问卷分析

cishan = cishan <- read.csv("C:/Users/Administrator.ZE1XUQWPNXEUCFB/Desktop/clean/R_Room/2.16/cishan.csv", stringsAsFactors=FALSE)


knitr::kable(head(cishan))
y x2 x3 x4 x5 x6
6 4 3 2 2 2
3 2 1 3 5 2
6 3 1 2 3 2
0 4 4 2 3 3
5 5 3 3 7 3
2 2 3 4 3 2
for(i in  2:6) {
    cat("x",i, sep = "")
    print(table(cishan[, i]))
    print(aggregate(cishan[, 1], by = list(cishan[, i]), FUN = mean))
    print(aggregate(cishan[, 1], by = list(cishan[, i]), FUN = sd))
    fit = aov(cishan[, 1] ~ cishan[, i])
    print(summary(fit))
    for(j in 1:2) print("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
                    }
## x2
##   1   2   3   4   5 
##  27 246 300 208 245 
##   Group.1        x
## 1       1 3.111111
## 2       2 3.304878
## 3       3 3.023333
## 4       4 2.480769
## 5       5 2.820408
##   Group.1        x
## 1       1 2.778120
## 2       2 2.376873
## 3       3 2.690772
## 4       4 2.723953
## 5       5 2.822696
##               Df Sum Sq Mean Sq F value Pr(>F)  
## cishan[, i]    1     45   45.41   6.398 0.0116 *
## Residuals   1024   7267    7.10                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%"
## [1] "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%"
## x3
##   1   2   3   4 
## 466 219 296  45 
##   Group.1        x
## 1       1 2.695279
## 2       2 3.091324
## 3       3 3.341216
## 4       4 1.977778
##   Group.1        x
## 1       1 2.824139
## 2       2 2.550565
## 3       3 2.381096
## 4       4 2.980916
##               Df Sum Sq Mean Sq F value Pr(>F)  
## cishan[, i]    1     23  22.709    3.19 0.0744 .
## Residuals   1024   7290   7.119                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%"
## [1] "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%"
## x4
##   1   2   3   4   5 
## 113 227 291 330  65 
##   Group.1        x
## 1       1 2.663717
## 2       2 2.995595
## 3       3 3.189003
## 4       4 2.821212
## 5       5 2.630769
##   Group.1        x
## 1       1 2.817707
## 2       2 2.648255
## 3       3 2.515198
## 4       4 2.823292
## 5       5 2.315500
##               Df Sum Sq Mean Sq F value Pr(>F)
## cishan[, i]    1      1   0.688   0.096  0.756
## Residuals   1024   7312   7.141               
## [1] "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%"
## [1] "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%"
## x5
##   1   2   3   4   5   6   7 
##  58 166 258  73 157 121 193 
##   Group.1        x
## 1       1 3.758621
## 2       2 2.759036
## 3       3 2.693798
## 4       4 2.684932
## 5       5 3.082803
## 6       6 3.148760
## 7       7 3.000000
##   Group.1        x
## 1       1 2.002720
## 2       2 2.647310
## 3       3 3.015402
## 4       4 2.618718
## 5       5 2.433637
## 6       6 2.444931
## 7       7 2.682893
##               Df Sum Sq Mean Sq F value Pr(>F)
## cishan[, i]    1      2   2.143     0.3  0.584
## Residuals   1024   7310   7.139               
## [1] "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%"
## [1] "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%"
## x6
##   1   2   3   4   5 
## 141 474 253 138  20 
##   Group.1        x
## 1       1 2.943262
## 2       2 3.118143
## 3       3 2.810277
## 4       4 2.594203
## 5       5 2.450000
##   Group.1        x
## 1       1 2.437133
## 2       2 2.665013
## 3       3 2.906542
## 4       4 2.542020
## 5       5 1.877148
##               Df Sum Sq Mean Sq F value Pr(>F)  
## cishan[, i]    1     26  26.071   3.664 0.0559 .
## Residuals   1024   7287   7.116                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%"
## [1] "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%"