Interactive Data Visualization

Row

Car Failure Analysis

Failure

Car Failures in US

1624

Labor Cost

New York

31

California

200

Texas

293

Arizona

61

Row

Failures By State

Top States

FM Vs Mileage

Row

Scatter Plot of Month Vs Mileage

```

Map

Map

Data Table

Pivot Table

Summary

Column

Maximum Failure

23

Average Failure

9.41

Average Labor cost

242.92

Average Mileage at Failure

20578.67

Column

Report

  • This is a report on 1624 car failures.

  • The average labor cost was 242.9180111.

  • The average material cost was 179.3948276.

This report was generated on August 22, 2020.

About Report

Created by: Iftekhairul Islam

---
title: "Ifte's First Dashboard"
output: 
  flexdashboard::flex_dashboard:
    orientation: rows
    vertical_layout: fill
    social: [ "twitter", "facebook", "menu"]
    source_code: embed
---

```{r setup, include=FALSE}
library(flexdashboard)
library(knitr)
library(DT)
library(rpivotTable)
library(ggplot2)
library(plotly)
library(dplyr)
library(openintro)
library(highcharter)
library(ggvis)
```


```{r}
data <- read.csv("C:/Users/Win1OPro/Downloads/VehicleFailure.csv")
```

```{r}
mycolors <- c("blue", "#FFC125", "darkgreen", "darkorange")
```

Interactive Data Visualization
=====================================

Row
-------------------------------------

### Car Failure Analysis

```{r}
valueBox(paste("Failure"),
         color = "warning")
```

### Car Failures in US

```{r}
valueBox(length(data$State),
         icon = "fa-car")
```

### **Labor Cost**

```{r}
gauge(round(mean(data$lc),
            digits = 2),
            min = 0,
            max = 350,
            gaugeSectors(success = c(0, 150),
                         warning = c(150, 220),
                         danger = c(220, 350),
                         colors = c("red", "yellow", "red")))
```

### New York

```{r}
valueBox(sum(data$State == "NY"),
         icon = 'fa-building')
```

### California

```{r}
valueBox(sum(data$State == "CA"),
         icon = 'fa-building')
```

### Texas

```{r}
valueBox(sum(data$State == "TX"),
         icon = 'fa-building')
```

### Arizona

```{r}
valueBox(sum(data$State == "AZ"),
         icon = 'fa-building')
```

Row
-------------------------------

### Failures By State

```{r}
p1 <- data %>%
         group_by(State) %>%
         summarise(count = n()) %>%
         filter(count>15)%>%
         plot_ly(x = ~State,
                 y = ~count,
                 color = "blue",
                 type = 'bar') %>%
layout(xaxis = list(title = "Failures By State"),
yaxis = list(title = 'Count'))
p1
```

### Top States

```{r}
p2 <- data %>%
         group_by(State) %>%
         summarise(count = n()) %>%
         filter(count>50) %>%
         plot_ly(labels = ~State,
                 values = ~count,
                 marker = list(colors = mycolors)) %>%
         add_pie(hole = 0.5) %>%
         layout(xaxis = list(zeroline = F,
                             showline = F,
                             showticklabels = F,
                             showgrid = F),
                yaxis = list(zeroline = F,
                             showline = F,
                             showticklabels=F,
                             showgrid=F))
p2
```

### FM Vs Mileage

```{r}
p3 <- plot_ly(data,
              x = ~fm,
              y = ~Mileage,
              text = paste("FM:", data$fm,
                           "Mileage:",
                           data$Mileage),
              type = "bar") %>%
         layout(xaxis = list(title="FM"),
                yaxis = list(title = "Failure Mileage"))
p3
```

Row
------------------------------------
### Scatter Plot of Month Vs Mileage

```{r}
p4 <- plot_ly(data, x=~fm) %>%
         add_markers(y = ~Mileage,
                     text = ~paste("Mileage: ", Mileage),
                     showlegend = F) %>%
         add_lines(y = ~fitted(loess(Mileage ~ fm)),
                   name = "Loess Smoother",
                   color = I("#FFC125"),
                   showlegend = T,
                   line = list(width=5)) %>%
         layout(xaxis = list(title = "Month"),
                yaxis = list(title = "Mileage"))
p4
```


```

Map
========================================

### Map

```{r}
car <- data %>%
         group_by(State) %>%
         summarize(total = n())
car$State <- abbr2state(car$State)

highchart() %>%
         hc_title(text = "Car Failures in US") %>%
         hc_subtitle(text = "Source: Vehiclefailure.csv") %>%
         hc_add_series_map(usgeojson, car,
                           name = "State",
                           value = "total",
                           joinBy = c("woename", "State")) %>%
         hc_mapNavigation(enabled = T)
```

Data Table
========================================

```{r}
datatable(data,
          caption = "Failure Data",
          rownames = T,
          filter = "top",
          options = list(pageLength = 25))
```

Pivot Table
=========================================

```{r}
rpivotTable(data,
            aggregatorName = "Count",
            cols= "Mileage",
            rows = "State",
            rendererName = "Heatmap")
```

Summary {data-orientation=columns} 
===========================================

Column 
-----------------------------------

### Maximum Failure

```{r}
valueBox(max(data$fm),
         icon = "fa-car" )
```



### Average Failure 

```{r}
valueBox(round(mean(data$fm),digits=2),
         icon = "fa-car" )
```

### Average Labor cost

```{r}
valueBox(round(mean(data$lc),
               digits = 2),
         icon = "fa-dollar-sign")
```

### Average Mileage at Failure

```{r}
valueBox(round(mean(data$Mileage), digits = 2),
         icon = "fa-chart-line")
```

Column
---------------------------

Report

* This is a report on `r length(data$fm)` car failures.

* The average labor cost was `r mean(data$lc)`.

* The average material cost was `r mean(data$mc)`.

This report was generated on `r format(Sys.Date(), format = "%B %d, %Y")`.

About Report
========================================

Created by: Iftekhairul Islam