Impact of Natural Calamities on People and Economy

Synopsis

Natural calamities like floods, hurricanes, even extreme heat, etc can wreak havoc on the lives of people and also damage property and crops. They can disrupt life for quite some time before normalcy is restored. In this analysis, the economic and health impact of such events is quantified using the given dataset. The top most damaging events are found out, so that mitigation strategies can be planned in advance.

Data Processing

# Setting strigsasfactors to false

data = read.csv('repdata_data_StormData.csv', stringsAsFactors= FALSE)
str(data)
## 'data.frame':    902297 obs. of  37 variables:
##  $ STATE__   : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ BGN_DATE  : chr  "4/18/1950 0:00:00" "4/18/1950 0:00:00" "2/20/1951 0:00:00" "6/8/1951 0:00:00" ...
##  $ BGN_TIME  : chr  "0130" "0145" "1600" "0900" ...
##  $ TIME_ZONE : chr  "CST" "CST" "CST" "CST" ...
##  $ COUNTY    : num  97 3 57 89 43 77 9 123 125 57 ...
##  $ COUNTYNAME: chr  "MOBILE" "BALDWIN" "FAYETTE" "MADISON" ...
##  $ STATE     : chr  "AL" "AL" "AL" "AL" ...
##  $ EVTYPE    : chr  "TORNADO" "TORNADO" "TORNADO" "TORNADO" ...
##  $ BGN_RANGE : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ BGN_AZI   : chr  "" "" "" "" ...
##  $ BGN_LOCATI: chr  "" "" "" "" ...
##  $ END_DATE  : chr  "" "" "" "" ...
##  $ END_TIME  : chr  "" "" "" "" ...
##  $ COUNTY_END: num  0 0 0 0 0 0 0 0 0 0 ...
##  $ COUNTYENDN: logi  NA NA NA NA NA NA ...
##  $ END_RANGE : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ END_AZI   : chr  "" "" "" "" ...
##  $ END_LOCATI: chr  "" "" "" "" ...
##  $ LENGTH    : num  14 2 0.1 0 0 1.5 1.5 0 3.3 2.3 ...
##  $ WIDTH     : num  100 150 123 100 150 177 33 33 100 100 ...
##  $ F         : int  3 2 2 2 2 2 2 1 3 3 ...
##  $ MAG       : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ FATALITIES: num  0 0 0 0 0 0 0 0 1 0 ...
##  $ INJURIES  : num  15 0 2 2 2 6 1 0 14 0 ...
##  $ PROPDMG   : num  25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 25 ...
##  $ PROPDMGEXP: chr  "K" "K" "K" "K" ...
##  $ CROPDMG   : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ CROPDMGEXP: chr  "" "" "" "" ...
##  $ WFO       : chr  "" "" "" "" ...
##  $ STATEOFFIC: chr  "" "" "" "" ...
##  $ ZONENAMES : chr  "" "" "" "" ...
##  $ LATITUDE  : num  3040 3042 3340 3458 3412 ...
##  $ LONGITUDE : num  8812 8755 8742 8626 8642 ...
##  $ LATITUDE_E: num  3051 0 0 0 0 ...
##  $ LONGITUDE_: num  8806 0 0 0 0 ...
##  $ REMARKS   : chr  "" "" "" "" ...
##  $ REFNUM    : num  1 2 3 4 5 6 7 8 9 10 ...

Health Impact

# New variable ploss is defined as the sum of fatalities and injuries

data$ploss= data$FATALITIES+ data$INJURIES

# Aggregating ploss wrt EVTYPE

health=  aggregate(ploss~EVTYPE, data=data, FUN = sum)
health = health[order(health$ploss,decreasing = T), ]
d= as.data.frame(head(health, 10))
d
##                EVTYPE ploss
## 834           TORNADO 96979
## 130    EXCESSIVE HEAT  8428
## 856         TSTM WIND  7461
## 170             FLOOD  7259
## 464         LIGHTNING  6046
## 275              HEAT  3037
## 153       FLASH FLOOD  2755
## 427         ICE STORM  2064
## 760 THUNDERSTORM WIND  1621
## 972      WINTER STORM  1527
# Top 10 most damaging events are plotted in a bar plot

barplot(d$ploss[1:10], names.arg= c(d$EVTYPE[1:10]), 
        col = 'steelblue', main='10 Events Most Damaging to Health',
        ylim = c(0,100000), las=2, cex.names = .6)

Economic Impact

# Defining a function for multiplying damage and damagexp columns

multiplier = function(x,y){
  if (y=='K')  {multiplier= x*1000}
  else if (y== 'M') {multiplier= x*1000000}
  else if (y== 'B') {multiplier= x*1000000000}
  else {multiplier= x}
  multiplier
}

# New variable is defined which captures the total damage from crop and property

data$damg = mapply(multiplier, data$PROPDMG, data$PROPDMGEXP)+ 
            mapply(multiplier, data$CROPDMG, data$CROPDMGEXP)

# Aggregating damg wrt EVTYPE

eco=  aggregate(damg~EVTYPE, data=data, FUN = sum)
eco = eco[order(eco$damg,decreasing = T), ]
head(eco ,10)
##                EVTYPE         damg
## 170             FLOOD 150319678257
## 411 HURRICANE/TYPHOON  71913712800
## 834           TORNADO  57340614060
## 670       STORM SURGE  43323541000
## 244              HAIL  18752904943
## 153       FLASH FLOOD  17562129167
## 95            DROUGHT  15018672000
## 402         HURRICANE  14610229010
## 590       RIVER FLOOD  10148404500
## 427         ICE STORM   8967041360
barplot(eco$damg[1:10], names.arg = c(eco$EVTYPE[1:10]), col = 'steelblue',
        main='10 Most economically damaging events', las=2, cex.names = .6)

Results

The 10 most damaging events wrt population health were as follows:

Tornado, Excessive Heat, TSTM Wind, Flood, Lightning, Heat, Flash Flood, Ice Storm, Thunderstorm wind, and winter storm.

The 10 most damaging events wrt economic impact were as follows:

Flood, Typhoon, Tornado, Storm Surge, Hail, Flash Flood, Drought, Hurricane, River Flood and Ice storm.

Overall, tornado, flood, flash flood and ice storm are common to both these lists, and hence, can be said to be the most devastating.