This document summarises the forecast outcomes for the fourth weekly set of forecasts for English football match outcomes, following on from recent weeks, and it provides outcomes for forecasts of matches over the last week as detailed in this document.
Two sets of forecasts are constructed, one using a simple linear regression method for a dependent variable taking the values 0 for an away win, 0.5 for a draw, and 1 for a home win. This linear regression method only yields a number which can be interpreted as a probability of an outcome occurring. The second, ordered logit method, treats each outcome in an ordered manner, from away win, to draw, to home win, and estimates a probability for each outcome.
The purpose of this document is to evaluate these forecasts, and begin to form a longer-term narrative about them.
To consider outcomes; we must load up the specific outcomes file for matches forecast over the weekend:
dates <- c("2015-01-30","2015-02-06","2015-02-13","2015-02-20","2015-02-27","2015-03-06")
date.1 <- dates[NROW(dates)]
recent.forecast.outcomes <- read.csv(paste("forecast_outcomes_",date.1,".csv",sep=""),stringsAsFactors=F)
forecast.matches <- read.csv(paste("forecasts_",date.1,".csv",sep=""))
forecast.matches <- forecast.matches[is.na(forecast.matches$outcome)==F,]
forecast.outcomes <- merge(forecast.matches[,c("match_id","outcome","Ph","Pd","Pa")],
recent.forecast.outcomes,by=c("match_id"),
suffixes=c(".forc",".final"))
forecast.outcomes <- forecast.outcomes[is.na(forecast.outcomes$outcome.final)==F,]
#all.forecast.outcomes <- data.frame()
#for(i in dates) {
# temp.0 <- read.csv(paste(loc2,"forecast_outcomes_",i,".csv",sep=""),stringsAsFactors=F)
# temp.1 <- read.csv(paste(loc2,"forecasts_",i,".csv",sep=""))
# temp.1 <- temp.1[is.na(temp.1$outcome)==F,]
# temp.2 <- merge(temp.1[,c("match_id","outcome","Ph","Pd","Pa")],
# temp.0,by=c("match_id"),
# suffixes=c(".forc",".final"))
# forecast.outcomes <- rbind(temp.2[is.na(temp.2$outcome.final)==F,],forecast.outcomes)
#}
We also load up previous weeks’ forecasts and outcomes in order that we can begin to determine trends over time. This week was one particularly filled with surprise results, but that does not necessarily mean our forecast model need be amended. More, it reflects that football is intrinsically a very uncertain game. This, of course, is not to say that the model cannot be improved upon.
First, our FA Cup forecasts:
facup.matches <- forecast.outcomes[forecast.outcomes$division=="English FA Cup",]
facup.matches$id <- 1:NROW(facup.matches)
par(mar=c(9,4,4,5)+.1)
plot(facup.matches$id,facup.matches$outcome.forc,xaxt="n",xlab="",ylim=range(0,1),
main="Forecasts of Weekend FA Cup Matches",
ylab="Probability of Outcome")
lines(facup.matches$id,facup.matches$Ph,col=2,pch=15,type="p")
lines(facup.matches$id,facup.matches$Pd,col=3,pch=16,type="p")
lines(facup.matches$id,facup.matches$Pa,col=4,pch=17,type="p")
legend("topleft",ncol=4,pch=c(1,15,16,17),col=c(1:4),
legend=c("OLS","OL (home)","OL (draw)","OL (away)"),bty="n")
abline(h=0.5,lty=2)
abline(h=0.6,lty=3)
abline(h=0.7,lty=2)
abline(h=0.4,lty=3)
for(i in 1:NROW(facup.matches)) {
if(facup.matches$outcome.final[i]==1) {
lines(facup.matches$id[i],facup.matches$outcome.final[i],col=2,type="p",pch=0)
lines(rep(i,2),c(facup.matches$Ph[i],facup.matches$outcome.final[i]),type="l",lty=2,col="red")
} else if (facup.matches$outcome.final[i]==0.5) {
lines(facup.matches$id[i],facup.matches$outcome.final[i],col=3,type="p",pch=1)
lines(rep(i,2),c(facup.matches$Pd[i],facup.matches$outcome.final[i]),type="l",lty=2,col="green")
} else {
lines(facup.matches$id[i],facup.matches$outcome.final[i],col=4,type="p",pch=2)
lines(rep(i,2),c(facup.matches$Pa[i],facup.matches$outcome.final[i]),type="l",lty=2,col="blue")
}
}
axis(1,at=facup.matches$id,labels=paste(facup.matches$team1,facup.matches$team2,sep=" v "),las=2,cex.axis=0.65)
Next, our Premier League forecast:
prem.matches <- forecast.outcomes[forecast.outcomes$division=="English Premier",]
prem.matches$id <- 1:NROW(prem.matches)
par(mar=c(9,4,4,5)+.1)
plot(prem.matches$id,prem.matches$outcome.forc,xaxt="n",xlab="",ylim=range(0,1),
main="Forecasts of Weekend Premier League Matches",
ylab="Probability of Outcome")
lines(prem.matches$id,prem.matches$Ph,col=2,pch=15,type="p")
lines(prem.matches$id,prem.matches$Pd,col=3,pch=16,type="p")
lines(prem.matches$id,prem.matches$Pa,col=4,pch=17,type="p")
legend("topleft",ncol=4,pch=c(1,15,16,17),col=c(1:4),
legend=c("OLS","OL (home)","OL (draw)","OL (away)"),bty="n")
abline(h=0.5,lty=2)
abline(h=0.6,lty=3)
abline(h=0.7,lty=2)
abline(h=0.4,lty=3)
for(i in 1:NROW(prem.matches)) {
if(prem.matches$outcome.final[i]==1) {
lines(prem.matches$id[i],prem.matches$outcome.final[i],col=2,type="p",pch=0)
lines(rep(i,2),c(prem.matches$Ph[i],prem.matches$outcome.final[i]),type="l",lty=2,col="red")
} else if (prem.matches$outcome.final[i]==0.5) {
lines(prem.matches$id[i],prem.matches$outcome.final[i],col=3,type="p",pch=1)
lines(rep(i,2),c(prem.matches$Pd[i],prem.matches$outcome.final[i]),type="l",lty=2,col="green")
} else {
lines(prem.matches$id[i],prem.matches$outcome.final[i],col=4,type="p",pch=2)
lines(rep(i,2),c(prem.matches$Pa[i],prem.matches$outcome.final[i]),type="l",lty=2,col="blue")
}
}
axis(1,at=prem.matches$id,labels=paste(prem.matches$team1,prem.matches$team2,sep=" v "),las=2,cex.axis=0.65)
Outcomes are hollowed variants of their predicted probabilities; red empty circles are home wins, marked on at 1, green empty circles are draws, marked on at 0.5, and blue empty triangles are away wins. All are linked to their associated probability. This drawing doesn’t quite reflect actual forecast errors since each outcome is 1 if it happened, but nonetheless illustrates the weekend’s outcomes.
Next, our Championship forecasts:
champ.matches <- forecast.outcomes[forecast.outcomes$division=="English Championship",]
champ.matches$id <- 1:NROW(champ.matches)
par(mar=c(9,4,4,5)+.1)
plot(champ.matches$id,champ.matches$outcome.forc,xaxt="n",xlab="",ylim=range(0,1),
main="Forecasts of Weekend Championship Matches",
ylab="Probability of Outcome")
lines(champ.matches$id,champ.matches$Ph,col=2,pch=15,type="p")
lines(champ.matches$id,champ.matches$Pd,col=3,pch=16,type="p")
lines(champ.matches$id,champ.matches$Pa,col=4,pch=17,type="p")
legend("topleft",ncol=4,pch=c(1,15,16,17),col=c(1:4),
legend=c("OLS","OL (home)","OL (draw)","OL (away)"),bty="n")
abline(h=0.5,lty=2)
abline(h=0.6,lty=3)
abline(h=0.7,lty=2)
abline(h=0.4,lty=3)
for(i in 1:NROW(champ.matches)) {
if(champ.matches$outcome.final[i]==1) {
lines(champ.matches$id[i],champ.matches$outcome.final[i],col=2,type="p",pch=0)
lines(rep(i,2),c(champ.matches$Ph[i],champ.matches$outcome.final[i]),type="l",lty=2,col="red")
} else if (champ.matches$outcome.final[i]==0.5) {
lines(champ.matches$id[i],champ.matches$outcome.final[i],col=3,type="p",pch=1)
lines(rep(i,2),c(champ.matches$Pd[i],champ.matches$outcome.final[i]),type="l",lty=2,col="green")
} else {
lines(champ.matches$id[i],champ.matches$outcome.final[i],col=4,type="p",pch=2)
lines(rep(i,2),c(champ.matches$Pa[i],champ.matches$outcome.final[i]),type="l",lty=2,col="blue")
}
}
axis(1,at=champ.matches$id,labels=paste(champ.matches$team1,champ.matches$team2,sep=" v "),las=2,cex.axis=0.65)
Next, our League One forecasts:
lg1.matches <- forecast.outcomes[forecast.outcomes$division=="English League One",]
lg1.matches$id <- 1:NROW(lg1.matches)
par(mar=c(9,4,4,5)+.1)
plot(lg1.matches$id,lg1.matches$outcome.forc,xaxt="n",xlab="",ylim=range(0,1),
main="Forecasts of Weekend League One Matches",
ylab="Probability of Outcome")
lines(lg1.matches$id,lg1.matches$Ph,col=2,pch=15,type="p")
lines(lg1.matches$id,lg1.matches$Pd,col=3,pch=16,type="p")
lines(lg1.matches$id,lg1.matches$Pa,col=4,pch=17,type="p")
legend("topleft",ncol=4,pch=c(1,15,16,17),col=c(1:4),
legend=c("OLS","OL (home)","OL (draw)","OL (away)"),bty="n")
abline(h=0.5,lty=2)
abline(h=0.6,lty=3)
abline(h=0.7,lty=2)
abline(h=0.4,lty=3)
for(i in 1:NROW(lg1.matches)) {
if(lg1.matches$outcome.final[i]==1) {
lines(lg1.matches$id[i],lg1.matches$outcome.final[i],col=2,type="p",pch=0)
lines(rep(i,2),c(lg1.matches$Ph[i],lg1.matches$outcome.final[i]),type="l",lty=2,col="red")
} else if (lg1.matches$outcome.final[i]==0.5) {
lines(lg1.matches$id[i],lg1.matches$outcome.final[i],col=3,type="p",pch=1)
lines(rep(i,2),c(lg1.matches$Pd[i],lg1.matches$outcome.final[i]),type="l",lty=2,col="green")
} else {
lines(lg1.matches$id[i],lg1.matches$outcome.final[i],col=4,type="p",pch=2)
lines(rep(i,2),c(lg1.matches$Pa[i],lg1.matches$outcome.final[i]),type="l",lty=2,col="blue")
}
}
axis(1,at=lg1.matches$id,labels=paste(lg1.matches$team1,lg1.matches$team2,sep=" v "),las=2,cex.axis=0.65)
Next, our League Two forecasts:
lg2.matches <- forecast.outcomes[forecast.outcomes$division=="English League Two",]
lg2.matches$id <- 1:NROW(lg2.matches)
par(mar=c(9,4,4,5)+.1)
plot(lg2.matches$id,lg2.matches$outcome.forc,xaxt="n",xlab="",ylim=range(0,1),
main="Forecasts of Weekend League Two Matches",
ylab="Probability of Outcome")
lines(lg2.matches$id,lg2.matches$Ph,col=2,pch=15,type="p")
lines(lg2.matches$id,lg2.matches$Pd,col=3,pch=16,type="p")
lines(lg2.matches$id,lg2.matches$Pa,col=4,pch=17,type="p")
legend("topleft",ncol=4,pch=c(1,15,16,17),col=c(1:4),
legend=c("OLS","OL (home)","OL (draw)","OL (away)"),bty="n")
abline(h=0.5,lty=2)
abline(h=0.6,lty=3)
abline(h=0.7,lty=2)
abline(h=0.4,lty=3)
for(i in 1:NROW(lg2.matches)) {
if(lg2.matches$outcome.final[i]==1) {
lines(lg2.matches$id[i],lg2.matches$outcome.final[i],col=2,type="p",pch=0)
lines(rep(i,2),c(lg2.matches$Ph[i],lg2.matches$outcome.final[i]),type="l",lty=2,col="red")
} else if (lg2.matches$outcome.final[i]==0.5) {
lines(lg2.matches$id[i],lg2.matches$outcome.final[i],col=3,type="p",pch=1)
lines(rep(i,2),c(lg2.matches$Pd[i],lg2.matches$outcome.final[i]),type="l",lty=2,col="green")
} else {
lines(lg2.matches$id[i],lg2.matches$outcome.final[i],col=4,type="p",pch=2)
lines(rep(i,2),c(lg2.matches$Pa[i],lg2.matches$outcome.final[i]),type="l",lty=2,col="blue")
}
}
axis(1,at=lg2.matches$id,labels=paste(lg2.matches$team1,lg2.matches$team2,sep=" v "),las=2,cex.axis=0.65)
Next, our Football Conference forecasts:
conf.matches <- forecast.outcomes[forecast.outcomes$division=="Football Conference",]
conf.matches$id <- 1:NROW(conf.matches)
par(mar=c(9,4,4,5)+.1)
plot(conf.matches$id,conf.matches$outcome.forc,xaxt="n",xlab="",ylim=range(0,1),
main="Forecasts of Weekend Football Conference Matches",
ylab="Probability of Outcome")
lines(conf.matches$id,conf.matches$Ph,col=2,pch=15,type="p")
lines(conf.matches$id,conf.matches$Pd,col=3,pch=16,type="p")
lines(conf.matches$id,conf.matches$Pa,col=4,pch=17,type="p")
legend("topleft",ncol=4,pch=c(1,15,16,17),col=c(1:4),
legend=c("OLS","OL (home)","OL (draw)","OL (away)"),bty="n")
abline(h=0.5,lty=2)
abline(h=0.6,lty=3)
abline(h=0.7,lty=2)
abline(h=0.4,lty=3)
for(i in 1:NROW(conf.matches)) {
if(conf.matches$outcome.final[i]==1) {
lines(conf.matches$id[i],conf.matches$outcome.final[i],col=2,type="p",pch=0)
lines(rep(i,2),c(conf.matches$Ph[i],conf.matches$outcome.final[i]),type="l",lty=2,col="red")
} else if (conf.matches$outcome.final[i]==0.5) {
lines(conf.matches$id[i],conf.matches$outcome.final[i],col=3,type="p",pch=1)
lines(rep(i,2),c(conf.matches$Pd[i],conf.matches$outcome.final[i]),type="l",lty=2,col="green")
} else {
lines(conf.matches$id[i],conf.matches$outcome.final[i],col=4,type="p",pch=2)
lines(rep(i,2),c(conf.matches$Pa[i],conf.matches$outcome.final[i]),type="l",lty=2,col="blue")
}
}
axis(1,at=conf.matches$id,labels=paste(conf.matches$team1,conf.matches$team2,sep=" v "),las=2,cex.axis=0.65)
Numerically it is important to evaluate forecast errors.
For the OLS model:
forecast.outcomes$error <- forecast.outcomes$outcome.final - forecast.outcomes$outcome.forc
forecast.outcomes$error2 <- forecast.outcomes$error^2
forecast.outcomes$aerror <- abs(forecast.outcomes$error)
#summary(forecast.outcomes[forecast.outcomes$tier<=5,c("error","error2","aerror")])
summary(forecast.outcomes[,c("error","error2","aerror")])
## error error2 aerror
## Min. :-0.7538 Min. :0.0005736 Min. :0.02395
## 1st Qu.:-0.5075 1st Qu.:0.0600185 1st Qu.:0.24499
## Median :-0.2347 Median :0.1497362 Median :0.38696
## Mean :-0.1363 Mean :0.1941337 Mean :0.39224
## 3rd Qu.: 0.2695 3rd Qu.:0.2990250 3rd Qu.:0.54683
## Max. : 0.5798 Max. :0.5681587 Max. :0.75376
For the ordered logit we must consider the three outcomes distinctly; for the home win:
forecast.outcomes$error.h <- forecast.outcomes$outcome.final - forecast.outcomes$Ph
forecast.outcomes$error.d <- as.numeric(forecast.outcomes$outcome.final==0.5) - forecast.outcomes$Pd
forecast.outcomes$error.a <- as.numeric(forecast.outcomes$outcome.final==0) - forecast.outcomes$Pa
forecast.outcomes$error.h2 <- forecast.outcomes$error.h^2
forecast.outcomes$error.d2 <- forecast.outcomes$error.d^2
forecast.outcomes$error.a2 <- forecast.outcomes$error.a^2
forecast.outcomes$aerror.h <- abs(forecast.outcomes$error.h)
forecast.outcomes$aerror.d <- abs(forecast.outcomes$error.d)
forecast.outcomes$aerror.a <- abs(forecast.outcomes$error.a)
#summary(forecast.outcomes[forecast.outcomes$tier<=5,c("error","error2","aerror")])
summary(forecast.outcomes[,c("error.h","error.d","error.a")])
## error.h error.d error.a
## Min. :-0.6564784 Min. :-0.2887587 Min. :-0.4648
## 1st Qu.:-0.3541445 1st Qu.:-0.2848767 1st Qu.:-0.3234
## Median :-0.1302982 Median :-0.2529987 Median :-0.1387
## Mean :-0.0008978 Mean : 0.0009217 Mean : 0.1307
## 3rd Qu.: 0.3786564 3rd Qu.: 0.7114603 3rd Qu.: 0.6429
## Max. : 0.7330028 Max. : 0.8324282 Max. : 0.8625
Considering here just the mean errors, the forecasts for home wins were biased downward much more than those for either the draw or away win; a positive forecast error suggests that the event occurs more often than the model predicts. Until we consider more forecasts, it is difficult to say whether this is simply an artifact of one particular week.
We can consider also, by division, forecast errors for our linear regression model:
library(knitr)
aggs <- aggregate(forecast.outcomes[,c("error","error2","aerror")],
by=list(forecast.outcomes$division),FUN=mean,na.rm=T)
kable(aggs[c(4,1,2,3,5),])
| Group.1 | error | error2 | aerror | |
|---|---|---|---|---|
| 4 | English FA Cup | -0.1215287 | 0.1757490 | 0.3804511 |
| 1 | Conference North | -0.2740720 | 0.2253720 | 0.4537562 |
| 2 | Conference South | -0.6969378 | 0.4857223 | 0.6969378 |
| 3 | English Championship | -0.1142830 | 0.1579651 | 0.3536604 |
| 5 | English League One | 0.0151572 | 0.1486721 | 0.3432553 |
The error column is the mean forecast error, the error2 column is the mean squared forecast error, and the aerror column is the absolute forecast error.
We do the same for each outcome for the ordered probit model:
library(knitr)
aggs <- aggregate(forecast.outcomes[,c("error.h","error.h2","aerror.h")],
by=list(forecast.outcomes$division),FUN=mean,na.rm=T)
colnames(aggs) <- gsub("Group.1","Home win",colnames(aggs))
kable(aggs[c(4,1,2,3,5),])
| Home win | error.h | error.h2 | aerror.h | |
|---|---|---|---|---|
| 4 | English FA Cup | 0.0112889 | 0.1699441 | 0.3339466 |
| 1 | Conference North | -0.1411448 | 0.1581857 | 0.3935824 |
| 2 | Conference South | -0.5777477 | 0.3337924 | 0.5777477 |
| 3 | English Championship | 0.0289208 | 0.1463193 | 0.3260094 |
| 5 | English League One | 0.1481869 | 0.1730122 | 0.3712118 |
aggs <- aggregate(forecast.outcomes[,c("error.d","error.d2","aerror.d")],
by=list(forecast.outcomes$division),FUN=mean,na.rm=T)
colnames(aggs) <- gsub("Group.1","Draw",colnames(aggs))
kable(aggs[c(4,1,2,3,5),])
| Draw | error.d | error.d2 | aerror.d | |
|---|---|---|---|---|
| 4 | English FA Cup | 0.2472745 | 0.3471018 | 0.5334998 |
| 1 | Conference North | -0.2615027 | 0.0691910 | 0.2615027 |
| 2 | Conference South | -0.2401833 | 0.0576880 | 0.2401833 |
| 3 | English Championship | -0.0238509 | 0.1857186 | 0.3843234 |
| 5 | English League One | -0.1018791 | 0.1328576 | 0.3224646 |
aggs <- aggregate(forecast.outcomes[,c("error.a","error.a2","aerror.a")],
by=list(forecast.outcomes$division),FUN=mean,na.rm=T)
colnames(aggs) <- gsub("Group.1","Away win",colnames(aggs))
kable(aggs[c(4,1,2,3,5),])
| Away win | error.a | error.a2 | aerror.a | |
|---|---|---|---|---|
| 4 | English FA Cup | -0.0085634 | 0.1767559 | 0.3575612 |
| 1 | Conference North | 0.4026476 | 0.3210464 | 0.5070153 |
| 2 | Conference South | 0.8179310 | 0.6690111 | 0.8179310 |
| 3 | English Championship | 0.1199301 | 0.2250379 | 0.4482415 |
| 5 | English League One | 0.0306153 | 0.1800679 | 0.3830998 |
Finally, we list all the forecasts again with outcomes:
kable(forecast.outcomes[order(forecast.outcomes$date,forecast.outcomes$division),
c("date","division","team1","goals1","goals2","team2",
"outcome.forc","Ph","Pd","Pa","outcome.final","error","error2","aerror")],digits=3)
| date | division | team1 | goals1 | goals2 | team2 | outcome.forc | Ph | Pd | Pa | outcome.final | error | error2 | aerror | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 9 | 2015-03-06 | English Championship | Fulham | 1 | 5 | Bournemouth | 0.382 | 0.237 | 0.268 | 0.495 | 0.0 | -0.382 | 0.146 | 0.382 |
| 57 | 2015-03-07 | Conference North | Hednesford | 1 | 2 | Boston Utd | 0.607 | 0.470 | 0.274 | 0.256 | 0.0 | -0.607 | 0.369 | 0.607 |
| 58 | 2015-03-07 | Conference North | Stalybridge | 0 | 1 | Barrow | 0.485 | 0.332 | 0.288 | 0.380 | 0.0 | -0.485 | 0.235 | 0.485 |
| 59 | 2015-03-07 | Conference North | Tamworth | 2 | 0 | Bradford PA | 0.730 | 0.621 | 0.222 | 0.157 | 1.0 | 0.270 | 0.073 | 0.270 |
| 56 | 2015-03-07 | Conference South | Sutton Utd | 0 | 1 | Hayes & Y | 0.697 | 0.578 | 0.240 | 0.182 | 0.0 | -0.697 | 0.486 | 0.697 |
| 2 | 2015-03-07 | English Championship | Cardiff | 1 | 2 | Charlton | 0.518 | 0.364 | 0.289 | 0.347 | 0.0 | -0.518 | 0.268 | 0.518 |
| 3 | 2015-03-07 | English Championship | Derby | 2 | 2 | Birmingham | 0.576 | 0.455 | 0.278 | 0.267 | 0.5 | -0.076 | 0.006 | 0.076 |
| 4 | 2015-03-07 | English Championship | Nottm Forest | 2 | 1 | Middlesbro | 0.436 | 0.281 | 0.281 | 0.438 | 1.0 | 0.564 | 0.318 | 0.564 |
| 5 | 2015-03-07 | English Championship | Huddersfield | 0 | 2 | Rotherham | 0.540 | 0.390 | 0.287 | 0.323 | 0.0 | -0.540 | 0.292 | 0.540 |
| 7 | 2015-03-07 | English Championship | Wigan | 0 | 1 | Leeds | 0.547 | 0.398 | 0.287 | 0.316 | 0.0 | -0.547 | 0.299 | 0.547 |
| 8 | 2015-03-07 | English Championship | Ipswich | 1 | 1 | Brentford | 0.585 | 0.445 | 0.280 | 0.275 | 0.5 | -0.085 | 0.007 | 0.085 |
| 10 | 2015-03-07 | English Championship | Millwall | 1 | 4 | Norwich | 0.296 | 0.175 | 0.236 | 0.589 | 0.0 | -0.296 | 0.087 | 0.296 |
| 12 | 2015-03-07 | English Championship | Blackpool | 0 | 1 | Sheff Wed | 0.363 | 0.218 | 0.260 | 0.522 | 0.0 | -0.363 | 0.132 | 0.363 |
| 13 | 2015-03-07 | English Championship | Wolves | 2 | 2 | Watford | 0.434 | 0.276 | 0.280 | 0.444 | 0.5 | 0.066 | 0.004 | 0.066 |
| 62 | 2015-03-07 | English FA Cup | Aston Villa | 2 | 0 | West Brom | 0.482 | 0.326 | 0.288 | 0.387 | 1.0 | 0.518 | 0.268 | 0.518 |
| 63 | 2015-03-07 | English FA Cup | Bradford | 0 | 0 | Reading | 0.615 | 0.484 | 0.271 | 0.245 | 0.5 | -0.115 | 0.013 | 0.115 |
| 14 | 2015-03-07 | English League One | Crawley | 1 | 2 | Bristol C | 0.291 | 0.171 | 0.233 | 0.596 | 0.0 | -0.291 | 0.085 | 0.291 |
| 15 | 2015-03-07 | English League One | Yeovil | 2 | 1 | Oldham | 0.445 | 0.288 | 0.283 | 0.429 | 1.0 | 0.555 | 0.308 | 0.555 |
| 17 | 2015-03-07 | English League One | Rochdale | 2 | 1 | Colchester | 0.755 | 0.654 | 0.207 | 0.139 | 1.0 | 0.245 | 0.060 | 0.245 |
| 18 | 2015-03-07 | English League One | Crewe | 2 | 0 | Scunthorpe | 0.507 | 0.351 | 0.289 | 0.361 | 1.0 | 0.493 | 0.243 | 0.493 |
| 20 | 2015-03-07 | English League One | Peterborough | 1 | 0 | Leyton Orient | 0.706 | 0.585 | 0.237 | 0.178 | 1.0 | 0.294 | 0.086 | 0.294 |
| 21 | 2015-03-07 | English League One | Sheff Utd | 1 | 2 | Fleetwood | 0.686 | 0.568 | 0.244 | 0.188 | 0.0 | -0.686 | 0.471 | 0.686 |
| 22 | 2015-03-07 | English League One | Barnsley | 3 | 0 | Walsall | 0.629 | 0.493 | 0.268 | 0.238 | 1.0 | 0.371 | 0.138 | 0.371 |
| 23 | 2015-03-07 | English League One | Gillingham | 1 | 1 | Doncaster | 0.538 | 0.389 | 0.287 | 0.323 | 0.5 | -0.038 | 0.001 | 0.038 |
| 24 | 2015-03-07 | English League One | Swindon | 3 | 0 | Notts Co | 0.700 | 0.592 | 0.235 | 0.174 | 1.0 | 0.300 | 0.090 | 0.300 |
| 25 | 2015-03-07 | English League One | Coventry | 2 | 3 | Port Vale | 0.508 | 0.354 | 0.289 | 0.357 | 0.0 | -0.508 | 0.258 | 0.508 |
| 26 | 2015-03-07 | English League One | MK Dons | 0 | 2 | Preston | 0.336 | 0.197 | 0.249 | 0.555 | 0.0 | -0.336 | 0.113 | 0.336 |
| 27 | 2015-03-07 | English League Two | Stevenage | 2 | 1 | Newport Co | 0.613 | 0.478 | 0.272 | 0.249 | 1.0 | 0.387 | 0.150 | 0.387 |
| 28 | 2015-03-07 | English League Two | Carlisle | 1 | 3 | Exeter | 0.580 | 0.439 | 0.281 | 0.281 | 0.0 | -0.580 | 0.336 | 0.580 |
| 29 | 2015-03-07 | English League Two | Hartlepool | 0 | 1 | Burton | 0.370 | 0.228 | 0.264 | 0.507 | 0.0 | -0.370 | 0.137 | 0.370 |
| 30 | 2015-03-07 | English League Two | Tranmere | 2 | 3 | Dag & Red | 0.474 | 0.317 | 0.287 | 0.396 | 0.0 | -0.474 | 0.225 | 0.474 |
| 31 | 2015-03-07 | English League Two | Luton | 2 | 3 | Morecambe | 0.724 | 0.607 | 0.228 | 0.165 | 0.0 | -0.724 | 0.524 | 0.724 |
| 32 | 2015-03-07 | English League Two | AFC W’bledon | 2 | 1 | York | 0.461 | 0.302 | 0.285 | 0.413 | 1.0 | 0.539 | 0.291 | 0.539 |
| 33 | 2015-03-07 | English League Two | Plymouth | 2 | 0 | Northampton | 0.463 | 0.304 | 0.285 | 0.410 | 1.0 | 0.537 | 0.288 | 0.537 |
| 34 | 2015-03-07 | English League Two | Bury | 0 | 1 | Oxford | 0.748 | 0.636 | 0.216 | 0.148 | 0.0 | -0.748 | 0.560 | 0.748 |
| 35 | 2015-03-07 | English League Two | Shrewsbury | 1 | 1 | Cambridge U | 0.741 | 0.630 | 0.218 | 0.152 | 0.5 | -0.241 | 0.058 | 0.241 |
| 36 | 2015-03-07 | English League Two | Accrington | 1 | 1 | Portsmouth | 0.524 | 0.369 | 0.289 | 0.342 | 0.5 | -0.024 | 0.001 | 0.024 |
| 37 | 2015-03-07 | English League Two | Cheltenham | 1 | 1 | Mansfield | 0.417 | 0.260 | 0.276 | 0.465 | 0.5 | 0.083 | 0.007 | 0.083 |
| 38 | 2015-03-07 | English League Two | Southend | 2 | 2 | Wycombe | 0.580 | 0.433 | 0.282 | 0.285 | 0.5 | -0.080 | 0.006 | 0.080 |
| 1 | 2015-03-07 | English Premier | QPR | 1 | 2 | Tottenham | 0.354 | 0.210 | 0.256 | 0.534 | 0.0 | -0.354 | 0.125 | 0.354 |
| 39 | 2015-03-07 | Football Conference | Braintree | 1 | 0 | Gateshead | 0.490 | 0.335 | 0.288 | 0.377 | 1.0 | 0.510 | 0.260 | 0.510 |
| 40 | 2015-03-07 | Football Conference | Wrexham | 1 | 0 | Chester | 0.537 | 0.388 | 0.288 | 0.325 | 1.0 | 0.463 | 0.214 | 0.463 |
| 41 | 2015-03-07 | Football Conference | Alfreton | 2 | 0 | Kidderminster | 0.523 | 0.376 | 0.288 | 0.335 | 1.0 | 0.477 | 0.228 | 0.477 |
| 42 | 2015-03-07 | Football Conference | Barnet | 1 | 3 | Forest Green | 0.613 | 0.484 | 0.271 | 0.245 | 0.0 | -0.613 | 0.376 | 0.613 |
| 43 | 2015-03-07 | Football Conference | Southport | 0 | 0 | Nuneaton | 0.658 | 0.534 | 0.256 | 0.210 | 0.5 | -0.158 | 0.025 | 0.158 |
| 44 | 2015-03-07 | Football Conference | Halifax | 0 | 0 | Dartford | 0.731 | 0.633 | 0.217 | 0.150 | 0.5 | -0.231 | 0.053 | 0.231 |
| 45 | 2015-03-07 | Football Conference | Macclesfield | 0 | 0 | Aldershot | 0.735 | 0.625 | 0.221 | 0.155 | 0.5 | -0.235 | 0.055 | 0.235 |
| 46 | 2015-03-07 | Football Conference | Dover | 1 | 2 | Lincoln | 0.654 | 0.535 | 0.256 | 0.209 | 0.0 | -0.654 | 0.428 | 0.654 |
| 49 | 2015-03-07 | Football Conference | Bristol R | 1 | 2 | Eastleigh | 0.692 | 0.569 | 0.244 | 0.187 | 0.0 | -0.692 | 0.479 | 0.692 |
| 50 | 2015-03-07 | Football Conference | Woking | 1 | 2 | Grimsby | 0.553 | 0.405 | 0.286 | 0.309 | 0.0 | -0.553 | 0.306 | 0.553 |
| 53 | 2015-03-07 | Football Conference | Torquay | 0 | 1 | Telford | 0.754 | 0.656 | 0.206 | 0.137 | 0.0 | -0.754 | 0.568 | 0.754 |
| 60 | 2015-03-07 | Ryman Premier | Lewes | 1 | 0 | Kingstonian | 0.420 | 0.267 | 0.278 | 0.455 | 1.0 | 0.580 | 0.336 | 0.580 |
| 64 | 2015-03-08 | English FA Cup | Liverpool | 0 | 0 | Blackburn | 0.829 | 0.732 | 0.168 | 0.100 | 0.5 | -0.329 | 0.108 | 0.329 |
| 48 | 2015-03-08 | Football Conference | Welling | 0 | 1 | Altrincham | 0.416 | 0.263 | 0.276 | 0.461 | 0.0 | -0.416 | 0.173 | 0.416 |
| 65 | 2015-03-09 | English FA Cup | Man Utd | 1 | 2 | Arsenal | 0.560 | 0.413 | 0.285 | 0.302 | 0.0 | -0.560 | 0.313 | 0.560 |
| 6 | 2015-03-10 | English Championship | Reading | 2 | 1 | Brighton | 0.526 | 0.369 | 0.289 | 0.342 | 1.0 | 0.474 | 0.224 | 0.474 |
| 16 | 2015-03-10 | English League One | Coventry | 1 | 1 | Bradford | 0.428 | 0.272 | 0.279 | 0.450 | 0.5 | 0.072 | 0.005 | 0.072 |
| 19 | 2015-03-10 | English League One | Yeovil | 0 | 3 | Bristol C | 0.274 | 0.160 | 0.225 | 0.615 | 0.0 | -0.274 | 0.075 | 0.274 |
| 47 | 2015-03-10 | Football Conference | Aldershot | 1 | 1 | Halifax | 0.536 | 0.387 | 0.288 | 0.325 | 0.5 | -0.036 | 0.001 | 0.036 |
| 51 | 2015-03-10 | Football Conference | Wrexham | 0 | 0 | Southport | 0.640 | 0.513 | 0.263 | 0.224 | 0.5 | -0.140 | 0.020 | 0.140 |
| 52 | 2015-03-10 | Football Conference | Gateshead | 1 | 1 | Welling | 0.802 | 0.704 | 0.183 | 0.114 | 0.5 | -0.302 | 0.091 | 0.302 |
| 54 | 2015-03-10 | Football Conference | Kidderminster | 1 | 3 | Eastleigh | 0.507 | 0.352 | 0.289 | 0.359 | 0.0 | -0.507 | 0.257 | 0.507 |
| 55 | 2015-03-10 | Football Conference | Torquay | 0 | 1 | Chester | 0.559 | 0.421 | 0.284 | 0.295 | 0.0 | -0.559 | 0.312 | 0.559 |
| 61 | 2015-03-10 | Football Conference | Macclesfield | 1 | 0 | Telford | 0.810 | 0.716 | 0.176 | 0.108 | 1.0 | 0.190 | 0.036 | 0.190 |
| 11 | 2015-03-11 | English Championship | Blackburn | 1 | 0 | Bolton | 0.667 | 0.543 | 0.253 | 0.204 | 1.0 | 0.333 | 0.111 | 0.333 |