Updated: 2020-08-30 07:57:56 PDT

Original version created 2020-05-03. See below for revision history

Intro


The spread of the SARS-COV-19 viral disease defies description in terms of a single statistic. To be informed about personal risk we need to know more than how many people have been sick at a national level or even state level, we need information about how many people are currently sick in our communicty and how the number of sick people is changing is changing at a state and even county level. It can be hard to find this information.

This analysis seeks to fill partially that gap. It includes:
1. Several national pictures of disease trends to enable a “large pattern” view of how disease has and is evolving a on country-wide scale.
2. A per capita analysis of disease spread.
3. A more granular analysis of regions, states, and counties to shed light on local disease pattern evolution.
4. Details of the time evolution of growth statistics.


This computed document is constantly evolving, so please “refresh” for the latest updates. If you have suggestions or comments please reach out on twitter @WinstonOnData or facebook.

National Maps

There are plenty of online maps. I’ve deprecated a few of the ones I’ve computer since they are no longer relevant to the analysis of disease trends. They are published:
- here.

Cases and Deaths per Capita

This chart reveals a more interesting pattern of disease spread. I haven’t found one of these online.
Groups of cities (e.g. Chicago, Indianapolis, and Detroit) and paths between connected communities are clearly visible.

Reproduction and Control

\(R_e\) is a measure of disease growth. For recovery to begin disease growth must turn from positive to negative (i.e. from \(log_2\)(\(R_e\)) > 0 to \(log_2\)(\(R_e\)) < 0).

After achieving negative growth growth, the next phase of recovery is maintaining consistently lower levels of disease. Control can be measured as a ratio of current disease levels to maximum disease levels. If disease levels are currently at a maximum, control is 0 %.

\[ control = 100 \times (1 - \frac{active \space disease}{max(active \space disease)} ) \% \]

State Level Data


County Level Data


state R_e cases daily_cases
South Dakota 1.53 12498 298
Iowa 1.40 63230 1228
North Dakota 1.31 11311 289
Montana 1.23 7156 142
Alabama 1.22 123451 1418
Kansas 1.22 42023 701
Connecticut 1.20 52428 153
West Virginia 1.18 9900 128
Michigan 1.16 111802 920
Nebraska 1.15 33482 292
Minnesota 1.14 73828 799
New Hampshire 1.14 7234 22
Rhode Island 1.13 19881 112
Missouri 1.12 73822 1188
Wisconsin 1.12 75318 832
Arkansas 1.11 59301 642
Indiana 1.11 94534 1073
Kentucky 1.11 49757 742
North Carolina 1.11 165151 1742
Ohio 1.11 121080 1100
Vermont 1.11 1587 8
Maine 1.08 4477 26
South Carolina 1.08 116835 874
New Mexico 1.06 25170 147
Oklahoma 1.06 57085 728
Utah 1.06 51446 393
Virginia 1.06 93628 733
Tennessee 1.05 149013 1509
Colorado 1.04 57372 344
Delaware 1.03 16944 63
Idaho 1.03 31910 320
Illinois 1.03 232430 2016
Massachusetts 1.03 126428 374
Georgia 1.02 249350 2490
New York 1.02 438072 628
Pennsylvania 1.01 137424 651
Maryland 1.00 107723 539
Washington 1.00 76869 538
Oregon 0.99 26301 236
Mississippi 0.98 82201 749
Louisiana 0.96 146594 658
New Jersey 0.96 192720 290
Texas 0.95 634503 5197
Wyoming 0.95 3788 38
California 0.93 703891 5429
Nevada 0.92 68506 506
Florida 0.90 618131 3185
Arizona 0.89 201312 532

National Statistics

Total & Active Cases, and Deaths

These trend charts show the national disease statistics. The raw data are shown. since these showdaily trends that are systematically related ot the M-F work week, possibly due to reporting delays, numbers showsn

Mortality Trend

\(R_e\) Trend

National effective reproduction rate

Distribution of \(R_e\) Values

Howver, there is a wiude dirstubtion of \(R_e\) across regions and counties. The distributions in the graph below looks roughly symmetrical because the x-scale is logarithmic.

Distribution of Baseline Control

Similarly for disease control, when take at the county level, there is a wide distribution of Baseline Control.

Regional Snapshots

Regional snapshots reveal the highly nuanced behavior of disease spread. Each snaphot includes multiple states and selected counties.

How to read the charts

There are four components:
1. State Maps show the number of active cases and with the Reproduction rate encoded as color.
2. State Graphs State-wide trend graphs.
3. Severity Ranking These is a table of counties where the highest number of new cases are expected. Severity is a compounded function \(f(R, cases(t))\). This is useful for finding new (often unexpected) “hot spots.” Added per capita rates.
4. County Graphs encode the R-value in the active number of cases. R is the Reproduction Rate.

(NOTE: R < 1 implies a shrinking number of active cases, R > 1 implies a growing number of active cases. For R = 1, active cases are stable. ).


Washington and Oregon

WA
county ST case rank severity R_e cases cases/100k daily cases
Whitman WA 21 1 2.1 416 860 50
King WA 1 2 1.0 19496 900 136
Spokane WA 5 3 1.1 5250 1050 40
Benton WA 6 4 1.2 4293 2210 25
Adams WA 18 5 1.3 621 3190 13
Snohomish WA 4 6 1.0 7023 890 38
Yakima WA 2 7 1.0 11636 4670 29
Grant WA 9 8 0.9 2322 2450 33
Clark WA 8 9 1.0 2545 550 22
Pierce WA 3 10 0.8 7446 870 45
Franklin WA 7 14 0.8 4049 4470 14
OR
county ST case rank severity R_e cases cases/100k daily cases
Coos OR 24 1 1.6 111 180 2
Multnomah OR 1 2 1.0 5947 740 48
Malheur OR 6 3 1.1 1139 3740 20
Marion OR 2 4 1.0 3752 1120 42
Washington OR 3 5 1.0 3729 640 31
Lane OR 9 6 1.3 687 190 6
Jackson OR 7 7 1.0 799 370 19
Clackamas OR 5 8 1.0 1923 470 19
Umatilla OR 4 9 1.0 2640 3430 15
Deschutes OR 8 13 0.9 688 380 3
## Warning: Removed 1 rows containing missing values (geom_col).

California

CA
county ST case rank severity R_e cases cases/100k daily cases
Los Angeles CA 1 1 1.0 239723 2370 1372
Orange CA 3 2 1.0 48160 1520 362
San Diego CA 5 3 1.0 38111 1150 267
Stanislaus CA 12 4 1.1 14395 2670 169
Sacramento CA 9 5 1.0 17380 1150 250
San Joaquin CA 10 6 1.0 17163 2340 170
San Bernardino CA 4 7 0.8 47309 2220 391
Alameda CA 8 12 0.9 18011 1100 198
Fresno CA 7 13 0.8 24727 2530 264
Riverside CA 2 14 0.7 52256 2190 302
Kern CA 6 15 0.9 29170 3300 172

Four Corners

AZ
county ST case rank severity R_e cases cases/100k daily cases
Maricopa AZ 1 1 0.9 133337 3130 265
Navajo AZ 5 2 1.4 5578 5130 14
Pinal AZ 4 3 1.0 9512 2270 59
Pima AZ 2 4 0.8 21204 2080 105
Yuma AZ 3 5 1.0 12196 5870 25
Mohave AZ 6 6 1.0 3600 1750 18
Coconino AZ 8 7 1.1 3300 2350 10
Apache AZ 7 9 0.9 3338 4670 7
Santa Cruz AZ 9 13 0.7 2753 5910 3
CO
county ST case rank severity R_e cases cases/100k daily cases
Denver CO 1 1 1.0 11194 1610 51
Adams CO 3 2 1.0 7525 1510 54
Pueblo CO 11 3 1.3 861 520 11
Arapahoe CO 2 4 1.0 8210 1290 49
Jefferson CO 5 5 1.1 4759 830 30
Larimer CO 9 6 1.1 1922 570 21
El Paso CO 4 7 1.0 6022 880 39
Weld CO 6 9 1.1 4039 1370 18
Douglas CO 8 10 1.0 2099 640 22
Boulder CO 7 12 1.0 2293 710 12
UT
county ST case rank severity R_e cases cases/100k daily cases
Salt Lake UT 1 1 1.1 23772 2120 162
Utah UT 2 2 1.0 10757 1820 110
Davis UT 3 3 1.2 3826 1120 39
Millard UT 14 4 1.8 147 1150 2
Iron UT 10 5 1.4 635 1280 6
Weber UT 4 6 1.1 3241 1310 24
Sevier UT 18 7 1.6 93 440 1
Tooele UT 8 8 1.2 678 1040 6
Cache UT 6 9 1.1 2097 1710 10
Washington UT 5 10 0.9 2783 1730 12
Summit UT 7 13 0.7 845 2090 6
San Juan UT 9 18 0.7 664 4350 0
NM
county ST case rank severity R_e cases cases/100k daily cases
Luna NM 15 1 1.8 311 1280 8
Bernalillo NM 1 2 1.0 5779 850 35
Doña Ana NM 4 3 1.2 2815 1310 16
Eddy NM 13 4 1.2 483 840 11
Sandoval NM 5 5 1.2 1243 880 8
Chaves NM 10 6 1.1 690 1050 14
Hidalgo NM 20 7 1.6 97 2220 1
San Juan NM 3 8 1.1 3184 2500 7
Lea NM 7 9 0.9 1116 1590 13
McKinley NM 2 10 1.1 4186 5750 6
Santa Fe NM 8 11 0.9 821 550 9
Otero NM 6 18 0.9 1120 1700 1
Cibola NM 9 20 0.6 727 2690 1

Mid-Atlantic

NJ
county ST case rank severity R_e cases cases/100k daily cases
Ocean NJ 7 1 1.1 11189 1890 33
Essex NJ 2 2 1.0 20504 2580 27
Camden NJ 9 3 1.0 9161 1810 25
Monmouth NJ 8 4 1.1 10779 1730 18
Bergen NJ 1 5 1.0 21746 2340 25
Middlesex NJ 4 6 0.9 18612 2250 23
Sussex NJ 17 7 1.3 1427 1000 4
Union NJ 6 10 0.9 17233 3120 14
Passaic NJ 5 11 0.8 18447 3660 23
Hudson NJ 3 16 0.8 20278 3030 13
PA
county ST case rank severity R_e cases cases/100k daily cases
Adams PA 27 1 1.7 611 600 9
Columbia PA 28 2 1.6 587 890 13
Lackawanna PA 14 3 1.5 2041 970 10
Philadelphia PA 1 4 1.0 33583 2130 105
Lebanon PA 17 5 1.4 1710 1230 7
Allegheny PA 4 6 0.9 10199 830 55
Montgomery PA 2 7 1.0 10953 1330 42
Berks PA 7 8 1.0 6014 1440 34
Lancaster PA 6 11 1.0 6657 1240 35
Bucks PA 5 12 1.0 7730 1230 26
Chester PA 8 15 1.0 5611 1080 23
Delaware PA 3 17 0.9 10308 1830 39
Lehigh PA 9 21 1.1 5174 1430 9
MD
county ST case rank severity R_e cases cases/100k daily cases
Baltimore MD 3 1 1.0 15282 1850 103
Prince George’s MD 1 2 1.0 26426 2920 101
Anne Arundel MD 5 3 1.1 8254 1450 50
Montgomery MD 2 4 1.0 19906 1910 67
Baltimore city MD 4 5 0.9 14410 2340 70
Wicomico MD 11 6 1.2 1533 1500 14
Howard MD 6 7 1.0 4356 1380 22
Harford MD 8 8 1.0 2436 970 22
Charles MD 9 9 1.0 2366 1500 16
Frederick MD 7 11 1.0 3462 1390 19
VA
county ST case rank severity R_e cases cases/100k daily cases
Nottoway VA 63 1 2.0 195 1260 2
Goochland VA 57 2 1.7 218 970 6
Fairfax VA 1 3 1.0 18176 1590 96
Montgomery VA 34 4 1.4 441 450 13
Prince William VA 2 5 1.0 10720 2350 67
Botetourt VA 53 6 1.6 246 740 3
Loudoun VA 4 7 1.1 5907 1530 35
Henrico VA 6 8 1.1 4545 1400 38
Newport News city VA 9 16 1.1 2250 1250 23
Virginia Beach city VA 3 17 1.0 5952 1320 42
Norfolk city VA 7 19 1.0 4346 1770 29
Arlington VA 8 20 1.0 3510 1510 23
Chesterfield VA 5 22 1.0 5008 1480 29
WV
county ST case rank severity R_e cases cases/100k daily cases
Monroe WV 24 1 1.8 122 910 15
Fayette WV 14 2 1.8 234 530 10
Mineral WV 19 3 1.9 142 520 2
Greenbrier WV 28 4 1.8 104 290 1
Kanawha WV 1 5 1.2 1355 730 26
Wayne WV 13 6 1.6 243 600 3
Jefferson WV 6 7 1.5 348 620 5
Berkeley WV 3 12 1.1 791 700 5
Cabell WV 4 13 1.0 516 540 5
Monongalia WV 2 14 0.9 1094 1040 8
Wood WV 8 16 1.1 304 360 2
Raleigh WV 7 17 1.0 343 450 3
Logan WV 5 20 0.7 478 1410 7
Mercer WV 9 22 0.8 294 490 4
DE
county ST case rank severity R_e cases cases/100k daily cases
New Castle DE 1 1 1.1 8058 1450 43
Sussex DE 2 2 1.1 6292 2870 11
Kent DE 3 3 0.9 2594 1480 8

Deep South

AL
county ST case rank severity R_e cases cases/100k daily cases
Lee AL 8 1 1.9 4260 2670 191
Tuscaloosa AL 5 2 1.4 5734 2780 126
Jefferson AL 1 3 1.3 16020 2430 177
Shelby AL 7 4 1.5 4324 2050 70
Madison AL 4 5 1.2 6334 1770 49
Baldwin AL 6 6 1.2 4394 2110 45
Chilton AL 30 7 1.4 1122 2550 22
Mobile AL 2 10 1.0 12122 2920 78
Montgomery AL 3 12 1.1 7866 3470 47
Marshall AL 9 50 0.8 3614 3800 16
MS
county ST case rank severity R_e cases cases/100k daily cases
Lafayette MS 16 1 1.5 1354 2530 36
Alcorn MS 46 2 1.4 622 1670 18
Harrison MS 3 3 1.0 3256 1610 38
DeSoto MS 2 4 1.0 4559 2590 48
Oktibbeha MS 15 5 1.2 1401 2830 20
Jefferson Davis MS 69 6 1.4 304 2640 6
Bolivar MS 12 7 1.1 1464 4490 20
Jackson MS 4 9 1.0 2968 2090 36
Madison MS 5 10 1.0 2915 2820 27
Rankin MS 6 11 1.0 2836 1880 31
Hinds MS 1 12 0.9 6478 2680 39
Forrest MS 9 14 1.1 2122 2810 17
Jones MS 8 17 1.1 2142 3130 13
Lee MS 7 21 0.8 2150 2530 27
LA
county ST case rank severity R_e cases cases/100k daily cases
East Feliciana LA 30 1 1.6 1085 5560 60
Madison LA 42 2 1.7 791 6900 22
Cameron LA 63 3 1.6 210 3060 5
St. Helena LA 57 4 1.3 377 3620 10
Jackson LA 52 5 1.4 450 2830 6
Bossier LA 18 6 1.2 2690 2130 21
Caddo LA 5 7 1.1 7330 2950 33
Jefferson LA 1 11 0.9 16341 3750 39
Orleans LA 3 13 1.0 11338 2910 26
East Baton Rouge LA 2 15 0.8 13612 3070 47
St. Tammany LA 7 22 0.8 5962 2370 24
Ouachita LA 8 33 0.8 5452 3490 18
Lafayette LA 4 34 0.8 8230 3430 15
Tangipahoa LA 9 53 0.6 4000 3070 12
Calcasieu LA 6 55 0.5 7315 3650 9

FL and GA

FL
county ST case rank severity R_e cases cases/100k daily cases
Martin FL 26 1 1.6 4364 2770 55
Miami-Dade FL 1 2 0.8 156248 5750 690
Palm Beach FL 3 3 1.0 41691 2880 199
Hillsborough FL 4 4 1.0 36762 2670 187
Broward FL 2 5 0.8 70806 3710 281
Lee FL 8 6 1.1 18545 2580 96
Duval FL 6 7 1.0 26280 2840 126
Orange FL 5 8 0.9 35605 2690 162
Polk FL 9 12 0.9 16800 2510 97
Pinellas FL 7 24 0.8 19833 2070 72
GA
county ST case rank severity R_e cases cases/100k daily cases
Bulloch GA 31 1 1.8 1734 2320 49
Baldwin GA 33 2 1.4 1650 3640 54
Hall GA 5 3 1.2 7545 3850 95
Taylor GA 151 4 1.8 142 1730 5
Chattooga GA 81 5 1.5 543 2190 21
Chattahoochee GA 46 6 1.4 1114 10350 33
Cobb GA 3 7 1.0 16817 2260 154
Bibb GA 9 11 1.0 5558 3620 121
Gwinnett GA 2 12 0.9 24174 2680 183
Fulton GA 1 13 0.9 24780 2420 182
Clayton GA 7 22 1.0 6454 2320 71
Chatham GA 6 25 1.0 6984 2430 54
DeKalb GA 4 29 0.8 16472 2220 90
Richmond GA 8 40 0.8 5971 2960 54

Texas & Oklahoma

TX
county ST case rank severity R_e cases cases/100k daily cases
Brazos TX 22 1 1.8 4796 2190 92
Callahan TX 191 2 2.3 81 590 5
Rusk TX 80 3 1.8 749 1400 53
Houston TX 94 4 1.8 570 2480 38
Harris TX 1 5 1.1 104159 2260 1010
Young TX 135 6 2.0 236 1300 6
Anderson TX 38 7 1.9 2494 4310 10
Hidalgo TX 5 8 1.1 27638 3250 488
Cameron TX 7 14 1.1 21074 5000 268
Bexar TX 3 18 1.1 46252 2400 186
Tarrant TX 4 27 0.8 41298 2040 235
El Paso TX 8 30 0.9 20202 2410 128
Nueces TX 9 38 0.8 18753 5200 107
Dallas TX 2 42 0.5 73771 2850 351
Travis TX 6 54 0.7 26447 2200 105
OK
county ST case rank severity R_e cases cases/100k daily cases
Muskogee OK 13 1 1.8 812 1180 34
Payne OK 9 2 1.4 1070 1310 31
Tulsa OK 2 3 1.0 13099 2040 135
Garfield OK 11 4 1.3 923 1480 32
Oklahoma OK 1 5 1.0 13265 1700 123
Cleveland OK 3 6 1.1 3792 1370 47
Texas OK 7 7 1.4 1136 5380 7
Canadian OK 4 9 1.2 1511 1110 17
Comanche OK 6 12 1.0 1262 1030 29
Rogers OK 5 14 1.1 1290 1420 14
Wagoner OK 8 22 1.0 1127 1450 13

Michigan & Wisconsin

MI
county ST case rank severity R_e cases cases/100k daily cases
Luce MI 44 1 2.4 154 2420 24
Muskegon MI 10 2 1.5 2027 1170 75
Isabella MI 28 3 1.6 460 650 30
Wayne MI 1 4 1.1 31113 1770 179
Branch MI 16 5 1.6 1274 2920 10
Calhoun MI 18 6 1.5 964 720 15
Kent MI 4 7 1.2 8404 1310 60
Macomb MI 3 8 1.1 12928 1490 114
Oakland MI 2 9 1.0 17924 1430 118
Ottawa MI 9 12 1.3 2094 740 16
Jackson MI 7 13 1.3 2541 1600 8
Saginaw MI 8 17 1.0 2508 1300 26
Washtenaw MI 6 18 1.1 3395 930 19
Genesee MI 5 20 1.0 3957 970 17
WI
county ST case rank severity R_e cases cases/100k daily cases
Racine WI 5 1 1.8 4377 2240 104
Marquette WI 57 2 2.0 88 580 1
Outagamie WI 8 3 1.3 1773 960 40
La Crosse WI 12 4 1.4 1144 970 20
Winnebago WI 11 5 1.3 1476 870 21
Portage WI 24 6 1.4 577 820 13
Dane WI 3 7 1.2 5375 1010 51
Brown WI 4 8 1.1 5334 2050 71
Milwaukee WI 1 9 1.0 23957 2510 130
Rock WI 7 11 1.3 1808 1120 19
Waukesha WI 2 18 0.9 5524 1380 51
Walworth WI 9 29 1.0 1692 1640 15
Kenosha WI 6 40 0.9 2943 1750 10

Minnesota, North Dakota, and South Dakota

MN
county ST case rank severity R_e cases cases/100k daily cases
Winona MN 27 1 1.9 372 730 15
Lyon MN 19 2 1.9 480 1860 8
Pennington MN 60 3 2.1 83 590 1
Blue Earth MN 13 4 1.5 1173 1770 24
Douglas MN 43 5 2.0 156 420 2
Hennepin MN 1 6 1.1 22696 1840 187
Dakota MN 3 7 1.2 5738 1370 86
Washington MN 6 8 1.2 2903 1150 53
Ramsey MN 2 10 1.1 9044 1670 82
Anoka MN 4 12 1.1 4620 1330 51
Stearns MN 5 15 1.2 3231 2060 25
Olmsted MN 7 21 1.2 1994 1300 15
Scott MN 8 22 1.1 1960 1370 21
Nobles MN 9 37 1.1 1854 8490 5
SD
county ST case rank severity R_e cases cases/100k daily cases
Clay SD 8 1 2.3 265 1900 24
Lawrence SD 12 2 2.0 201 800 21
Pennington SD 2 3 1.8 1295 1180 52
Meade SD 7 4 1.8 272 990 25
Brookings SD 9 5 1.8 251 730 15
Davison SD 13 6 1.8 128 640 4
Codington SD 6 7 1.5 273 980 13
Brown SD 5 8 1.4 630 1620 17
Minnehaha SD 1 9 1.2 5132 2750 46
Lincoln SD 3 14 1.2 858 1560 14
Beadle SD 4 15 1.3 632 3440 4
ND
county ST case rank severity R_e cases cases/100k daily cases
Grand Forks ND 3 1 1.5 1396 1980 76
Barnes ND 18 2 2.0 90 830 8
Williams ND 7 3 1.8 398 1170 14
Stutsman ND 10 4 1.9 169 800 6
Cass ND 1 5 1.3 3449 1980 33
Stark ND 4 6 1.3 667 2160 28
Burleigh ND 2 7 1.1 1954 2080 47
Morton ND 5 8 1.2 617 2020 16
Ward ND 6 11 1.1 492 710 18
Mountrail ND 9 14 1.3 170 1670 2
Benson ND 8 16 0.9 223 3240 4

Connecticut, Massachusetts, and Rhode Island

CT
county ST case rank severity R_e cases cases/100k daily cases
Hartford CT 3 1 1.3 13404 1500 54
Litchfield CT 4 2 1.5 1686 920 6
Tolland CT 7 3 1.5 1123 740 7
Fairfield CT 1 4 1.1 18800 1990 47
New London CT 5 5 1.4 1550 580 7
New Haven CT 2 6 1.1 13630 1590 26
Middlesex CT 6 7 1.2 1446 890 3
Windham CT 8 8 1.1 790 680 3
MA
county ST case rank severity R_e cases cases/100k daily cases
Middlesex MA 1 1 1.1 27541 1730 77
Suffolk MA 2 2 1.0 23359 2950 98
Essex MA 3 3 1.0 18813 2410 61
Bristol MA 6 4 1.1 9728 1740 26
Berkshire MA 11 5 1.4 699 550 4
Barnstable MA 9 6 1.4 1840 860 4
Plymouth MA 7 7 1.0 9589 1870 23
Norfolk MA 5 8 1.0 10994 1570 23
Worcester MA 4 9 0.9 14144 1720 30
Hampden MA 8 10 1.0 7902 1680 18
RI
county ST case rank severity R_e cases cases/100k daily cases
Providence RI 1 1 1.1 16726 2640 87
Newport RI 4 2 1.6 436 520 4
Kent RI 2 3 1.3 1671 1020 12
Bristol RI 5 4 1.5 350 720 3
Washington RI 3 5 1.1 698 550 6

New York

NY
county ST case rank severity R_e cases cases/100k daily cases
Chautauqua NY 24 1 1.8 361 280 14
Sullivan NY 15 2 1.9 1513 2010 3
New York City NY 1 3 1.0 238366 2820 264
Madison NY 22 4 1.7 453 630 4
Erie NY 7 5 1.1 9752 1060 52
Nassau NY 3 6 1.1 44551 3280 51
Westchester NY 4 7 1.1 36890 3810 35
Suffolk NY 2 14 0.9 44721 3010 39
Dutchess NY 9 16 1.1 4842 1650 14
Orange NY 6 18 1.0 11424 3020 13
Rockland NY 5 19 1.0 14214 4390 15
Monroe NY 8 23 0.9 5422 730 18

Vermont, New Hampshire, and Maine

VT
county ST case rank severity R_e cases cases/100k daily cases
Rutland VT 4 1 1.7 111 190 1
Addison VT 6 2 1.8 80 220 1
Windsor VT 7 3 1.5 77 140 0
Bennington VT 5 4 1.3 100 280 1
Windham VT 3 5 1.0 123 290 1
Chittenden VT 1 6 0.9 785 480 2
Franklin VT 2 7 1.1 123 250 0
ME
county ST case rank severity R_e cases cases/100k daily cases
York ME 2 1 1.3 806 400 12
Androscoggin ME 3 2 1.2 606 560 3
Kennebec ME 5 3 1.1 187 150 1
Cumberland ME 1 4 0.9 2181 750 4
Penobscot ME 4 5 0.6 230 150 2
NH
county ST case rank severity R_e cases cases/100k daily cases
Rockingham NH 2 1 1.1 1800 590 7
Carroll NH 8 2 1.5 104 220 1
Cheshire NH 5 3 1.3 128 170 2
Hillsborough NH 1 4 1.0 4017 980 6
Strafford NH 4 5 1.3 382 300 2
Belknap NH 6 6 1.5 124 200 0
Grafton NH 7 7 1.4 113 130 1
Merrimack NH 3 8 0.9 500 330 2

Carolinas

SC
county ST case rank severity R_e cases cases/100k daily cases
Richland SC 3 1 1.2 10518 2580 107
Charleston SC 1 2 1.2 13776 3490 86
Greenville SC 2 3 1.2 12024 2410 74
Greenwood SC 17 4 1.2 1810 2580 25
Berkeley SC 7 5 1.2 4754 2270 28
York SC 10 6 1.1 4187 1620 34
Anderson SC 12 7 1.1 3104 1580 41
Horry SC 4 9 1.1 9307 2900 36
Spartanburg SC 6 10 1.0 4943 1640 43
Lexington SC 5 14 1.0 5649 1970 34
Beaufort SC 8 16 1.0 4711 2580 28
Florence SC 9 20 0.9 4204 3030 33
NC
county ST case rank severity R_e cases cases/100k daily cases
Pitt NC 11 1 1.5 3322 1870 125
Swain NC 89 2 2.2 128 900 1
Wake NC 2 3 1.2 14918 1430 201
Mecklenburg NC 1 4 1.0 25252 2400 162
Perquimans NC 88 5 1.7 129 960 5
Robeson NC 10 6 1.3 3447 2580 44
Pamlico NC 90 7 1.6 107 840 4
Durham NC 3 10 1.2 6878 2240 42
Guilford NC 4 11 1.1 6730 1290 66
Forsyth NC 5 13 1.1 6089 1640 46
Cumberland NC 7 14 1.1 3999 1200 48
Johnston NC 9 15 1.1 3830 2000 33
Gaston NC 6 21 1.0 4028 1860 38
Union NC 8 38 0.9 3934 1740 38

North-Rockies

MT
county ST case rank severity R_e cases cases/100k daily cases
Rosebud MT 7 1 1.6 223 2410 19
Hill MT 17 2 1.7 82 500 5
Cascade MT 6 3 1.5 282 340 13
Flathead MT 4 4 1.3 582 590 19
Yellowstone MT 1 5 1.1 2000 1270 42
Lincoln MT 15 6 1.7 89 460 1
Glacier MT 10 7 1.3 138 1010 5
Gallatin MT 2 9 1.2 1076 1030 7
Big Horn MT 3 10 1.0 644 4810 10
Lake MT 8 11 1.4 200 670 1
Missoula MT 5 12 1.1 430 370 4
Lewis and Clark MT 9 13 0.7 196 290 1
WY
county ST case rank severity R_e cases cases/100k daily cases
Campbell WY 8 1 1.4 186 390 4
Uinta WY 5 2 1.5 292 1420 2
Sheridan WY 10 3 1.2 146 490 5
Teton WY 3 4 1.1 426 1850 3
Natrona WY 6 5 1.0 287 360 3
Fremont WY 1 6 0.9 604 1510 6
Laramie WY 2 7 1.0 567 580 4
Sweetwater WY 4 10 0.6 298 680 1
Park WY 9 11 0.5 161 550 1
Carbon WY 7 12 0.1 189 1220 0
ID
county ST case rank severity R_e cases cases/100k daily cases
Bonneville ID 4 1 1.1 1770 1570 34
Ada ID 1 2 0.9 11106 2490 80
Canyon ID 2 3 1.0 7118 3350 55
Fremont ID 26 4 1.5 113 870 2
Payette ID 7 5 1.1 658 2860 18
Bonner ID 21 6 1.4 221 520 4
Bingham ID 12 7 1.2 472 1040 10
Kootenai ID 3 8 1.1 2174 1420 16
Bannock ID 6 12 1.1 668 790 11
Twin Falls ID 5 13 1.1 1664 1990 11
Jerome ID 9 16 1.0 598 2550 6
Blaine ID 8 22 1.0 603 2740 1

Midwest

OH
county ST case rank severity R_e cases cases/100k daily cases
Montgomery OH 5 1 1.4 5508 1040 90
Butler OH 7 2 1.4 3844 1020 72
Meigs OH 79 3 1.7 120 520 7
Franklin OH 1 4 1.1 21456 1680 157
Hamilton OH 3 5 1.2 10988 1350 78
Cuyahoga OH 2 6 1.1 15523 1240 100
Wayne OH 31 7 1.4 735 630 16
Lucas OH 4 14 1.0 6347 1470 48
Summit OH 6 15 1.0 4383 810 44
Mahoning OH 9 32 1.0 2847 1230 13
Marion OH 8 53 1.0 3000 4590 3
IL
county ST case rank severity R_e cases cases/100k daily cases
McDonough IL 56 1 2.0 186 600 5
Cook IL 1 2 1.0 125233 2400 693
McLean IL 16 3 1.4 1467 850 77
Champaign IL 10 4 1.4 2356 1120 66
Piatt IL 81 5 2.0 76 460 1
Lake IL 2 6 1.1 14445 2050 96
Jasper IL 68 7 1.6 118 1230 6
Will IL 4 9 1.0 11416 1660 113
DuPage IL 3 10 1.0 14426 1550 109
McHenry IL 9 12 1.2 3862 1250 38
Madison IL 8 13 1.0 3951 1490 68
St. Clair IL 6 14 1.0 5769 2190 70
Kane IL 5 20 0.9 11185 2110 62
Winnebago IL 7 24 1.0 4195 1470 25
IN
county ST case rank severity R_e cases cases/100k daily cases
Delaware IN 23 1 1.6 1039 900 31
St. Joseph IN 4 2 1.3 5117 1900 128
Monroe IN 19 3 1.4 1066 730 30
Starke IN 68 4 1.8 206 900 3
Marion IN 1 5 1.1 18382 1950 131
Martin IN 79 6 1.6 103 1010 6
Hamilton IN 6 7 1.1 3838 1210 60
Allen IN 5 8 1.1 4941 1340 56
Vanderburgh IN 7 9 1.2 2520 1390 32
Lake IN 2 11 1.0 9084 1870 72
Elkhart IN 3 14 1.1 5640 2770 35
Hendricks IN 8 15 1.1 2310 1440 24
Johnson IN 9 21 1.1 2051 1350 15

Tennessee and Kentucky

TN
county ST case rank severity R_e cases cases/100k daily cases
Tipton TN 21 1 1.5 1434 2330 21
Trousdale TN 20 2 1.8 1607 16790 3
Shelby TN 1 3 1.0 27244 2910 180
Fentress TN 79 4 1.6 206 1140 11
White TN 54 5 1.4 546 2050 23
Blount TN 13 6 1.2 1984 1540 48
Houston TN 93 7 1.7 88 1080 3
Knox TN 5 11 1.0 6573 1440 84
Hamilton TN 3 16 1.0 7943 2220 84
Davidson TN 2 18 0.9 25842 3780 108
Rutherford TN 4 21 1.0 7773 2530 54
Sumner TN 7 29 1.0 4042 2250 32
Wilson TN 8 31 1.0 2786 2100 24
Williamson TN 6 32 1.0 4328 1980 35
Bradley TN 9 45 0.9 2464 2360 22
KY
county ST case rank severity R_e cases cases/100k daily cases
Todd KY 67 1 2.6 127 1030 20
Rowan KY 59 2 2.3 148 600 12
McCreary KY 83 3 1.8 91 520 5
Madison KY 7 4 1.4 955 1060 34
Warren KY 3 5 1.3 3274 2590 50
Fayette KY 2 6 1.1 5487 1720 92
Union KY 78 7 1.7 98 660 4
Jefferson KY 1 9 1.0 12136 1580 172
Hardin KY 8 27 1.0 911 840 13
Kenton KY 4 29 1.0 1706 1040 13
Daviess KY 6 31 1.0 977 980 12
Boone KY 5 32 1.0 1277 990 10
Shelby KY 9 59 0.9 895 1910 5

Missouri and Arkansas

MO
county ST case rank severity R_e cases cases/100k daily cases
Gasconade MO 79 1 2.0 78 530 7
Nodaway MO 29 2 1.7 384 1700 22
Boone MO 7 3 1.4 2408 1360 87
Greene MO 5 4 1.3 3099 1070 114
Madison MO 61 5 1.6 119 980 11
Perry MO 33 6 1.6 365 1910 14
St. Louis MO 1 7 1.0 18979 1900 196
Jasper MO 8 11 1.3 1577 1320 22
Jackson MO 4 17 1.0 5384 780 62
St. Charles MO 3 18 1.0 5641 1450 71
Jefferson MO 6 19 1.0 2696 1210 48
Clay MO 9 31 1.1 1360 570 18
St. Louis city MO 2 41 0.8 6101 1960 32
AR
county ST case rank severity R_e cases cases/100k daily cases
Lincoln AR 12 1 1.7 1512 11040 28
Newton AR 63 2 2.1 115 1470 1
Searcy AR 65 3 1.7 99 1250 9
St. Francis AR 15 4 1.6 1328 5050 11
Montgomery AR 69 5 1.7 83 920 5
Washington AR 2 6 1.3 6778 2970 34
Benton AR 3 7 1.3 5271 2040 36
Pulaski AR 1 8 1.1 6992 1780 77
Jefferson AR 5 11 1.1 2076 2950 33
Faulkner AR 9 12 1.2 1658 1350 25
Pope AR 8 14 1.1 1709 2690 23
Craighead AR 6 17 1.0 1811 1710 25
Sebastian AR 4 23 1.0 2846 2230 29
Hot Spring AR 7 46 0.9 1709 5100 5

Conclusions

It’s in control some places, but not all places. And many places are completely out-of-control.

Stay Safe!
Be Diligent!
…and PLEASE WEAR A MASK



Built with R Version 4.0.2
This document took 1013.6 seconds to compute.
2020-08-30 08:14:50

version history

Today is 2020-08-30.
102 days ago: Multiple states.
94 days ago: \(R_e\) computation.
91 days ago: created color coding for \(R_e\) plots.
86 days ago: Reduced \(t_d\) from 14 to 12 days. 14 was the upper range of what most people are using. Wanted slightly higher bandwidth.
86 days ago: “persistence” time evolution.
79 days ago: “In control” mapping.
79 days ago: “Severity” tables to county analysis. Severity is computed from the number of new cases expected at current \(R_e\) for 6 days in the future. It does not trend \(R_e\), which could be a future enhancement.
71 days ago: Added census API functionality to compute per capita infection rates. Reduced spline spar = 0.65.
66 days ago: Added Per Capita US Map.
64 days ago: Deprecated national map.
60 days ago: added state “Hot 10” analysis.
55 days ago: cleaned up county analysis to show cases and actual data. Moved “Hot 10” analysis to separate web page. Moved “Hot 10” here.
53 days ago: added per capita disease and mortaility to state-level analysis.
41 days ago: changed to county boundaries on national map for per capita disease.
36 days ago: corrected factor of two error in death trend data.
32 days ago: removed “contained and uncontained” analysis, replacing it with county level control map.
27 days ago: added county level “baseline control” and \(R_e\) maps.
23 days ago: fixed normalization error on total disease stats plot.
16 days ago: Corrected some text matching in generating county level plots of \(R_e\).
10 days ago: adapter knot spacing for spline.

Appendix: Methods

Disease data are sourced from the NYTimes Github Repo. Population data are sourced from the US Census census.gov

Case growth is assumed to follow a linear-partial differential equation. This type of model is useful in populations where there is still very low immunity and high susceptibility.

\[\frac{\partial}{\partial t} cases(t, t_d) = a \times cases(t, t_d) \] \(cases(t)\) is the number of active cases at \(t\) dependent on recent history, \(t_d\). The constant \(a\) and has units of \(time^{-1}\) and is typically computed on a daily basis

Solution results are often expressed in terms of the Effective Reproduction Rate \(R_e\), where \[a \space = \space ln(R_e).\]

\(R_e\) has a simple interpretation; when \(R_e \space > \space 1\) the number of \(cases(t)\) increases (exponentially) while when \(R_e \space < \space 1\) the number of \(cases(t)\) decreases.

Practically, computing \(a\) can be extremely complicated, depending on how functionally it is related to history \(t_d\). And guessing functional forms can be as much art as science. To avoid that, let’s keep things simple…

Assuming a straight-forward flat time of latent infection \(t_d\) = 12 days, with \[f(t) = \int_{t - t_d}^{t}cases(t')\; dt' ,\] \(R_e\) reduces to a simple computation

\[R_e(t) = \frac{cases(t)}{\int_{t - t_d}^{t}cases(t')\; dt'} \times t_d .\]

Typical range of \(t_d\) range \(7 \geq t_d \geq 14\). The only other numerical treatment is, in order to reduce noise the data, I smooth case data with a reticulated spline to compute derivatives.


DISCLAIMER: Results are for entertainment purposes only. Please consult local authorities for official data and forecasts.