Updated: 2020-08-18 09:09:37 PDT

Original version created 2020-05-03. See below for revision history

Intro


The spread of the SARS-COV-19 viral disease defies description in terms of a single statistic. To be informed about personal risk we need to know more than how many people have been sick at a national level or even state level, we need information about how many people are currently sick in our communicty and how the number of sick people is changing is changing at a state and even county level. It can be hard to find this information.

This analysis seeks to fill partially that gap. It includes:
1. Several national pictures of disease trends to enable a “large pattern” view of how disease has and is evolving a on country-wide scale.
2. A per capita analysis of disease spread.
3. A more granular analysis of regions, states, and counties to shed light on local disease pattern evolution.
4. Details of the time evolution of growth statistics.


This computed document is constantly evolving, so please “refresh” for the latest updates. If you have suggestions or comments please reach out on twitter @WinstonOnData or facebook.

National Maps

There are plenty of online maps. I’ve deprecated a few of the ones I’ve computer since they are no longer relevant to the analysis of disease trends. They are published:
- here.

Cases and Deaths per Capita

This chart reveals a more interesting pattern of disease spread. I haven’t found one of these online.
Groups of cities (e.g. Chicago, Indianapolis, and Detroit) and paths between connected communities are clearly visible.

Reproduction and Control

\(R_e\) is a measure of disease growth. For recovery to begin disease growth must turn from positive to negative (i.e. from \(log_2\)(\(R_e\)) > 0 to \(log_2\)(\(R_e\)) < 0).

After achieving negative growth growth, the next phase of recovery is maintaining consistently lower levels of disease. Control can be measured as a ratio of current disease levels to maximum disease levels. If disease levels are currently at a maximum, control is 0 %.

\[ control = 100 \times (1 - \frac{active \space disease}{max(active \space disease)} ) \% \]

State Level Data


County Level Data


state R_e cases daily_cases
Kansas 1.15 35213 519
Vermont 1.15 1504 7
Maine 1.12 4176 18
North Dakota 1.12 8680 154
Montana 1.11 5868 131
Delaware 1.10 16247 114
Missouri 1.10 61576 1150
West Virginia 1.10 8682 141
Wyoming 1.10 3297 37
California 1.09 637751 9107
Iowa 1.09 52874 538
Kentucky 1.09 41931 733
South Dakota 1.09 10147 105
Illinois 1.08 209004 1941
Nebraska 1.07 30612 296
Indiana 1.06 83376 1002
Michigan 1.06 102645 773
Texas 1.06 570509 8107
Idaho 1.05 28573 484
Oregon 1.04 23616 314
Wisconsin 1.04 66920 836
Arkansas 1.03 52875 718
Georgia 1.03 222136 3282
Minnesota 1.03 65785 696
New Jersey 1.03 189153 396
Ohio 1.03 109872 1154
Pennsylvania 1.03 130042 820
Virginia 1.03 85862 851
Oklahoma 1.02 49381 768
Tennessee 1.02 132926 1802
Washington 1.02 70820 716
Florida 1.01 582010 6431
New York 1.01 430792 656
Nevada 1.00 62488 813
North Carolina 1.00 146979 1432
Maryland 0.99 101764 736
New Hampshire 0.99 7024 25
Rhode Island 0.99 18689 90
Utah 0.99 47152 386
Connecticut 0.97 50921 84
New Mexico 0.97 23674 171
Colorado 0.96 53729 378
Mississippi 0.96 73532 818
Alabama 0.95 110590 1216
South Carolina 0.95 108177 1010
Louisiana 0.92 139976 1182
Arizona 0.89 195455 1017
Massachusetts 0.78 122087 195

National Statistics

Total & Active Cases, and Deaths

These trend charts show the national disease statistics. The raw data are shown. since these showdaily trends that are systematically related ot the M-F work week, possibly due to reporting delays, numbers showsn

Mortality Trend

\(R_e\) Trend

National effective reproduction rate

Distribution of \(R_e\) Values

Howver, there is a wiude dirstubtion of \(R_e\) across regions and counties. The distributions in the graph below looks roughly symmetrical because the x-scale is logarithmic.

Distribution of Baseline Control

Similarly for disease control, when take at the county level, there is a wide distribution of Baseline Control.

Regional Snapshots

Regional snapshots reveal the highly nuanced behavior of disease spread. Each snaphot includes multiple states and selected counties.

How to read the charts

There are four components:
1. State Maps show the number of active cases and with the Reproduction rate encoded as color.
2. State Graphs State-wide trend graphs.
3. Severity Ranking These is a table of counties where the highest number of new cases are expected. Severity is a compounded function \(f(R, cases(t))\). This is useful for finding new (often unexpected) “hot spots.” Added per capita rates.
4. County Graphs encode the R-value in the active number of cases. R is the Reproduction Rate.

(NOTE: R < 1 implies a shrinking number of active cases, R > 1 implies a growing number of active cases. For R = 1, active cases are stable. ).


Washington and Oregon

WA
county ST case rank severity R_e cases cases/100k daily cases
King WA 1 1 1.0 17853 830 160
Grant WA 9 2 1.2 1878 1980 45
Pierce WA 3 3 1.0 6880 800 86
Spokane WA 5 4 1.0 4917 990 71
Clallam WA 24 5 1.4 161 220 7
Chelan WA 10 6 1.1 1566 2070 32
Yakima WA 2 7 1.0 11309 4540 48
Snohomish WA 4 8 1.0 6594 840 50
Clark WA 8 10 1.0 2296 490 30
Franklin WA 7 11 1.0 3866 4260 29
Benton WA 6 20 0.9 4058 2090 20
OR
county ST case rank severity R_e cases cases/100k daily cases
Multnomah OR 1 1 1.0 5403 680 66
Marion OR 3 2 1.1 3231 960 42
Washington OR 2 3 1.0 3388 580 39
Malheur OR 6 4 1.1 925 3040 19
Clackamas OR 5 5 1.1 1702 420 22
Jackson OR 9 6 1.1 578 270 15
Umatilla OR 4 7 0.9 2500 3250 28
Lane OR 8 15 0.9 640 170 8
Deschutes OR 7 16 0.9 655 360 7
## Warning: Removed 1 rows containing missing values (geom_col).

California

CA
county ST case rank severity R_e cases cases/100k daily cases
Los Angeles CA 1 1 1.0 225050 2230 2165
Riverside CA 2 2 1.1 47458 1990 734
San Bernardino CA 4 3 1.1 41469 1940 671
Sacramento CA 11 4 1.2 14252 940 365
Stanislaus CA 12 5 1.2 12680 2350 318
Fresno CA 7 6 1.1 20688 2120 425
Orange CA 3 7 1.1 44124 1390 506
San Joaquin CA 9 9 1.2 15284 2090 296
Alameda CA 8 10 1.2 15376 940 304
Kern CA 6 13 1.0 27289 3090 431
San Diego CA 5 17 1.0 35228 1070 342

Four Corners

AZ
county ST case rank severity R_e cases cases/100k daily cases
Pima AZ 2 1 1.1 19793 1940 240
Maricopa AZ 1 2 0.8 130691 3070 564
Pinal AZ 4 3 0.9 8782 2090 40
Yuma AZ 3 4 0.9 11964 5760 47
Yavapai AZ 10 5 1.0 2188 970 23
Mohave AZ 6 6 0.9 3402 1650 23
Cochise AZ 11 7 0.9 1797 1420 16
Coconino AZ 8 8 1.0 3197 2280 13
Navajo AZ 5 11 0.9 5476 5040 12
Apache AZ 7 12 0.9 3266 4570 11
Santa Cruz AZ 9 13 0.9 2717 5830 6
CO
county ST case rank severity R_e cases cases/100k daily cases
El Paso CO 4 1 1.0 5598 810 58
Adams CO 3 2 1.0 6896 1390 53
Denver CO 1 3 0.9 10656 1540 54
Arapahoe CO 2 4 1.0 7642 1200 41
Jefferson CO 5 5 1.0 4459 780 34
Larimer CO 9 6 1.0 1714 510 22
Mesa CO 16 7 1.1 378 250 9
Weld CO 6 8 1.0 3854 1310 18
Douglas CO 8 9 1.0 1844 560 13
Boulder CO 7 11 0.9 2178 680 14
UT
county ST case rank severity R_e cases cases/100k daily cases
Salt Lake UT 1 1 1.0 22001 1960 168
Utah UT 2 2 1.0 9526 1610 106
Davis UT 3 3 1.0 3447 1010 29
Weber UT 4 4 1.0 2986 1210 25
Washington UT 5 5 0.9 2632 1640 17
Wasatch UT 10 6 1.1 602 1970 5
Box Elder UT 12 7 1.0 409 770 5
Cache UT 6 8 0.9 1993 1630 9
Summit UT 7 9 1.1 736 1820 3
Tooele UT 9 10 1.0 621 950 5
San Juan UT 8 17 0.6 660 4320 1
NM
county ST case rank severity R_e cases cases/100k daily cases
Lea NM 7 1 1.1 954 1360 22
Eddy NM 13 2 1.2 380 660 10
Doña Ana NM 4 3 1.0 2690 1250 29
Chaves NM 11 4 1.1 560 860 15
Bernalillo NM 1 5 0.9 5402 800 31
Lincoln NM 17 6 1.2 158 810 4
McKinley NM 2 7 1.0 4128 5670 9
San Juan NM 3 8 1.0 3106 2440 7
Santa Fe NM 9 9 1.0 708 480 8
Sandoval NM 5 12 0.8 1169 830 4
Cibola NM 8 17 0.5 727 2690 4
Otero NM 6 18 0.7 1111 1690 1

Mid-Atlantic

NJ
county ST case rank severity R_e cases cases/100k daily cases
Bergen NJ 1 1 1.1 21452 2310 52
Passaic NJ 5 2 1.1 18096 3590 36
Hudson NJ 3 3 1.1 20070 3000 30
Union NJ 6 4 1.1 17046 3080 22
Camden NJ 9 5 1.0 8881 1750 33
Gloucester NJ 16 6 1.1 3446 1180 25
Essex NJ 2 7 1.0 20188 2540 28
Middlesex NJ 4 8 1.0 18329 2220 27
Monmouth NJ 8 9 1.0 10607 1700 26
Ocean NJ 7 11 1.0 10841 1830 21
PA
county ST case rank severity R_e cases cases/100k daily cases
Philadelphia PA 1 1 1.0 32373 2050 129
York PA 13 2 1.1 2913 660 47
Allegheny PA 4 3 1.0 9547 780 84
Delaware PA 3 4 1.0 9782 1740 64
Lancaster PA 6 5 1.0 6261 1160 44
Montgomery PA 2 6 1.0 10439 1270 41
Fayette PA 25 7 1.1 653 490 20
Berks PA 7 10 1.0 5610 1350 29
Bucks PA 5 12 1.0 7446 1190 31
Chester PA 8 15 1.0 5360 1040 27
Lehigh PA 9 18 1.0 5092 1400 16
MD
county ST case rank severity R_e cases cases/100k daily cases
Prince George’s MD 1 1 1.0 25281 2790 140
Baltimore city MD 4 2 1.0 13656 2220 140
Montgomery MD 2 3 1.0 19148 1840 94
Baltimore MD 3 4 0.9 14170 1710 123
Anne Arundel MD 5 5 0.9 7753 1370 50
Howard MD 6 6 1.0 4116 1310 34
Washington MD 12 7 1.2 1126 750 13
Harford MD 9 8 1.0 2176 870 26
Frederick MD 7 9 1.1 3226 1300 17
Charles MD 8 10 1.0 2190 1390 21
VA
county ST case rank severity R_e cases cases/100k daily cases
Wise VA 45 1 1.5 253 650 18
Fairfax VA 1 2 1.0 17062 1490 88
Floyd VA 71 3 1.4 129 820 10
Prince William VA 2 4 1.0 9965 2180 68
Virginia Beach city VA 4 5 0.9 5539 1230 74
Loudoun VA 3 6 1.0 5540 1440 34
Greensville VA 26 7 1.2 582 4990 14
Chesterfield VA 5 8 1.0 4675 1380 42
Henrico VA 6 9 1.0 4156 1280 37
Norfolk city VA 7 11 0.9 4064 1650 47
Arlington VA 8 12 1.1 3239 1400 22
Newport News city VA 9 19 1.0 2006 1110 23
WV
county ST case rank severity R_e cases cases/100k daily cases
Logan WV 5 1 1.4 371 1100 23
Kanawha WV 1 2 1.1 1099 590 22
Raleigh WV 6 3 1.1 313 410 10
Wood WV 9 4 1.2 281 330 4
Cabell WV 4 5 1.1 466 490 10
Mercer WV 11 6 1.1 247 410 7
Monongalia WV 2 7 1.1 990 940 5
Berkeley WV 3 8 1.0 742 650 6
Jefferson WV 7 18 1.1 305 540 1
Ohio WV 8 22 0.9 282 660 2
DE
county ST case rank severity R_e cases cases/100k daily cases
Sussex DE 2 1 1.2 6178 2810 42
Kent DE 3 2 1.2 2487 1420 24
New Castle DE 1 3 1.0 7582 1370 47

Deep South

AL
county ST case rank severity R_e cases cases/100k daily cases
Jefferson AL 1 1 1.0 14601 2210 169
Mobile AL 2 2 0.9 11497 2770 172
Clarke AL 31 3 1.1 953 3910 36
Montgomery AL 3 4 1.0 7402 3260 72
Madison AL 4 5 0.9 5918 1660 53
Baldwin AL 6 6 1.0 4025 1930 49
Tuscaloosa AL 5 7 1.0 4664 2260 43
Shelby AL 7 8 1.0 3793 1800 39
Lee AL 9 12 1.0 3060 1920 27
Marshall AL 8 27 0.8 3392 3570 21
MS
county ST case rank severity R_e cases cases/100k daily cases
Lee MS 10 1 1.1 1770 2080 42
Harrison MS 3 2 1.0 2867 1410 48
Union MS 36 3 1.1 796 2810 22
DeSoto MS 2 4 0.9 3991 2270 44
Stone MS 72 5 1.2 263 1430 10
Tippah MS 53 6 1.1 452 2060 12
Washington MS 9 7 1.0 1849 3930 24
Hinds MS 1 8 0.9 6002 2480 43
Jackson MS 5 10 0.9 2544 1790 32
Forrest MS 8 12 0.9 1954 2590 20
Rankin MS 6 14 0.9 2451 1620 20
Madison MS 4 20 0.9 2579 2490 17
Jones MS 7 30 0.9 2020 2950 15
LA
county ST case rank severity R_e cases cases/100k daily cases
East Baton Rouge LA 2 1 0.9 13062 2940 116
Jefferson LA 1 2 0.9 15958 3670 87
St. Tammany LA 7 3 1.0 5646 2240 58
Lafayette LA 4 4 0.9 8195 3410 84
Tangipahoa LA 9 5 1.0 3778 2890 41
Ouachita LA 8 6 1.0 5202 3330 45
Orleans LA 3 7 0.9 11063 2840 42
Caddo LA 6 12 0.9 7023 2830 44
Calcasieu LA 5 27 0.8 7144 3570 35

FL and GA

FL
county ST case rank severity R_e cases cases/100k daily cases
Lafayette FL 51 1 2.8 994 11370 206
Miami-Dade FL 1 2 1.0 147493 5430 1750
Suwannee FL 33 3 1.4 2350 5350 125
Broward FL 2 4 0.9 67487 3530 619
Baker FL 46 5 1.3 1264 4550 77
Palm Beach FL 3 6 0.9 39682 2740 338
Orange FL 5 7 1.0 33679 2550 251
Hillsborough FL 4 8 0.9 34682 2520 280
Polk FL 9 9 1.0 15679 2340 178
Duval FL 6 10 1.0 24962 2700 203
Lee FL 8 14 1.0 17524 2440 121
Pinellas FL 7 15 0.9 18928 1980 135
GA
county ST case rank severity R_e cases cases/100k daily cases
Gwinnett GA 2 1 1.0 22013 2440 289
Fulton GA 1 2 1.0 22467 2200 285
Cobb GA 3 3 1.0 15349 2060 242
DeKalb GA 4 4 1.0 15315 2060 188
Richmond GA 8 5 1.1 5214 2590 117
Cherokee GA 11 6 1.1 4107 1700 91
Bibb GA 10 7 1.1 4144 2700 71
Clayton GA 7 9 1.0 5604 2010 76
Chatham GA 6 12 1.0 6413 2230 90
Hall GA 5 14 1.0 6656 3400 76
Muscogee GA 9 18 1.0 5147 2620 55

Texas & Oklahoma

TX
county ST case rank severity R_e cases cases/100k daily cases
Stephens TX 169 1 2.3 116 1240 16
Dallas TX 2 2 1.3 62247 2410 1054
Collin TX 12 3 1.3 10060 1070 336
Fort Bend TX 10 4 1.2 12638 1710 440
Harris TX 1 5 1.0 94404 2050 1157
Tarrant TX 4 6 1.1 38140 1890 620
Nueces TX 9 7 1.1 17600 4880 364
El Paso TX 8 8 1.1 18529 2210 286
Hidalgo TX 6 10 1.0 22316 2630 317
Travis TX 5 12 1.0 24483 2030 212
Cameron TX 7 16 0.8 19264 4570 349
Bexar TX 3 26 0.8 44511 2310 166
OK
county ST case rank severity R_e cases cases/100k daily cases
Oklahoma OK 1 1 1.0 11854 1520 167
Tulsa OK 2 2 1.0 11686 1820 162
Beckham OK 51 3 1.6 90 400 6
Osage OK 17 4 1.4 541 1140 18
Garfield OK 13 5 1.2 617 990 22
Lincoln OK 35 6 1.3 247 710 12
Pottawatomie OK 15 7 1.2 558 780 15
Rogers OK 5 10 1.0 1162 1280 25
Cleveland OK 3 15 0.9 3281 1190 34
Wagoner OK 7 17 1.0 991 1270 18
Canadian OK 4 18 1.0 1360 990 19
Comanche OK 9 26 1.0 896 730 8
McCurtain OK 8 36 1.0 897 2720 5
Texas OK 6 38 1.1 1080 5110 3

Michigan & Wisconsin

MI
county ST case rank severity R_e cases cases/100k daily cases
Oakland MI 2 1 1.1 16570 1320 132
Macomb MI 3 2 1.1 11691 1350 132
Muskegon MI 13 3 1.3 1515 880 38
Wayne MI 1 4 1.0 29281 1660 135
Saginaw MI 8 5 1.1 2207 1140 25
Kent MI 4 6 0.9 7845 1220 40
Bay MI 21 7 1.1 722 690 13
Ottawa MI 9 14 1.0 1949 690 14
Washtenaw MI 6 16 1.0 3195 870 17
Genesee MI 5 22 0.9 3772 920 15
Jackson MI 7 37 0.9 2472 1560 4
WI
county ST case rank severity R_e cases cases/100k daily cases
Iron WI 53 1 2.1 82 1430 1
Milwaukee WI 1 2 1.0 22440 2350 176
Waukesha WI 2 3 1.1 4916 1230 91
Sawyer WI 48 4 1.4 116 710 8
Dane WI 3 5 1.0 4887 920 48
Washington WI 11 6 1.1 1293 960 31
Green WI 38 7 1.3 217 590 8
Walworth WI 8 9 1.1 1505 1460 22
Brown WI 4 10 1.0 4535 1750 36
Outagamie WI 9 17 1.0 1418 770 22
Racine WI 5 18 0.9 3738 1910 31
Kenosha WI 6 29 0.9 2821 1680 20
Rock WI 7 38 1.0 1632 1010 8

Minnesota, North Dakota, and South Dakota

MN
county ST case rank severity R_e cases cases/100k daily cases
Hennepin MN 1 1 1.0 20712 1680 195
Ramsey MN 2 2 1.0 8190 1510 88
McLeod MN 29 3 1.3 272 760 14
Dakota MN 3 4 1.0 4897 1170 67
Watonwan MN 21 5 1.4 390 3550 10
Anoka MN 4 6 1.1 4065 1170 53
Washington MN 6 7 1.1 2382 940 36
Scott MN 9 9 1.0 1751 1220 27
Olmsted MN 7 12 1.0 1855 1210 16
Stearns MN 5 17 1.0 2968 1890 10
Nobles MN 8 21 1.1 1793 8210 4
SD
county ST case rank severity R_e cases cases/100k daily cases
Minnehaha SD 1 1 1.0 4653 2490 31
Yankton SD 9 2 1.4 149 660 5
Lawrence SD 19 3 1.3 78 310 4
Codington SD 7 4 1.3 163 580 4
Lincoln SD 3 5 1.0 719 1310 11
Charles Mix SD 11 6 1.4 112 1200 1
Pennington SD 2 7 1.0 950 870 8
Brown SD 5 8 1.1 480 1240 6
Brookings SD 8 9 1.1 156 460 3
Union SD 6 15 0.9 226 1490 2
Beadle SD 4 17 1.0 599 3260 1
ND
county ST case rank severity R_e cases cases/100k daily cases
Stark ND 5 1 1.3 405 1310 20
Burleigh ND 2 2 1.1 1428 1520 34
McLean ND 13 3 1.4 110 1140 7
Grand Forks ND 3 4 1.2 785 1120 14
Morton ND 4 5 1.1 474 1550 15
Ward ND 7 6 1.2 278 400 8
Cass ND 1 7 1.0 3146 1810 14
Benson ND 8 8 1.1 174 2530 5
Mountrail ND 9 9 1.1 157 1550 3
Williams ND 6 10 1.0 310 910 5

Connecticut, Massachusetts, and Rhode Island

CT
county ST case rank severity R_e cases cases/100k daily cases
Fairfield CT 1 1 1.0 18252 1930 30
New Haven CT 2 2 1.0 13358 1550 21
Hartford CT 3 3 0.9 12931 1450 17
New London CT 5 4 1.0 1493 560 6
Middlesex CT 6 5 1.0 1421 870 3
Windham CT 8 6 0.9 765 660 4
Litchfield CT 4 7 1.0 1636 890 3
Tolland CT 7 8 0.5 1065 700 1
MA
county ST case rank severity R_e cases cases/100k daily cases
Suffolk MA 2 1 0.8 22155 2800 42
Middlesex MA 1 2 0.8 26712 1670 42
Essex MA 3 3 0.8 18049 2310 33
Norfolk MA 5 4 0.7 10762 1540 20
Worcester MA 4 5 0.7 13751 1670 17
Bristol MA 6 6 0.8 9467 1690 16
Plymouth MA 7 7 0.8 9322 1820 10
Hampden MA 8 8 0.7 7675 1640 10
Barnstable MA 9 10 0.6 1814 850 2
RI
county ST case rank severity R_e cases cases/100k daily cases
Providence RI 1 1 1.0 15770 2490 78
Kent RI 2 2 0.9 1561 950 8
Washington RI 3 3 1.0 625 500 2
Newport RI 4 4 0.9 408 490 2
Bristol RI 5 5 0.9 325 660 1

New York

NY
county ST case rank severity R_e cases cases/100k daily cases
New York City NY 1 1 1 235138 2780 327
Suffolk NY 2 2 1 44221 2970 55
Westchester NY 4 3 1 36487 3770 34
Monroe NY 8 4 1 5193 700 30
Erie NY 7 5 1 9193 1000 40
Nassau NY 3 6 1 43976 3240 41
Onondaga NY 10 7 1 3684 790 13
Orange NY 6 8 1 11269 2980 12
Dutchess NY 9 9 1 4695 1600 12
Rockland NY 5 10 1 14010 4330 9

Vermont, New Hampshire, and Maine

VT
county ST case rank severity R_e cases cases/100k daily cases
Chittenden VT 1 1 1.3 755 470 3
Windham VT 3 2 1.2 106 250 0
Bennington VT 5 3 1.0 93 260 1
Franklin VT 2 4 1.2 120 240 0
Addison VT 6 5 1.2 76 210 0
Rutland VT 4 6 0.8 103 170 1
ME
county ST case rank severity R_e cases cases/100k daily cases
Penobscot ME 4 1 1.4 175 120 3
Cumberland ME 1 2 1.0 2129 730 5
Androscoggin ME 3 3 1.1 579 540 2
York ME 2 4 0.9 692 340 2
Kennebec ME 5 5 0.7 173 140 0
NH
county ST case rank severity R_e cases cases/100k daily cases
Hillsborough NH 1 1 1.0 3947 960 12
Grafton NH 7 2 1.5 107 120 0
Rockingham NH 2 3 0.9 1735 570 6
Strafford NH 4 4 0.9 372 290 2
Cheshire NH 6 5 1.0 108 140 1
Merrimack NH 3 6 1.0 474 320 1
Belknap NH 5 7 1.0 122 200 1
Carroll NH 8 8 0.8 97 200 0

Carolinas

SC
county ST case rank severity R_e cases cases/100k daily cases
Richland SC 3 1 1.0 9527 2330 97
Charleston SC 1 2 1.0 12996 3290 85
Spartanburg SC 8 3 1.0 4448 1470 46
Florence SC 10 4 1.0 3844 2770 54
Aiken SC 15 5 1.0 2181 1310 41
Anderson SC 13 6 1.0 2656 1360 40
Lancaster SC 22 7 1.1 1397 1560 25
Berkeley SC 6 8 1.0 4500 2150 40
Greenville SC 2 10 0.9 11397 2290 64
Horry SC 4 11 0.9 8960 2790 48
Lexington SC 5 12 1.0 5263 1840 37
Beaufort SC 7 13 0.9 4471 2450 49
York SC 9 14 0.9 3858 1490 39
NC
county ST case rank severity R_e cases cases/100k daily cases
Mecklenburg NC 1 1 0.9 23472 2230 157
Wake NC 2 2 1.0 12914 1230 111
Pitt NC 16 3 1.1 2323 1310 42
Union NC 9 4 1.1 3441 1520 45
Cumberland NC 8 5 1.0 3482 1050 52
Stanly NC 36 6 1.1 1263 2070 28
Guilford NC 4 7 1.0 6028 1150 52
Forsyth NC 5 8 1.0 5604 1510 45
Gaston NC 6 9 1.0 3611 1670 38
Durham NC 3 10 1.0 6480 2110 39
Johnston NC 7 38 0.9 3509 1840 27

North-Rockies

MT
county ST case rank severity R_e cases cases/100k daily cases
Rosebud MT 14 1 1.8 84 910 9
Yellowstone MT 1 2 1.1 1556 990 37
Phillips MT 10 3 1.2 113 2740 11
Big Horn MT 3 4 1.0 537 4010 14
Flathead MT 4 5 1.1 413 420 11
Missoula MT 5 6 1.1 393 340 9
Gallatin MT 2 7 0.9 1015 970 8
Silver Bow MT 9 9 1.0 115 330 4
Lewis and Clark MT 8 10 1.0 182 270 3
Cascade MT 7 11 0.9 185 230 2
Lake MT 6 13 0.8 189 630 1
WY
county ST case rank severity R_e cases cases/100k daily cases
Carbon WY 9 1 1.5 146 940 7
Washakie WY 11 2 1.3 103 1270 5
Campbell WY 7 3 1.3 149 310 3
Albany WY 12 4 1.3 96 250 1
Fremont WY 1 5 1.1 526 1310 3
Sheridan WY 13 6 1.1 86 290 2
Natrona WY 6 7 1.0 250 310 2
Sweetwater WY 5 8 1.0 278 630 2
Laramie WY 2 9 0.9 524 540 3
Park WY 8 10 0.9 147 500 2
Teton WY 3 11 0.7 392 1700 2
Uinta WY 4 13 0.6 282 1370 1
ID
county ST case rank severity R_e cases cases/100k daily cases
Ada ID 1 1 1.1 10148 2280 145
Bonneville ID 5 2 1.1 1468 1310 57
Canyon ID 2 3 1.0 6555 3090 104
Shoshone ID 22 4 1.2 181 1440 10
Bannock ID 8 5 1.2 544 640 14
Kootenai ID 3 6 1.0 2044 1330 29
Latah ID 23 7 1.3 142 360 5
Twin Falls ID 4 9 1.0 1566 1870 22
Jerome ID 9 13 1.0 536 2290 8
Cassia ID 7 21 0.9 560 2370 5
Blaine ID 6 24 1.1 586 2660 1

Midwest

OH
county ST case rank severity R_e cases cases/100k daily cases
Madison OH 33 1 1.4 615 1400 32
Franklin OH 1 2 1.0 19793 1550 179
Cuyahoga OH 2 3 1.0 14492 1160 123
Hamilton OH 3 4 1.0 10227 1260 75
Butler OH 7 5 1.1 3229 850 39
Montgomery OH 5 6 1.0 4756 890 50
Lucas OH 4 7 0.9 5821 1350 60
Summit OH 6 10 1.0 3859 710 39
Mahoning OH 9 22 1.0 2714 1170 20
Marion OH 8 54 0.9 2973 4550 6
IL
county ST case rank severity R_e cases cases/100k daily cases
Cook IL 1 1 1.0 116668 2230 697
Morgan IL 29 2 1.4 424 1230 25
Madison IL 9 3 1.2 3172 1190 79
Will IL 5 4 1.1 10020 1450 102
Logan IL 46 5 1.4 212 730 14
DuPage IL 3 6 1.0 13030 1400 106
Lake IL 2 7 1.0 13408 1910 94
St. Clair IL 6 10 1.1 4943 1880 71
Kane IL 4 12 1.0 10390 1960 76
McHenry IL 8 26 1.0 3483 1130 34
Winnebago IL 7 46 0.9 3882 1360 13
IN
county ST case rank severity R_e cases cases/100k daily cases
Marion IN 1 1 1.0 17009 1800 138
Lake IN 2 2 1.1 8220 1690 81
Henry IN 36 3 1.4 506 1040 15
Vigo IN 21 4 1.2 882 820 35
Hamilton IN 6 5 1.1 3204 1010 55
Allen IN 4 6 1.1 4340 1170 55
Sullivan IN 59 7 1.4 198 950 12
St. Joseph IN 5 8 1.1 3926 1460 58
Elkhart IN 3 10 1.0 5252 2580 41
Vanderburgh IN 7 13 1.0 2232 1230 35
Hendricks IN 8 18 1.0 2064 1280 20
Johnson IN 9 28 1.0 1897 1250 14

Tennessee and Kentucky

TN
county ST case rank severity R_e cases cases/100k daily cases
Shelby TN 1 1 1.0 25456 2720 247
Davidson TN 2 2 1.0 24422 3570 188
Hamilton TN 4 3 1.1 6874 1920 92
Knox TN 5 4 1.0 5676 1240 107
Weakley TN 36 5 1.2 662 1970 34
Rutherford TN 3 6 1.0 7153 2330 77
Overton TN 67 7 1.3 286 1300 15
Williamson TN 6 10 1.1 3897 1780 46
Bradley TN 9 12 1.0 2202 2110 36
Wilson TN 8 19 1.0 2523 1900 31
Sumner TN 7 20 1.0 3678 2050 32
KY
county ST case rank severity R_e cases cases/100k daily cases
Jefferson KY 1 1 1.2 10045 1310 235
Lewis KY 76 2 1.8 85 630 7
Fayette KY 2 3 1.1 4552 1430 90
Madison KY 10 4 1.2 679 760 25
Clay KY 40 5 1.4 190 920 5
Johnson KY 75 6 1.4 89 390 5
Hardin KY 8 7 1.1 780 720 19
Christian KY 9 8 1.1 765 1060 15
Warren KY 3 10 1.0 2821 2230 24
Kenton KY 4 12 1.0 1560 950 17
Daviess KY 6 21 1.0 836 840 9
Shelby KY 7 22 1.0 827 1770 8
Boone KY 5 29 0.9 1168 900 9

Missouri and Arkansas

MO
county ST case rank severity R_e cases cases/100k daily cases
St. Louis MO 1 1 1.0 16910 1690 255
St. Francois MO 19 2 1.4 566 850 27
Washington MO 54 3 1.6 139 560 10
Greene MO 6 4 1.2 2004 690 60
Cole MO 18 5 1.3 582 760 25
St. Charles MO 3 6 1.1 4752 1220 77
Jackson MO 4 7 1.0 4714 680 89
St. Louis city MO 2 9 1.0 5723 1840 70
Jefferson MO 5 10 1.1 2140 960 46
Boone MO 7 16 1.1 1628 920 29
Jasper MO 8 29 1.1 1374 1150 13
Clay MO 9 31 1.0 1177 490 18
AR
county ST case rank severity R_e cases cases/100k daily cases
Lee AR 19 1 1.6 944 10040 8
Pulaski AR 2 2 1.0 6212 1580 89
Lincoln AR 11 3 1.3 1306 9540 12
Saline AR 12 4 1.1 1287 1090 32
Chicot AR 18 5 1.1 953 8800 32
Sebastian AR 4 6 1.0 2524 1980 47
Poinsett AR 31 7 1.2 374 1550 17
Hot Spring AR 6 12 1.1 1639 4890 14
Jefferson AR 5 13 1.0 1736 2470 26
Pope AR 9 14 1.1 1461 2300 18
Craighead AR 7 17 1.0 1535 1450 25
Crittenden AR 8 18 1.0 1508 3080 19
Benton AR 3 22 0.9 4964 1920 25
Washington AR 1 27 0.8 6480 2840 24

Conclusions

It’s in control some places, but not all places. And many places are completely out-of-control.

Stay Safe!
Be Diligent!
…and PLEASE WEAR A MASK



Built with R Version 4.0.2
This document took 452.5 seconds to compute.
2020-08-18 09:17:09

version history

Today is 2020-08-18.
90 days ago: Multiple states.
82 days ago: \(R_e\) computation.
79 days ago: created color coding for \(R_e\) plots.
74 days ago: Reduced \(t_d\) from 14 to 12 days. 14 was the upper range of what most people are using. Wanted slightly higher bandwidth.
74 days ago: “persistence” time evolution.
67 days ago: “In control” mapping.
67 days ago: “Severity” tables to county analysis. Severity is computed from the number of new cases expected at current \(R_e\) for 6 days in the future. It does not trend \(R_e\), which could be a future enhancement.
59 days ago: Added census API functionality to compute per capita infection rates. Reduced spline spar = 0.65.
54 days ago: Added Per Capita US Map.
52 days ago: Deprecated national map.
48 days ago: added state “Hot 10” analysis.
43 days ago: cleaned up county analysis to show cases and actual data. Moved “Hot 10” analysis to separate web page. Moved “Hot 10” here.
41 days ago: added per capita disease and mortaility to state-level analysis.
29 days ago: changed to county boundaries on national map for per capita disease.
24 days ago: corrected factor of two error in death trend data.
20 days ago: removed “contained and uncontained” analysis, replacing it with county level control map.
15 days ago: added county level “baseline control” and \(R-e\) maps.
11 days ago: fixed normalization error on total disease stats plot.

Appendix: Methods

Disease data are sourced from the NYTimes Github Repo. Population data are sourced from the US Census census.gov

Case growth is assumed to follow a linear-partial differential equation. This type of model is useful in populations where there is still very low immunity and high susceptibility.

\[\frac{\partial}{\partial t} cases(t, t_d) = a \times cases(t, t_d) \] \(cases(t)\) is the number of active cases at \(t\) dependent on recent history, \(t_d\). The constant \(a\) and has units of \(time^{-1}\) and is typically computed on a daily basis

Solution results are often expressed in terms of the Effective Reproduction Rate \(R_e\), where \[a \space = \space ln(R_e).\]

\(R_e\) has a simple interpretation; when \(R_e \space > \space 1\) the number of \(cases(t)\) increases (exponentially) while when \(R_e \space < \space 1\) the number of \(cases(t)\) decreases.

Practically, computing \(a\) can be extremely complicated, depending on how functionally it is related to history \(t_d\). And guessing functional forms can be as much art as science. To avoid that, let’s keep things simple…

Assuming a straight-forward flat time of latent infection \(t_d\) = 12 days, with \[f(t) = \int_{t - t_d}^{t}cases(t')\; dt' ,\] \(R_e\) reduces to a simple computation

\[R_e(t) = \frac{cases(t)}{\int_{t - t_d}^{t}cases(t')\; dt'} \times t_d .\]

Typical range of \(t_d\) range \(7 \geq t_d \geq 14\). The only other numerical treatment is, in order to reduce noise the data, I smooth case data with a reticulated spline to compute derivatives.


DISCLAIMER: Results are for entertainment purposes only. Please consult local authorities for official data and forecasts.