Business Applications for California (BUSAPPWNSACA)
- The core business applications series that corresponds to a subset of all EIN applications. BA includes all applications for an EIN, except for applications for tax liens, estates, trusts, or certain financial filings, applications with no state-county geocodes, applications from certain agricultural, public entities, and applications in certain industries (e.g. private households, civic and social organizations).
symbol <-fredr_series_observations(series_id = "BUSAPPWNSACA",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
755
|
2020-06-20
|
8330
|
756
|
2020-06-27
|
9250
|
757
|
2020-07-04
|
9930
|
758
|
2020-07-11
|
10340
|
759
|
2020-07-18
|
11540
|
760
|
2020-07-25
|
10650
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Weekly",
y = "Count",
title = "Business Applications for California",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue1",size=.8) +
labs(
x = "",
y = "Count",
title = "Business Applications for California _ Short Term Trend",
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}")
) +
theme_economist()

Business Applications from Corporations for California (CBUSAPPWNSACA)
- Business Applications from Corporations (CBA): A subset of High-Propensity Business Applications (HBA) that contains all applications that come from a corporation or a personal service corporation.
symbol <-fredr_series_observations(series_id = "CBUSAPPWNSACA",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
755
|
2020-06-20
|
2290
|
756
|
2020-06-27
|
2240
|
757
|
2020-07-04
|
2380
|
758
|
2020-07-11
|
2350
|
759
|
2020-07-18
|
2510
|
760
|
2020-07-25
|
2710
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Weekly",
y = "Count",
title = "Corporate Business Applications for California",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "",
y = "Count",
title = "Corporate Business Applications for California _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego") +
theme_economist()
### Business Applications for the United States (BUSAPPWNSAUS)
symbol <-fredr_series_observations(series_id = "BUSAPPWNSAUS",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
755
|
2020-06-20
|
87950
|
756
|
2020-06-27
|
102790
|
757
|
2020-07-04
|
113210
|
758
|
2020-07-11
|
112090
|
759
|
2020-07-18
|
122760
|
760
|
2020-07-25
|
116460
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Weekly",
y = "Count",
title = "Business Applications for United States",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "",
y = "Count",
title = "Business Applications for United states _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego") +
theme_economist()

Business Applications for Oregon (BBUSAPPWNSAOR)
symbol <-fredr_series_observations(series_id = "BUSAPPWNSAOR",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
755
|
2020-06-20
|
740
|
756
|
2020-06-27
|
800
|
757
|
2020-07-04
|
770
|
758
|
2020-07-11
|
690
|
759
|
2020-07-18
|
810
|
760
|
2020-07-25
|
870
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Weekly",
y = "Count",
title = "Business Applications for OREGON",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "",
y = "Count",
title = "Business Applications for OREGON _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego") +
theme_economist()

Business Applications for New York (BUSAPPWNSANY)
symbol <-fredr_series_observations(series_id = "BUSAPPWNSANY",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
755
|
2020-06-20
|
4960
|
756
|
2020-06-27
|
5140
|
757
|
2020-07-04
|
5750
|
758
|
2020-07-11
|
5690
|
759
|
2020-07-18
|
6400
|
760
|
2020-07-25
|
6730
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Weekly",
y = "Count",
title = "Business Applications for New York State",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "",
y = "Count",
title = "Business Applications for New York State _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego") +
theme_economist()
### Business Applications for Arizona (BUSAPPWNSAAZ)
symbol <-fredr_series_observations(series_id = "BUSAPPWNSAAZ",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
755
|
2020-06-20
|
1760
|
756
|
2020-06-27
|
2070
|
757
|
2020-07-04
|
2230
|
758
|
2020-07-11
|
1930
|
759
|
2020-07-18
|
2400
|
760
|
2020-07-25
|
2220
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Weekly",
y = "Count",
title = "Business Applications for ARIZONA",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "",
y = "Count",
title = "Business Applications for ARIZONA _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego") +
theme_economist()

Business Applications for TEXAS (BUSAPPWNSATX)
symbol <-fredr_series_observations(series_id = "BUSAPPWNSATX",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
755
|
2020-06-20
|
8370
|
756
|
2020-06-27
|
8620
|
757
|
2020-07-04
|
10190
|
758
|
2020-07-11
|
10730
|
759
|
2020-07-18
|
11780
|
760
|
2020-07-25
|
10610
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Weekly",
y = "Count",
title = "Business Applications for TEXAS",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "",
y = "Count",
title = "Business Applications for TEXAS _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego") +
theme_economist()

Business Applications for FLORIDA (BUSAPPWNSAFL)
symbol <-fredr_series_observations(series_id = "BUSAPPWNSAFL",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
755
|
2020-06-20
|
10720
|
756
|
2020-06-27
|
11910
|
757
|
2020-07-04
|
12830
|
758
|
2020-07-11
|
11190
|
759
|
2020-07-18
|
12740
|
760
|
2020-07-25
|
14310
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Weekly",
y = "Count",
title = "Business Applications for FLORIDA",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "",
y = "Count",
title = "Business Applications for FLORIDA _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego") +
theme_economist()

Business Applications for OKLAHOMA (BUSAPPWNSAOK)
symbol <-fredr_series_observations(series_id = "BUSAPPWNSAOK",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
755
|
2020-06-20
|
880
|
756
|
2020-06-27
|
890
|
757
|
2020-07-04
|
1040
|
758
|
2020-07-11
|
950
|
759
|
2020-07-18
|
1000
|
760
|
2020-07-25
|
970
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Weekly",
y = "Count",
title = "Business Applications for OKLAHOMA",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "",
y = "Count",
title = "Business Applications for OKLAHOMA _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego") +
theme_economist()
