Open the libraries…
library(tidyverse) # for modern data manipulation
library(ggplot2) # for modern data visualization
library(plotrix) # for modern data visualization
Load the data
library(readxl)
finalis <- read_excel("finalis.xlsx")
View(finalis)
Data manipulation
finalis <- finalis %>%
mutate(mile = NIP > 14000) %>%
mutate(lokasi = ifelse(grepl("KPw", SATKER), "KPw", "Pusat")) %>%
mutate(title = ifelse(grepl("Digital", JUDUL), "DIGITAL", "NO DIGITAL"))
Data visualization
Finalis berdasarkan satker
#Show Satkers...
pie1 <- c(nrow(finalis[finalis$lokasi == "KPw",]), nrow(finalis[finalis$lokasi == "Pusat",]))
lbls <- c("KPw", "Pusat")
pct <- round(pie1/sum(pie1)*100)
lbls <- paste(lbls, pct)
lbls <- paste(lbls,"%",sep="")
pie3D(pie1, labels = lbls, explode = 0.2, labelcex=0.8, theta=1,radius =1.5,start=0.1, main="Finalists based on Satker")

Sebanyak 30 finalis (60%) berasal dari satker kantor pusat dan 20 finalis (40%) dari KPw.
Berapa finalis tergolong milenial?
#How many finalists are millennials?
pie <- c(nrow(finalis[finalis$mile == "TRUE",]), nrow(finalis[finalis$mile == "FALSE",]))
lbls <- c("Millennials", "Non-millennials")
pct <- round(pie/sum(pie)*100)
lbls <- paste(lbls, pct)
lbls <- paste(lbls,"%",sep="")
pie3D(pie, labels = lbls, explode = 0.2, labelcex=0.8, theta=1,radius =1.5,start=0.1, main="How many finalists are millennials?")

Sebanyak 42 finalis (84%) tergolong milenial dan 8 finalis (16%) non meilenial. Milinelial adalah finalis dengan NIP > 14000.
Finalis milenial dan non-milenial berdasarkan satker
#How many finalists are millennials based on Satkers?
ggplot(finalis, aes(x=lokasi, fill = mile)) +
geom_bar() +
geom_text(stat="count", aes(label=..count..), position = position_stack(vjust = .5), color = "white") +
scale_color_manual(values = c("darkred", "darkblue"))+
scale_fill_manual(values = c("darkred", "darkblue")) +
xlab("Lokasi Satker") + ylab("Jumlah")

Dari 20 finalis di KPw, sebanyak 15 finalis adalah milenial. Sedangkan di pusat, 27 finalis tergolong milenial.
Berapa banyak artikel yang menggunaakan kata “DIGITAL” pada judul?
#How many titles contain the word DIGITAL?
ggplot(finalis, aes(x=title, fill = mile)) +
geom_bar() +
geom_text(stat="count", aes(label=..count..), position = position_stack(vjust = .5), color = "white") +
scale_color_manual(values = c("darkgreen", "darkred"))+
scale_fill_manual(values = c("darkgreen", "darkred")) +
xlab("Judul") + ylab("Jumlah")

Sebanyak 25 artikel menggunakan kata“DIGITAL” dalam judulnya, sedangkan 25 artikel lainnya tidak menggunakan. Lebih banyak milenial yang tidak menggunakan kata “DIGITAL” dalam judul artikel.
Berapa banyak artikel yang menggunaakan kata “DIGITAL” pada judul?
#How many titles contain the word DIGITAL based on Satker?
ggplot(finalis, aes(x=title, fill = lokasi)) +
geom_bar() +
geom_text(stat="count", aes(label=..count..), position = position_stack(vjust = .5), color = "white") +
scale_color_manual(values = c("darkgreen", "darkblue"))+
scale_fill_manual(values = c("darkgreen", "darkblue")) +
xlab("Judul") + ylab("Jumlah")

Sedangkan berdasarkan satker, jumlah milenial dan non milenial yang menggunakan kata “DIGITAL” sama dengan jumlah yang tidak menggunakan kata “DIGITAL”, baik di pusat maupun KPw.
LS0tDQp0aXRsZTogJ1N0YXRpc3RpY3Mgb2YgdGhlIGZpbmFsaXN0czogV2hhdCBkbyB3ZSBrbm93PycNCmF1dGhvcjogIkhhcnJ5IEFnaW50YSINCmRhdGU6ICIyMS84LzIwMjAiDQpvdXRwdXQ6DQogIGh0bWxfbm90ZWJvb2s6DQogICAgY29kZV9mb2xkaW5nOiBzaG93DQogICAgaGlnaGxpZ2h0OiBtb25vY2hyb21lDQogICAgbnVtYmVyX3NlY3Rpb25zOiB5ZXMNCiAgICB0aGVtZTogY29zbW8NCiAgICB0b2M6IHllcw0KICAgIHRvY19kZXB0aDogNA0KICAgIHRvY19mbG9hdDoNCiAgICAgIGNvbGxhcHNlZDogbm8NCiAgICAgIHNtb290aF9zY3JvbGw6IG5vDQogIGh0bWxfZG9jdW1lbnQ6DQogICANCiAgICBkZl9wcmludDogcGFnZWQNCiAgICB0b2M6IHRydWUNCiAgICB0b2NfZmxvYXQ6DQogICAgICBjb2xsYXBzZWQ6IGZhbHNlDQogICAgICBzbW9vdGhfc2Nyb2xsOiBmYWxzZQ0KICAgIHRvY19kZXB0aDogNA0KICAgIG51bWJlcl9zZWN0aW9uczogdHJ1ZQ0KICAgIGNvZGVfZm9sZGluZzogInNob3ciDQogICAgdGhlbWU6ICJjb3NtbyINCiAgICBoaWdobGlnaHQ6ICJtb25vY2hyb21lIg0KICBwZGZfZG9jdW1lbnQ6IGRlZmF1bHQNCiAgd29yZF9kb2N1bWVudDogZGVmYXVsdA0KLS0tDQoNCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQ0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KGVjaG8gPSBUUlVFKQ0KYGBgDQoNCiMjIyBPcGVuIHRoZSBsaWJyYXJpZXMuLi4NCmBgYHtyfQ0KbGlicmFyeSh0aWR5dmVyc2UpICMgZm9yIG1vZGVybiBkYXRhIG1hbmlwdWxhdGlvbg0KbGlicmFyeShnZ3Bsb3QyKSAgIyBmb3IgbW9kZXJuIGRhdGEgdmlzdWFsaXphdGlvbg0KbGlicmFyeShwbG90cml4KSAgIyBmb3IgbW9kZXJuIGRhdGEgdmlzdWFsaXphdGlvbg0KYGBgDQoNCiMjIyBMb2FkIHRoZSBkYXRhDQpgYGB7ciBwcmVzc3VyZX0NCmxpYnJhcnkocmVhZHhsKQ0KZmluYWxpcyA8LSByZWFkX2V4Y2VsKCJmaW5hbGlzLnhsc3giKQ0KVmlldyhmaW5hbGlzKQ0KYGBgDQoNCiMjIyBEYXRhIG1hbmlwdWxhdGlvbg0KYGBge3J9DQpmaW5hbGlzIDwtIGZpbmFsaXMgJT4lIA0KICBtdXRhdGUobWlsZSA9IE5JUCA+IDE0MDAwKSAlPiUgDQogIG11dGF0ZShsb2thc2kgPSBpZmVsc2UoZ3JlcGwoIktQdyIsIFNBVEtFUiksICJLUHciLCAiUHVzYXQiKSkgJT4lIA0KICBtdXRhdGUodGl0bGUgPSBpZmVsc2UoZ3JlcGwoIkRpZ2l0YWwiLCBKVURVTCksICJESUdJVEFMIiwgIk5PIERJR0lUQUwiKSkNCmBgYA0KDQojIyMgRGF0YSB2aXN1YWxpemF0aW9uDQojIyMgRmluYWxpcyBiZXJkYXNhcmthbiBzYXRrZXINCmBgYHtyfQ0KI1Nob3cgU2F0a2Vycy4uLiANCnBpZTEgPC0gYyhucm93KGZpbmFsaXNbZmluYWxpcyRsb2thc2kgPT0gIktQdyIsXSksIG5yb3coZmluYWxpc1tmaW5hbGlzJGxva2FzaSA9PSAiUHVzYXQiLF0pKQ0KbGJscyA8LSBjKCJLUHciLCAiUHVzYXQiKQ0KcGN0IDwtIHJvdW5kKHBpZTEvc3VtKHBpZTEpKjEwMCkNCmxibHMgPC0gcGFzdGUobGJscywgcGN0KQ0KbGJscyA8LSBwYXN0ZShsYmxzLCIlIixzZXA9IiIpDQpwaWUzRChwaWUxLCBsYWJlbHMgPSBsYmxzLCBleHBsb2RlID0gMC4yLCBsYWJlbGNleD0wLjgsIHRoZXRhPTEscmFkaXVzID0xLjUsc3RhcnQ9MC4xLCBtYWluPSJGaW5hbGlzdHMgYmFzZWQgb24gU2F0a2VyIikNCmBgYA0KDQpTZWJhbnlhayAzMCBmaW5hbGlzICg2MCUpIGJlcmFzYWwgZGFyaSBzYXRrZXIga2FudG9yIHB1c2F0IGRhbiAyMCBmaW5hbGlzICg0MCUpIGRhcmkgS1B3Lg0KDQoNCiMjIyBCZXJhcGEgZmluYWxpcyB0ZXJnb2xvbmcgbWlsZW5pYWw/DQpgYGB7cn0NCiNIb3cgbWFueSBmaW5hbGlzdHMgYXJlIG1pbGxlbm5pYWxzPyANCnBpZSA8LSBjKG5yb3coZmluYWxpc1tmaW5hbGlzJG1pbGUgPT0gIlRSVUUiLF0pLCBucm93KGZpbmFsaXNbZmluYWxpcyRtaWxlID09ICJGQUxTRSIsXSkpDQpsYmxzIDwtIGMoIk1pbGxlbm5pYWxzIiwgIk5vbi1taWxsZW5uaWFscyIpDQpwY3QgPC0gcm91bmQocGllL3N1bShwaWUpKjEwMCkNCmxibHMgPC0gcGFzdGUobGJscywgcGN0KQ0KbGJscyA8LSBwYXN0ZShsYmxzLCIlIixzZXA9IiIpDQpwaWUzRChwaWUsIGxhYmVscyA9IGxibHMsIGV4cGxvZGUgPSAwLjIsIGxhYmVsY2V4PTAuOCwgdGhldGE9MSxyYWRpdXMgPTEuNSxzdGFydD0wLjEsIG1haW49IkhvdyBtYW55IGZpbmFsaXN0cyBhcmUgbWlsbGVubmlhbHM/IikNCmBgYA0KDQpTZWJhbnlhayA0MiBmaW5hbGlzICg4NCUpIHRlcmdvbG9uZyBtaWxlbmlhbCBkYW4gOCBmaW5hbGlzICgxNiUpIG5vbiBtZWlsZW5pYWwuDQpNaWxpbmVsaWFsIGFkYWxhaCBmaW5hbGlzIGRlbmdhbiBOSVAgPiAxNDAwMC4NCg0KDQojIyMgRmluYWxpcyBtaWxlbmlhbCBkYW4gbm9uLW1pbGVuaWFsIGJlcmRhc2Fya2FuIHNhdGtlcg0KYGBge3J9DQojSG93IG1hbnkgZmluYWxpc3RzIGFyZSBtaWxsZW5uaWFscyBiYXNlZCBvbiBTYXRrZXJzPw0KZ2dwbG90KGZpbmFsaXMsIGFlcyh4PWxva2FzaSwgZmlsbCA9IG1pbGUpKSArDQogIGdlb21fYmFyKCkgKw0KICBnZW9tX3RleHQoc3RhdD0iY291bnQiLCBhZXMobGFiZWw9Li5jb3VudC4uKSwgcG9zaXRpb24gPSBwb3NpdGlvbl9zdGFjayh2anVzdCA9IC41KSwgY29sb3IgPSAid2hpdGUiKSArIA0KICAgc2NhbGVfY29sb3JfbWFudWFsKHZhbHVlcyA9IGMoImRhcmtyZWQiLCAiZGFya2JsdWUiKSkrDQogIHNjYWxlX2ZpbGxfbWFudWFsKHZhbHVlcyA9IGMoImRhcmtyZWQiLCAiZGFya2JsdWUiKSkgKw0KICAgeGxhYigiTG9rYXNpIFNhdGtlciIpICsgeWxhYigiSnVtbGFoIikNCmBgYA0KDQpEYXJpIDIwIGZpbmFsaXMgZGkgS1B3LCBzZWJhbnlhayAxNSBmaW5hbGlzIGFkYWxhaCBtaWxlbmlhbC4gU2VkYW5na2FuIGRpIHB1c2F0LCAyNyBmaW5hbGlzIHRlcmdvbG9uZyBtaWxlbmlhbC4NCg0KIyMjIEJlcmFwYSBiYW55YWsgYXJ0aWtlbCB5YW5nIG1lbmdndW5hYWthbiBrYXRhICJESUdJVEFMIiBwYWRhIGp1ZHVsPw0KYGBge3J9DQojSG93IG1hbnkgdGl0bGVzIGNvbnRhaW4gdGhlIHdvcmQgRElHSVRBTD8NCmdncGxvdChmaW5hbGlzLCBhZXMoeD10aXRsZSwgZmlsbCA9IG1pbGUpKSArDQogIGdlb21fYmFyKCkgKw0KICBnZW9tX3RleHQoc3RhdD0iY291bnQiLCBhZXMobGFiZWw9Li5jb3VudC4uKSwgcG9zaXRpb24gPSBwb3NpdGlvbl9zdGFjayh2anVzdCA9IC41KSwgY29sb3IgPSAid2hpdGUiKSArIA0KICAgc2NhbGVfY29sb3JfbWFudWFsKHZhbHVlcyA9IGMoImRhcmtncmVlbiIsICJkYXJrcmVkIikpKw0KICBzY2FsZV9maWxsX21hbnVhbCh2YWx1ZXMgPSBjKCJkYXJrZ3JlZW4iLCAiZGFya3JlZCIpKSArDQogICB4bGFiKCJKdWR1bCIpICsgeWxhYigiSnVtbGFoIikNCmBgYA0KDQpTZWJhbnlhayAyNSBhcnRpa2VsIG1lbmdndW5ha2FuIGthdGEiRElHSVRBTCIgZGFsYW0ganVkdWxueWEsIHNlZGFuZ2thbiAyNSBhcnRpa2VsIGxhaW5ueWEgdGlkYWsgbWVuZ2d1bmFrYW4uIExlYmloIGJhbnlhayBtaWxlbmlhbCB5YW5nIHRpZGFrIG1lbmdndW5ha2FuIGthdGEgIkRJR0lUQUwiIGRhbGFtIGp1ZHVsIGFydGlrZWwuDQoNCg0KIyMjIEJlcmFwYSBiYW55YWsgYXJ0aWtlbCB5YW5nIG1lbmdndW5hYWthbiBrYXRhICJESUdJVEFMIiBwYWRhIGp1ZHVsPw0KYGBge3J9DQojSG93IG1hbnkgdGl0bGVzIGNvbnRhaW4gdGhlIHdvcmQgRElHSVRBTCBiYXNlZCBvbiBTYXRrZXI/DQpnZ3Bsb3QoZmluYWxpcywgYWVzKHg9dGl0bGUsIGZpbGwgPSBsb2thc2kpKSArDQogIGdlb21fYmFyKCkgKw0KICBnZW9tX3RleHQoc3RhdD0iY291bnQiLCBhZXMobGFiZWw9Li5jb3VudC4uKSwgcG9zaXRpb24gPSBwb3NpdGlvbl9zdGFjayh2anVzdCA9IC41KSwgY29sb3IgPSAid2hpdGUiKSArIA0KICAgc2NhbGVfY29sb3JfbWFudWFsKHZhbHVlcyA9IGMoImRhcmtncmVlbiIsICJkYXJrYmx1ZSIpKSsNCiAgc2NhbGVfZmlsbF9tYW51YWwodmFsdWVzID0gYygiZGFya2dyZWVuIiwgImRhcmtibHVlIikpICsNCiAgIHhsYWIoIkp1ZHVsIikgKyB5bGFiKCJKdW1sYWgiKQ0KYGBgDQoNClNlZGFuZ2thbiBiZXJkYXNhcmthbiBzYXRrZXIsIGp1bWxhaCBtaWxlbmlhbCBkYW4gbm9uIG1pbGVuaWFsIHlhbmcgbWVuZ2d1bmFrYW4ga2F0YSAiRElHSVRBTCIgc2FtYSBkZW5nYW4ganVtbGFoIHlhbmcgdGlkYWsgbWVuZ2d1bmFrYW4ga2F0YSAiRElHSVRBTCIsIGJhaWsgZGkgcHVzYXQgbWF1cHVuIEtQdy4NCg==