DATA_PATH <- here("data/processed/syntactic_bootstrapping_tidy_data_molly.csv") 

ma_data <- read_csv(DATA_PATH) %>%
  mutate(row_id = 1:n()) %>%
  mutate(agent_argument_type2 = case_when(str_detect(agent_argument_type, "pronoun") ~ "pronoun",
                                          TRUE ~ "noun"),
         transitive_event_type2 = case_when(transitive_event_type == "direct_caused_action" ~ "direct_caused_action",
                                            TRUE ~ "indirect_caused_action"))

Base model

base_model <-  rma.mv(d_calc, d_var_calc, random = ~ 1 | short_cite/same_infant/row_id, data=ma_data)
base_model
## 
## Multivariate Meta-Analysis Model (k = 53; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                         factor 
## sigma^2.1  0.0251  0.1584     15     no                     short_cite 
## sigma^2.2  0.1351  0.3675     52     no         short_cite/same_infant 
## sigma^2.3  0.0000  0.0000     53     no  short_cite/same_infant/row_id 
## 
## Test for Heterogeneity:
## Q(df = 52) = 139.1246, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub 
##   0.3250  0.0841  3.8653  0.0001  0.1602  0.4898  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
forest(base_model)

funnel(base_model)

Theoretical moderators

Age

age_model <-  rma.mv(d_calc ~ mean_age, d_var_calc, random = ~ 1 | short_cite/same_infant/row_id, data=ma_data)
age_model
## 
## Multivariate Meta-Analysis Model (k = 53; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                         factor 
## sigma^2.1  0.0159  0.1263     15     no                     short_cite 
## sigma^2.2  0.1414  0.3760     52     no         short_cite/same_infant 
## sigma^2.3  0.0000  0.0000     53     no  short_cite/same_infant/row_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 51) = 136.7586, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 1.8208, p-val = 0.1772
## 
## Model Results:
## 
##           estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt     0.6669  0.2623   2.5430  0.0110   0.1529  1.1810  * 
## mean_age   -0.0004  0.0003  -1.3494  0.1772  -0.0011  0.0002    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
age_model
## 
## Multivariate Meta-Analysis Model (k = 53; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                         factor 
## sigma^2.1  0.0159  0.1263     15     no                     short_cite 
## sigma^2.2  0.1414  0.3760     52     no         short_cite/same_infant 
## sigma^2.3  0.0000  0.0000     53     no  short_cite/same_infant/row_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 51) = 136.7586, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 1.8208, p-val = 0.1772
## 
## Model Results:
## 
##           estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt     0.6669  0.2623   2.5430  0.0110   0.1529  1.1810  * 
## mean_age   -0.0004  0.0003  -1.3494  0.1772  -0.0011  0.0002    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ggplot(ma_data, aes(x = mean_age, y = d_calc)) +
  geom_point() +
  geom_smooth(method = "lm")

Vocabulary

vocab_model <-  rma.mv(d_calc ~ productive_vocab_median , d_var_calc, random = ~ 1 | short_cite/same_infant/row_id, data=ma_data)
vocab_model
## 
## Multivariate Meta-Analysis Model (k = 28; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                         factor 
## sigma^2.1  0.0330  0.1818      5     no                     short_cite 
## sigma^2.2  0.1174  0.3427     28     no         short_cite/same_infant 
## sigma^2.3  0.1174  0.3427     28     no  short_cite/same_infant/row_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 26) = 71.9795, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 1.1529, p-val = 0.2829
## 
## Model Results:
## 
##                          estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                    0.6330  0.2659   2.3808  0.0173   0.1119  1.1541  * 
## productive_vocab_median   -0.0054  0.0051  -1.0738  0.2829  -0.0153  0.0045    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Sentence Structure

structure_model <-  rma.mv(d_calc ~ sentence_structure, d_var_calc, random = ~ 1 | short_cite/same_infant/row_id, data=ma_data)
structure_model
## 
## Multivariate Meta-Analysis Model (k = 53; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                         factor 
## sigma^2.1  0.0461  0.2148     15     no                     short_cite 
## sigma^2.2  0.0000  0.0001     52     no         short_cite/same_infant 
## sigma^2.3  0.1137  0.3372     53     no  short_cite/same_infant/row_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 51) = 137.0405, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 3.5176, p-val = 0.0607
## 
## Model Results:
## 
##                               estimate      se    zval    pval    ci.lb   ci.ub 
## intrcpt                         0.1805  0.1154  1.5637  0.1179  -0.0457  0.4067 
## sentence_structuretransitive    0.2475  0.1320  1.8755  0.0607  -0.0111  0.5062 
##  
## intrcpt 
## sentence_structuretransitive  . 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Agent argument type

agent_argument_type_model <-  rma.mv(d_calc ~ agent_argument_type2, d_var_calc, random = ~ 1 | short_cite/same_infant/row_id, data=ma_data)
agent_argument_type_model
## 
## Multivariate Meta-Analysis Model (k = 53; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                         factor 
## sigma^2.1  0.0078  0.0883     15     no                     short_cite 
## sigma^2.2  0.1385  0.3722     52     no         short_cite/same_infant 
## sigma^2.3  0.0000  0.0000     53     no  short_cite/same_infant/row_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 51) = 132.1003, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 4.1779, p-val = 0.0410
## 
## Model Results:
## 
##                              estimate      se    zval    pval    ci.lb   ci.ub 
## intrcpt                        0.1794  0.1058  1.6957  0.0900  -0.0280  0.3868 
## agent_argument_type2pronoun    0.3032  0.1483  2.0440  0.0410   0.0125  0.5939 
##  
## intrcpt                      . 
## agent_argument_type2pronoun  * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Sink

rma.mv(d_calc ~ agent_argument_type2 +sentence_structure + mean_age, d_var_calc, random = ~ 1 | short_cite/same_infant/row_id, data=ma_data)
## 
## Multivariate Meta-Analysis Model (k = 53; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                         factor 
## sigma^2.1  0.0088  0.0936     15     no                     short_cite 
## sigma^2.2  0.0000  0.0001     52     no         short_cite/same_infant 
## sigma^2.3  0.1302  0.3608     53     no  short_cite/same_infant/row_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 49) = 125.4755, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 9.1200, p-val = 0.0277
## 
## Model Results:
## 
##                               estimate      se     zval    pval    ci.lb 
## intrcpt                         0.2273  0.3015   0.7540  0.4509  -0.3635 
## agent_argument_type2pronoun     0.3324  0.1530   2.1717  0.0299   0.0324 
## sentence_structuretransitive    0.2719  0.1372   1.9824  0.0474   0.0031 
## mean_age                       -0.0003  0.0003  -0.8055  0.4205  -0.0009 
##                                ci.ub 
## intrcpt                       0.8181    
## agent_argument_type2pronoun   0.6323  * 
## sentence_structuretransitive  0.5408  * 
## mean_age                      0.0004    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Transitive event type

rma.mv(d_calc ~ transitive_event_type2, d_var_calc, random = ~ 1 | short_cite/same_infant/row_id, data=ma_data %>% filter(sentence_structure == "transitive"))
## 
## Multivariate Meta-Analysis Model (k = 26; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                         factor 
## sigma^2.1  0.2394  0.4893     15     no                     short_cite 
## sigma^2.2  0.0000  0.0000     26     no         short_cite/same_infant 
## sigma^2.3  0.0000  0.0000     26     no  short_cite/same_infant/row_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 24) = 88.0652, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 1.9307, p-val = 0.1647
## 
## Model Results:
## 
##                                               estimate      se     zval    pval 
## intrcpt                                         0.4420  0.1511   2.9257  0.0034 
## transitive_event_type2indirect_caused_action   -0.3969  0.2857  -1.3895  0.1647 
##                                                 ci.lb   ci.ub 
## intrcpt                                        0.1459  0.7381  ** 
## transitive_event_type2indirect_caused_action  -0.9568  0.1630     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Intransitive event type

rma.mv(d_calc ~ intransitive_event_type , d_var_calc, random = ~ 1 | short_cite/same_infant/row_id, data=ma_data %>% filter(sentence_structure == "intransitive"))
## 
## Multivariate Meta-Analysis Model (k = 27; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                         factor 
## sigma^2.1  0.0000  0.0000     11     no                     short_cite 
## sigma^2.2  0.0302  0.1739     27     no         short_cite/same_infant 
## sigma^2.3  0.0302  0.1739     27     no  short_cite/same_infant/row_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 25) = 46.3175, p-val = 0.0059
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 1.8094, p-val = 0.1786
## 
## Model Results:
## 
##                                          estimate      se    zval    pval 
## intrcpt                                    0.0713  0.1438  0.4957  0.6201 
## intransitive_event_typeparallel_actions    0.2281  0.1696  1.3452  0.1786 
##                                            ci.lb   ci.ub 
## intrcpt                                  -0.2105  0.3531    
## intransitive_event_typeparallel_actions  -0.1043  0.5606    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Methodological moderators

Stimuli Modality

rma.mv(d_calc ~ stimuli_modality, d_var_calc, random = ~ 1 | short_cite/same_infant/row_id, data=ma_data)
## 
## Multivariate Meta-Analysis Model (k = 53; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                         factor 
## sigma^2.1  0.0416  0.2040     15     no                     short_cite 
## sigma^2.2  0.1174  0.3427     52     no         short_cite/same_infant 
## sigma^2.3  0.0000  0.0000     53     no  short_cite/same_infant/row_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 51) = 136.0165, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 1.8477, p-val = 0.1741
## 
## Model Results:
## 
##                        estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                  0.5942  0.2225   2.6704  0.0076   0.1581  1.0304  ** 
## stimuli_modalityvideo   -0.3032  0.2230  -1.3593  0.1741  -0.7403  0.1340     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Stimuli Actor

rma.mv(d_calc ~ stimuli_actor, d_var_calc, random = ~ 1 | short_cite/same_infant/row_id, data=ma_data)
## 
## Multivariate Meta-Analysis Model (k = 53; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                         factor 
## sigma^2.1  0.0394  0.1984     15     no                     short_cite 
## sigma^2.2  0.1176  0.3429     52     no         short_cite/same_infant 
## sigma^2.3  0.0000  0.0000     53     no  short_cite/same_infant/row_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 51) = 133.7312, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 1.6972, p-val = 0.1927
## 
## Model Results:
## 
##                      estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                0.4498  0.1346   3.3417  0.0008   0.1860  0.7136  *** 
## stimuli_actorperson   -0.2073  0.1591  -1.3027  0.1927  -0.5191  0.1046      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Mass vs distributed

rma.mv(d_calc ~ test_mass_or_distributed, d_var_calc, random = ~ 1 | short_cite/same_infant/row_id, data=ma_data)
## 
## Multivariate Meta-Analysis Model (k = 53; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                         factor 
## sigma^2.1  0.0112  0.1058     15     no                     short_cite 
## sigma^2.2  0.1419  0.3767     52     no         short_cite/same_infant 
## sigma^2.3  0.0000  0.0000     53     no  short_cite/same_infant/row_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 51) = 134.6645, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 3.1204, p-val = 0.0773
## 
## Model Results:
## 
##                               estimate      se    zval    pval    ci.lb   ci.ub 
## intrcpt                         0.2107  0.1032  2.0411  0.0412   0.0084  0.4131 
## test_mass_or_distributedmass    0.2735  0.1548  1.7665  0.0773  -0.0300  0.5770 
##  
## intrcpt                       * 
## test_mass_or_distributedmass  . 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

n_repetitions_sentence

Check this measure

rma.mv(d_calc ~ n_repetitions_sentence, d_var_calc, random = ~ 1 | short_cite/same_infant/row_id, data=ma_data)
## 
## Multivariate Meta-Analysis Model (k = 53; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                         factor 
## sigma^2.1  0.0280  0.1673     15     no                     short_cite 
## sigma^2.2  0.1399  0.3740     52     no         short_cite/same_infant 
## sigma^2.3  0.0000  0.0000     53     no  short_cite/same_infant/row_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 51) = 139.0573, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0589, p-val = 0.8083
## 
## Model Results:
## 
##                         estimate      se    zval    pval    ci.lb   ci.ub 
## intrcpt                   0.2969  0.1446  2.0532  0.0400   0.0135  0.5803  * 
## n_repetitions_sentence    0.0028  0.0114  0.2426  0.8083  -0.0196  0.0251    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

practice_phase

rma.mv(d_calc ~ practice_phase, d_var_calc, random = ~ 1 | short_cite/same_infant/row_id, data=ma_data)
## 
## Multivariate Meta-Analysis Model (k = 53; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                         factor 
## sigma^2.1  0.0338  0.1837     15     no                     short_cite 
## sigma^2.2  0.1346  0.3669     52     no         short_cite/same_infant 
## sigma^2.3  0.0000  0.0000     53     no  short_cite/same_infant/row_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 51) = 138.7878, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.5278, p-val = 0.4675
## 
## Model Results:
## 
##                    estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt              0.3801  0.1187   3.2014  0.0014   0.1474  0.6128  ** 
## practice_phaseyes   -0.1084  0.1493  -0.7265  0.4675  -0.4010  0.1841     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

character_identification

rma.mv(d_calc ~ character_identification, d_var_calc, random = ~ 1 | short_cite/same_infant/row_id, data=ma_data)
## 
## Multivariate Meta-Analysis Model (k = 53; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                         factor 
## sigma^2.1  0.0372  0.1930     15     no                     short_cite 
## sigma^2.2  0.1315  0.3626     52     no         short_cite/same_infant 
## sigma^2.3  0.0000  0.0000     53     no  short_cite/same_infant/row_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 51) = 137.6490, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.1288, p-val = 0.7197
## 
## Model Results:
## 
##                              estimate      se    zval    pval    ci.lb   ci.ub 
## intrcpt                        0.2979  0.1102  2.7036  0.0069   0.0819  0.5139 
## character_identificationyes    0.0678  0.1889  0.3589  0.7197  -0.3025  0.4381 
##  
## intrcpt                      ** 
## character_identificationyes 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

test_method

rma.mv(d_calc ~ test_method, d_var_calc, random = ~ 1 | short_cite/same_infant/row_id, data=ma_data)
## 
## Multivariate Meta-Analysis Model (k = 53; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                         factor 
## sigma^2.1  0.0304  0.1744     15     no                     short_cite 
## sigma^2.2  0.1364  0.3693     52     no         short_cite/same_infant 
## sigma^2.3  0.0000  0.0000     53     no  short_cite/same_infant/row_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 51) = 137.6641, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.2624, p-val = 0.6085
## 
## Model Results:
## 
##                   estimate      se    zval    pval    ci.lb   ci.ub 
## intrcpt             0.3125  0.0896  3.4857  0.0005   0.1368  0.4882  *** 
## test_methodpoint    0.1884  0.3679  0.5122  0.6085  -0.5326  0.9094      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Sink - choose moderators with model selcetion method?

rma.mv(d_calc ~   test_mass_or_distributed   +
                  #practice_phase + 
                  character_identification + 
                  test_method +
                  stimuli_modality,
                  V = d_var_calc, 
       random = ~ 1 | short_cite/same_infant/row_id, data = ma_data)
## 
## Multivariate Meta-Analysis Model (k = 53; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                         factor 
## sigma^2.1  0.0241  0.1554     15     no                     short_cite 
## sigma^2.2  0.1103  0.3322     52     no         short_cite/same_infant 
## sigma^2.3  0.0000  0.0000     53     no  short_cite/same_infant/row_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 48) = 115.4569, p-val < .0001
## 
## Test of Moderators (coefficients 2:5):
## QM(df = 4) = 8.6070, p-val = 0.0717
## 
## Model Results:
## 
##                               estimate      se     zval    pval    ci.lb 
## intrcpt                         0.0804  0.2807   0.2864  0.7746  -0.4698 
## test_mass_or_distributedmass    0.5398  0.2231   2.4197  0.0155   0.1026 
## character_identificationyes     0.4632  0.2226   2.0811  0.0374   0.0270 
## test_methodpoint                0.6020  0.3719   1.6190  0.1054  -0.1268 
## stimuli_modalityvideo          -0.1824  0.2202  -0.8285  0.4074  -0.6139 
##                                ci.ub 
## intrcpt                       0.6306    
## test_mass_or_distributedmass  0.9771  * 
## character_identificationyes   0.8994  * 
## test_methodpoint              1.3309    
## stimuli_modalityvideo         0.2491    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

mega sink doesn’t add much

rma.mv(d_calc ~   test_mass_or_distributed   +
                  practice_phase + 
                  character_identification + 
                  test_method +
                  agent_argument_type2 +
                  sentence_structure + 
                  mean_age,
                  V = d_var_calc, 
       random = ~ 1 | short_cite/same_infant/row_id, data = ma_data)
## 
## Multivariate Meta-Analysis Model (k = 53; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                         factor 
## sigma^2.1  0.0071  0.0842     15     no                     short_cite 
## sigma^2.2  0.0000  0.0001     52     no         short_cite/same_infant 
## sigma^2.3  0.1124  0.3353     53     no  short_cite/same_infant/row_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 46) = 106.8245, p-val < .0001
## 
## Test of Moderators (coefficients 2:7):
## QM(df = 6) = 15.7473, p-val = 0.0152
## 
## Model Results:
## 
##                               estimate      se     zval    pval    ci.lb 
## intrcpt                        -0.0866  0.3167  -0.2735  0.7845  -0.7072 
## test_mass_or_distributedmass    0.6475  0.1998   3.2413  0.0012   0.2560 
## practice_phaseyes               0.0323  0.1499   0.2154  0.8294  -0.2616 
## character_identificationyes     0.5098  0.2072   2.4603  0.0139   0.1037 
## test_methodpoint                0.6638  0.3494   1.8995  0.0575  -0.0211 
## sentence_structuretransitive    0.3021  0.1368   2.2088  0.0272   0.0340 
## mean_age                       -0.0003  0.0003  -0.9613  0.3364  -0.0009 
##                                ci.ub 
## intrcpt                       0.5340     
## test_mass_or_distributedmass  1.0391  ** 
## practice_phaseyes             0.3262     
## character_identificationyes   0.9159   * 
## test_methodpoint              1.3487   . 
## sentence_structuretransitive  0.5701   * 
## mean_age                      0.0003     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1