuracy: 0.0000e+00
Epoch 12/20
1/1 [==============================] - 0s 11us/step - loss: 0.0517 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0517 - accuracy: 0.0000e+00
Epoch 13/20
1/1 [==============================] - 0s 10us/step - loss: 0.0503 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0503 - accuracy: 0.0000e+00
Epoch 14/20
1/1 [==============================] - 0s 11us/step - loss: 0.0493 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0493 - accuracy: 0.0000e+00
Epoch 15/20
1/1 [==============================] - 0s 14us/step - loss: 0.0486 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 3ms/step - loss: 0.0486 - accuracy: 0.0000e+00
Epoch 16/20
1/1 [==============================] - 0s 11us/step - loss: 0.0481 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0481 - accuracy: 0.0000e+00
Epoch 17/20
1/1 [==============================] - 0s 10us/step - loss: 0.0477 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0477 - accuracy: 0.0000e+00
Epoch 18/20
1/1 [==============================] - 0s 10us/step - loss: 0.0474 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0474 - accuracy: 0.0000e+00
Epoch 19/20
1/1 [==============================] - 0s 10us/step - loss: 0.0472 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0472 - accuracy: 0.0000e+00
Epoch 20/20
1/1 [==============================] - 0s 10us/step - loss: 0.0471 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0471 - accuracy: 0.0000e+00
Epoch 1/20
1/1 [==============================] - 0s 17us/step - loss: 1.7096 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 3ms/step - loss: 1.7096 - accuracy: 0.0000e+00
Epoch 2/20
1/1 [==============================] - 0s 14us/step - loss: 0.1943 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 3ms/step - loss: 0.1943 - accuracy: 0.0000e+00
Epoch 3/20
1/1 [==============================] - 0s 13us/step - loss: 0.1473 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 3ms/step - loss: 0.1473 - accuracy: 0.0000e+00
Epoch 4/20
1/1 [==============================] - 0s 11us/step - loss: 0.1179 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.1179 - accuracy: 0.0000e+00
Epoch 5/20
1/1 [==============================] - 0s 10us/step - loss: 0.0976 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0976 - accuracy: 0.0000e+00
Epoch 6/20
1/1 [==============================] - 0s 11us/step - loss: 0.0832 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0832 - accuracy: 0.0000e+00
Epoch 7/20
1/1 [==============================] - 0s 10us/step - loss: 0.0729 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 15ms/step - loss: 0.0729 - accuracy: 0.0000e+00
Epoch 8/20
1/1 [==============================] - 0s 15us/step - loss: 0.0655 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 3ms/step - loss: 0.0655 - accuracy: 0.0000e+00
Epoch 9/20
1/1 [==============================] - 0s 23us/step - loss: 0.0602 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 4ms/step - loss: 0.0602 - accuracy: 0.0000e+00
Epoch 10/20
1/1 [==============================] - 0s 12us/step - loss: 0.0564 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 3ms/step - loss: 0.0564 - accuracy: 0.0000e+00
Epoch 11/20
1/1 [==============================] - 0s 11us/step - loss: 0.0537 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0537 - accuracy: 0.0000e+00
Epoch 12/20
1/1 [==============================] - 0s 10us/step - loss: 0.0517 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0517 - accuracy: 0.0000e+00
Epoch 13/20
1/1 [==============================] - 0s 10us/step - loss: 0.0503 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0503 - accuracy: 0.0000e+00
Epoch 14/20
1/1 [==============================] - 0s 9us/step - loss: 0.0493 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0493 - accuracy: 0.0000e+00
Epoch 15/20
1/1 [==============================] - 0s 9us/step - loss: 0.0486 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0486 - accuracy: 0.0000e+00
Epoch 16/20
1/1 [==============================] - 0s 10us/step - loss: 0.0481 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0481 - accuracy: 0.0000e+00
Epoch 17/20
1/1 [==============================] - 0s 10us/step - loss: 0.0477 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0477 - accuracy: 0.0000e+00
Epoch 18/20
1/1 [==============================] - 0s 9us/step - loss: 0.0474 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0474 - accuracy: 0.0000e+00
Epoch 19/20
1/1 [==============================] - 0s 9us/step - loss: 0.0472 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0472 - accuracy: 0.0000e+00
Epoch 20/20
1/1 [==============================] - 0s 9us/step - loss: 0.0471 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0471 - accuracy: 0.0000e+00
Epoch 1/20
1/1 [==============================] - 0s 22us/step - loss: 1.7096 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 3ms/step - loss: 1.7096 - accuracy: 0.0000e+00
Epoch 2/20
1/1 [==============================] - 0s 13us/step - loss: 0.1943 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 3ms/step - loss: 0.1943 - accuracy: 0.0000e+00
Epoch 3/20
1/1 [==============================] - 0s 12us/step - loss: 0.1473 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 3ms/step - loss: 0.1473 - accuracy: 0.0000e+00
Epoch 4/20
1/1 [==============================] - 0s 10us/step - loss: 0.1179 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 3ms/step - loss: 0.1179 - accuracy: 0.0000e+00
Epoch 5/20
1/1 [==============================] - 0s 11us/step - loss: 0.0976 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 3ms/step - loss: 0.0976 - accuracy: 0.0000e+00
Epoch 6/20
1/1 [==============================] - 0s 10us/step - loss: 0.0832 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0832 - accuracy: 0.0000e+00
Epoch 7/20
1/1 [==============================] - 0s 10us/step - loss: 0.0729 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0729 - accuracy: 0.0000e+00
Epoch 8/20
1/1 [==============================] - 0s 10us/step - loss: 0.0655 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0655 - accuracy: 0.0000e+00
Epoch 9/20
1/1 [==============================] - 0s 10us/step - loss: 0.0602 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0602 - accuracy: 0.0000e+00
Epoch 10/20
1/1 [==============================] - 0s 10us/step - loss: 0.0564 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0564 - accuracy: 0.0000e+00
Epoch 11/20
1/1 [==============================] - 0s 9us/step - loss: 0.0537 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0537 - accuracy: 0.0000e+00
Epoch 12/20
1/1 [==============================] - 0s 10us/step - loss: 0.0517 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0517 - accuracy: 0.0000e+00
Epoch 13/20
1/1 [==============================] - 0s 10us/step - loss: 0.0503 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0503 - accuracy: 0.0000e+00
Epoch 14/20
1/1 [==============================] - 0s 10us/step - loss: 0.0493 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0493 - accuracy: 0.0000e+00
Epoch 15/20
1/1 [==============================] - 0s 10us/step - loss: 0.0486 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0486 - accuracy: 0.0000e+00
Epoch 16/20
1/1 [==============================] - 0s 10us/step - loss: 0.0481 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0481 - accuracy: 0.0000e+00
Epoch 17/20
1/1 [==============================] - 0s 10us/step - loss: 0.0477 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0477 - accuracy: 0.0000e+00
Epoch 18/20
1/1 [==============================] - 0s 10us/step - loss: 0.0474 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0474 - accuracy: 0.0000e+00
Epoch 19/20
1/1 [==============================] - 0s 10us/step - loss: 0.0472 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0472 - accuracy: 0.0000e+00
Epoch 20/20
1/1 [==============================] - 0s 10us/step - loss: 0.0471 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 23ms/step - loss: 0.0471 - accuracy: 0.0000e+00
Epoch 1/20
1/1 [==============================] - 0s 17us/step - loss: 1.7096 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 3ms/step - loss: 1.7096 - accuracy: 0.0000e+00
Epoch 2/20
1/1 [==============================] - 0s 13us/step - loss: 0.1943 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 3ms/step - loss: 0.1943 - accuracy: 0.0000e+00
Epoch 3/20
1/1 [==============================] - 0s 11us/step - loss: 0.1473 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 3ms/step - loss: 0.1473 - accuracy: 0.0000e+00
Epoch 4/20
1/1 [==============================] - 0s 12us/step - loss: 0.1179 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 3ms/step - loss: 0.1179 - accuracy: 0.0000e+00
Epoch 5/20
1/1 [==============================] - 0s 10us/step - loss: 0.0976 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 3ms/step - loss: 0.0976 - accuracy: 0.0000e+00
Epoch 6/20
1/1 [==============================] - 0s 10us/step - loss: 0.0832 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0832 - accuracy: 0.0000e+00
Epoch 7/20
1/1 [==============================] - 0s 10us/step - loss: 0.0729 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0729 - accuracy: 0.0000e+00
Epoch 8/20
1/1 [==============================] - 0s 10us/step - loss: 0.0655 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0655 - accuracy: 0.0000e+00
Epoch 9/20
1/1 [==============================] - 0s 10us/step - loss: 0.0602 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0602 - accuracy: 0.0000e+00
Epoch 10/20
1/1 [==============================] - 0s 10us/step - loss: 0.0564 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0564 - accuracy: 0.0000e+00
Epoch 11/20
1/1 [==============================] - 0s 9us/step - loss: 0.0537 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0537 - accuracy: 0.0000e+00
Epoch 12/20
1/1 [==============================] - 0s 10us/step - loss: 0.0517 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0517 - accuracy: 0.0000e+00
Epoch 13/20
1/1 [==============================] - 0s 11us/step - loss: 0.0503 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0503 - accuracy: 0.0000e+00
Epoch 14/20
1/1 [==============================] - 0s 17us/step - loss: 0.0493 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 3ms/step - loss: 0.0493 - accuracy: 0.0000e+00
Epoch 15/20
1/1 [==============================] - 0s 14us/step - loss: 0.0486 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 3ms/step - loss: 0.0486 - accuracy: 0.0000e+00
Epoch 16/20
1/1 [==============================] - 0s 12us/step - loss: 0.0481 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 3ms/step - loss: 0.0481 - accuracy: 0.0000e+00
Epoch 17/20
1/1 [==============================] - 0s 11us/step - loss: 0.0477 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0477 - accuracy: 0.0000e+00
Epoch 18/20
1/1 [==============================] - 0s 10us/step - loss: 0.0474 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 2ms/step - loss: 0.0474 - accuracy: 0.0000e+00
Epoch 19/20
1/1 [==============================] - 0s 11us/step - loss: 0.0472 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 3ms/step - loss: 0.0472 - accuracy: 0.0000e+00
Epoch 20/20
1/1 [==============================] - 0s 10us/step - loss: 0.0471 - accuracy: 0.0000e+00
1/1 [==============================] - 0s 3ms/step - loss: 0.0471 - accuracy: 0.0000e+00
TensorBoard 2.2.2 at http://127.0.0.1:5001/ (Press CTRL+C to quit)
Started TensorBoard at http://127.0.0.1:5001