PA ~ RE Pre-COVID

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ roaming_entropy + time_of_day + precipi + mean_temp +  
##     distance + dow + (1 | subject)
##    Data: df[which(df$lockdown == 0), ]
## 
## REML criterion at convergence: 41650.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9243 -0.5331  0.0465  0.6093  3.4187 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 111.7    10.57   
##  Residual             294.4    17.16   
## Number of obs: 4826, groups:  subject, 251
## 
## Fixed effects:
##                    Estimate  Std. Error          df t value    Pr(>|t|)    
## (Intercept)       63.557370    2.613406 4670.431042  24.320     < 2e-16 ***
## roaming_entropy    0.622125    0.303622 4743.966238   2.049    0.040516 *  
## time_of_day        0.040150    0.014628 4621.874974   2.745    0.006081 ** 
## precipi            1.933098    1.770036 4610.655066   1.092    0.274836    
## mean_temp         -0.147603    0.031175 4692.538551  -4.735 0.000002259 ***
## distance           0.002097    0.000716 4624.696719   2.930    0.003411 ** 
## dowMonday         -3.517568    1.027297 4588.652966  -3.424    0.000622 ***
## dowSaturday        5.211242    1.044068 4590.837985   4.991 0.000000622 ***
## dowSunday         -1.102697    1.029303 4595.748201  -1.071    0.284089    
## dowThursday       -3.505592    0.972934 4582.232944  -3.603    0.000318 ***
## dowTuesday        -7.917715    0.931007 4589.355944  -8.504     < 2e-16 ***
## dowWednesday      -4.325523    0.973888 4580.325197  -4.441 0.000009144 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) rmng_n tm_f_d precip mn_tmp distnc dwMndy dwStrd dwSndy
## romng_ntrpy -0.241                                                        
## time_of_day -0.166  0.019                                                 
## precipi     -0.079  0.040  0.022                                          
## mean_temp   -0.855 -0.070 -0.008 -0.054                                   
## distance    -0.030 -0.224  0.005 -0.014  0.088                            
## dowMonday   -0.463  0.049  0.031  0.201  0.272  0.026                     
## dowSaturday -0.170  0.119 -0.004  0.157 -0.068 -0.047  0.475              
## dowSunday   -0.408  0.208 -0.006  0.163  0.170 -0.086  0.553  0.491       
## dowThursday -0.261  0.041 -0.002  0.218  0.038  0.003  0.546  0.515  0.536
## dowTuesday  -0.413  0.026 -0.011  0.093  0.223  0.022  0.593  0.506  0.569
## dowWednesdy -0.278  0.039  0.002  0.223  0.057  0.003  0.550  0.512  0.538
##             dwThrs dwTsdy
## romng_ntrpy              
## time_of_day              
## precipi                  
## mean_temp                
## distance                 
## dowMonday                
## dowSaturday              
## dowSunday                
## dowThursday              
## dowTuesday   0.570       
## dowWednesdy  0.563  0.571
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ roaming_entropy + dow + (1 | subject)
##    Data: df[which(df$lockdown == 0), ]
## 
## REML criterion at convergence: 41670.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0272 -0.5305  0.0428  0.6062  3.3341 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 112.3    10.60   
##  Residual             296.7    17.23   
## Number of obs: 4826, groups:  subject, 251
## 
## Fixed effects:
##                   Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       54.05200    1.23733 1685.40030  43.684  < 2e-16 ***
## roaming_entropy    0.72019    0.29642 4744.28947   2.430 0.015153 *  
## dowMonday         -2.47259    0.96683 4584.48221  -2.557 0.010577 *  
## dowSaturday        4.90563    1.03238 4592.34180   4.752 2.08e-06 ***
## dowSunday         -0.05831    0.99731 4595.01955  -0.058 0.953375    
## dowThursday       -3.50035    0.95195 4586.04687  -3.677 0.000239 ***
## dowTuesday        -7.00127    0.90576 4587.48237  -7.730 1.32e-14 ***
## dowWednesday      -4.24039    0.95079 4582.31865  -4.460 8.40e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) rmng_n dwMndy dwStrd dwSndy dwThrs dwTsdy
## romng_ntrpy -0.618                                          
## dowMonday   -0.450  0.066                                   
## dowSaturday -0.448  0.105  0.498                            
## dowSunday   -0.522  0.204  0.520  0.497                     
## dowThursday -0.439  0.038  0.534  0.504  0.522              
## dowTuesday  -0.463  0.041  0.561  0.529  0.549  0.570       
## dowWednesdy -0.438  0.036  0.533  0.502  0.521  0.540  0.567

PA ~ NL Pre_COVID

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ novel_locations + time_of_day + precipi + mean_temp +  
##     distance + dow + (1 | subject)
##    Data: df[which(df$lockdown == 0), ]
## 
## REML criterion at convergence: 39616.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8798 -0.5304  0.0507  0.6156  3.4694 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 108.5    10.42   
##  Residual             291.4    17.07   
## Number of obs: 4594, groups:  subject, 249
## 
## Fixed effects:
##                     Estimate   Std. Error           df t value Pr(>|t|)    
## (Intercept)       61.8175174    2.6014142 4454.4355737  23.763  < 2e-16 ***
## novel_locations    0.0286850    0.0047144 4481.7217276   6.085 1.27e-09 ***
## time_of_day        0.0479237    0.0149239 4394.4844406   3.211 0.001331 ** 
## precipi            1.8103321    1.7820815 4384.6142583   1.016 0.309756    
## mean_temp         -0.1283149    0.0313610 4469.8918309  -4.092 4.36e-05 ***
## distance           0.0007938    0.0007410 4409.0524697   1.071 0.284140    
## dowMonday         -2.5607596    1.0732482 4361.4498928  -2.386 0.017076 *  
## dowSaturday        4.7744618    1.0597375 4357.3001669   4.505 6.80e-06 ***
## dowSunday         -0.9926783    1.0383992 4360.0896535  -0.956 0.339141    
## dowThursday       -3.2934031    1.0056530 4354.7604672  -3.275 0.001065 ** 
## dowTuesday        -7.2862356    0.9655927 4365.9010052  -7.546 5.44e-14 ***
## dowWednesday      -3.7903010    1.0211630 4353.4114705  -3.712 0.000208 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) nvl_lc tm_f_d precip mn_tmp distnc dwMndy dwStrd dwSndy
## novel_lctns -0.199                                                        
## time_of_day -0.167  0.003                                                 
## precipi     -0.081  0.023  0.021                                          
## mean_temp   -0.893  0.089 -0.003 -0.054                                   
## distance    -0.014 -0.340  0.008 -0.011  0.039                            
## dowMonday   -0.474  0.110  0.036  0.211  0.270 -0.004                     
## dowSaturday -0.150 -0.018 -0.008  0.173 -0.067 -0.012  0.483              
## dowSunday   -0.392  0.100 -0.013  0.181  0.186 -0.071  0.570  0.500       
## dowThursday -0.272  0.079 -0.004  0.235  0.036 -0.015  0.559  0.533  0.562
## dowTuesday  -0.435  0.136 -0.009  0.115  0.219 -0.019  0.606  0.522  0.600
## dowWednesdy -0.293  0.080 -0.001  0.233  0.063 -0.019  0.556  0.522  0.558
##             dwThrs dwTsdy
## novel_lctns              
## time_of_day              
## precipi                  
## mean_temp                
## distance                 
## dowMonday                
## dowSaturday              
## dowSunday                
## dowThursday              
## dowTuesday   0.591       
## dowWednesdy  0.575  0.584
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ novel_locations + dow + (1 | subject)
##    Data: df[which(df$lockdown == 0), ]
## 
## REML criterion at convergence: 39624.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9377 -0.5274  0.0471  0.6145  3.3998 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 108.8    10.43   
##  Residual             293.0    17.12   
## Number of obs: 4594, groups:  subject, 249
## 
## Fixed effects:
##                    Estimate  Std. Error          df t value Pr(>|t|)    
## (Intercept)       53.905965    1.035147  988.406262  52.076  < 2e-16 ***
## novel_locations    0.032212    0.004418 4471.170362   7.291 3.61e-13 ***
## dowMonday         -1.657958    1.006525 4354.882321  -1.647 0.099587 .  
## dowSaturday        4.392322    1.044728 4359.466973   4.204 2.67e-05 ***
## dowSunday         -0.210766    1.000153 4357.080986  -0.211 0.833105    
## dowThursday       -3.289092    0.978782 4357.309943  -3.360 0.000785 ***
## dowTuesday        -6.452577    0.936310 4361.290879  -6.891 6.31e-12 ***
## dowWednesday      -3.676834    0.992490 4354.407092  -3.705 0.000214 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) nvl_lc dwMndy dwStrd dwSndy dwThrs dwTsdy
## novel_lctns -0.294                                          
## dowMonday   -0.534  0.086                                   
## dowSaturday -0.486 -0.021  0.504                            
## dowSunday   -0.531  0.058  0.530  0.507                     
## dowThursday -0.546  0.071  0.546  0.519  0.546              
## dowTuesday  -0.584  0.115  0.573  0.541  0.573  0.589       
## dowWednesdy -0.536  0.067  0.536  0.510  0.537  0.549  0.575

RE ~ Lockdown

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: roaming_entropy ~ lockdown + time_of_day + precipi + mean_temp +  
##     distance + dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 18641.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.8348 -0.6179  0.0793  0.6454  5.1186 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 0.08582  0.2929  
##  Residual             0.60872  0.7802  
## Number of obs: 7753, groups:  subject, 253
## 
## Fixed effects:
##                   Estimate    Std. Error            df t value  Pr(>|t|)    
## (Intercept)     2.21786652    0.07546790 5399.99653015  29.388   < 2e-16 ***
## lockdown       -1.37954466    0.02011854 7711.86125867 -68.571   < 2e-16 ***
## time_of_day    -0.00087166    0.00052184 7582.93613988  -1.670  0.094891 .  
## precipi        -0.03893910    0.04380624 7553.54393056  -0.889  0.374088    
## mean_temp       0.00355873    0.00091914 6969.35694737   3.872  0.000109 ***
## distance        0.00054505    0.00003115 7590.00753956  17.500   < 2e-16 ***
## dowMonday      -0.14759023    0.03433725 7551.59721678  -4.298 0.0000174 ***
## dowSaturday    -0.11893190    0.03550144 7529.99681236  -3.350  0.000812 ***
## dowSunday      -0.45553383    0.03530311 7532.20017698 -12.904   < 2e-16 ***
## dowThursday    -0.05585909    0.03386655 7524.40620754  -1.649  0.099110 .  
## dowTuesday     -0.05041249    0.03356106 7535.92899443  -1.502  0.133110    
## dowWednesday   -0.08757940    0.03425624 7520.25490578  -2.557  0.010590 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) lckdwn tm_f_d precip mn_tmp distnc dwMndy dwStrd dwSndy
## lockdown    -0.295                                                        
## time_of_day -0.210  0.006                                                 
## precipi     -0.018 -0.200  0.021                                          
## mean_temp   -0.879  0.249  0.004 -0.049                                   
## distance    -0.067  0.112  0.009  0.000  0.039                            
## dowMonday   -0.385  0.001  0.035  0.053  0.153  0.019                     
## dowSaturday -0.227 -0.036 -0.001 -0.042  0.001 -0.017  0.513              
## dowSunday   -0.315  0.019 -0.010  0.016  0.093 -0.041  0.531  0.500       
## dowThursday -0.265 -0.029 -0.003  0.100  0.018  0.008  0.548  0.518  0.527
## dowTuesday  -0.351  0.079 -0.004 -0.032  0.116  0.016  0.558  0.525  0.538
## dowWednesdy -0.270  0.006  0.002  0.046  0.028  0.008  0.539  0.512  0.520
##             dwThrs dwTsdy
## lockdown                 
## time_of_day              
## precipi                  
## mean_temp                
## distance                 
## dowMonday                
## dowSaturday              
## dowSunday                
## dowThursday              
## dowTuesday   0.550       
## dowWednesdy  0.544  0.545
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: roaming_entropy ~ lockdown + dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 53526.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8403 -0.6337  0.0284  0.6205  8.4065 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 0.1156   0.3401  
##  Residual             0.6932   0.8326  
## Number of obs: 21369, groups:  subject, 258
## 
## Fixed effects:
##                 Estimate  Std. Error          df  t value Pr(>|t|)    
## (Intercept)      2.50470     0.02662   516.19037   94.077  < 2e-16 ***
## lockdown        -1.27575     0.01190 21334.61677 -107.235  < 2e-16 ***
## dowMonday       -0.18135     0.02137 21111.43889   -8.486  < 2e-16 ***
## dowSaturday     -0.18942     0.02166 21111.34791   -8.746  < 2e-16 ***
## dowSunday       -0.41955     0.02152 21113.94144  -19.497  < 2e-16 ***
## dowThursday     -0.07784     0.02104 21111.51043   -3.699 0.000217 ***
## dowTuesday      -0.15346     0.02107 21112.98565   -7.283 3.38e-13 ***
## dowWednesday    -0.11672     0.02111 21111.58753   -5.528 3.27e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) lckdwn dwMndy dwStrd dwSndy dwThrs dwTsdy
## lockdown    -0.179                                          
## dowMonday   -0.395 -0.006                                   
## dowSaturday -0.386 -0.023  0.487                            
## dowSunday   -0.395  0.008  0.490  0.483                     
## dowThursday -0.400 -0.010  0.501  0.495  0.497              
## dowTuesday  -0.402  0.000  0.500  0.494  0.497  0.508       
## dowWednesdy -0.402  0.004  0.499  0.492  0.496  0.507  0.506

NL ~ Lockdown

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: novel_locations ~ lockdown + time_of_day + precipi + mean_temp +  
##     distance + dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 79500.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -8.6285 -0.5126 -0.1831  0.2609 13.2830 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  198.8   14.10   
##  Residual             2198.6   46.89   
## Number of obs: 7519, groups:  subject, 249
## 
## Fixed effects:
##                 Estimate  Std. Error          df t value Pr(>|t|)    
## (Intercept)    78.611456    4.459834 4847.185721  17.627  < 2e-16 ***
## lockdown      -34.021748    1.215104 7505.242271 -27.999  < 2e-16 ***
## time_of_day    -0.003031    0.031810 7374.672773  -0.095 0.924096    
## precipi        -2.180774    2.637353 7343.532036  -0.827 0.408332    
## mean_temp      -0.270487    0.054684 5645.313114  -4.946 7.78e-07 ***
## distance        0.056120    0.001876 7391.240283  29.921  < 2e-16 ***
## dowMonday     -13.781707    2.115396 7332.440214  -6.515 7.75e-11 ***
## dowSaturday     7.183744    2.164039 7304.876243   3.320 0.000906 ***
## dowSunday     -12.051352    2.157280 7310.531725  -5.586 2.40e-08 ***
## dowThursday    -8.204777    2.075927 7300.711055  -3.952 7.81e-05 ***
## dowTuesday    -16.635046    2.055771 7313.381439  -8.092 6.83e-16 ***
## dowWednesday   -9.916710    2.120360 7295.825704  -4.677 2.96e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) lckdwn tm_f_d precip mn_tmp distnc dwMndy dwStrd dwSndy
## lockdown    -0.300                                                        
## time_of_day -0.215  0.004                                                 
## precipi     -0.021 -0.195  0.021                                          
## mean_temp   -0.882  0.246  0.004 -0.050                                   
## distance    -0.069  0.115  0.008  0.001  0.040                            
## dowMonday   -0.388 -0.001  0.038  0.055  0.141  0.017                     
## dowSaturday -0.239 -0.028 -0.002 -0.037 -0.004 -0.017  0.521              
## dowSunday   -0.324  0.024 -0.013  0.021  0.086 -0.040  0.537  0.512       
## dowThursday -0.273 -0.023 -0.005  0.103  0.011  0.008  0.554  0.530  0.538
## dowTuesday  -0.358  0.083 -0.003 -0.027  0.105  0.016  0.562  0.537  0.548
## dowWednesdy -0.279  0.005  0.000  0.047  0.025  0.006  0.540  0.519  0.526
##             dwThrs dwTsdy
## lockdown                 
## time_of_day              
## precipi                  
## mean_temp                
## distance                 
## dowMonday                
## dowSaturday              
## dowSunday                
## dowThursday              
## dowTuesday   0.560       
## dowWednesdy  0.549  0.550
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: novel_locations ~ lockdown + dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 212395.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.0767 -0.5183 -0.2060  0.2239 18.3149 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  288.8   16.99   
##  Residual             2817.9   53.08   
## Number of obs: 19652, groups:  subject, 254
## 
## Fixed effects:
##                Estimate Std. Error         df t value      Pr(>|t|)    
## (Intercept)     65.0478     1.5097   746.9771  43.088       < 2e-16 ***
## lockdown       -29.6016     0.7852 19643.2075 -37.698       < 2e-16 ***
## dowMonday      -15.9660     1.4212 19401.6594 -11.234       < 2e-16 ***
## dowSaturday      2.7597     1.4404 19402.7826   1.916        0.0554 .  
## dowSunday       -8.5579     1.4314 19403.8752  -5.979 0.00000000229 ***
## dowThursday     -7.9942     1.3972 19400.3991  -5.721 0.00000001072 ***
## dowTuesday     -13.3625     1.4000 19402.1480  -9.545       < 2e-16 ***
## dowWednesday   -12.0328     1.4028 19400.6017  -8.578       < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) lckdwn dwMndy dwStrd dwSndy dwThrs dwTsdy
## lockdown    -0.227                                          
## dowMonday   -0.461 -0.008                                   
## dowSaturday -0.451 -0.026  0.486                            
## dowSunday   -0.462  0.008  0.489  0.482                     
## dowThursday -0.468 -0.010  0.501  0.494  0.497              
## dowTuesday  -0.471  0.001  0.500  0.493  0.496  0.508       
## dowWednesdy -0.470  0.005  0.499  0.492  0.495  0.507  0.506

PA ~ Lockdown

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ lockdown + time_of_day + precipi + mean_temp + distance +  
##     dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 66812.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7505 -0.5570  0.0514  0.6011  4.0606 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 123.1    11.09   
##  Residual             297.9    17.26   
## Number of obs: 7753, groups:  subject, 253
## 
## Fixed effects:
##                  Estimate   Std. Error           df t value Pr(>|t|)    
## (Intercept)    55.2533166    1.7993688 4202.6423583  30.707  < 2e-16 ***
## lockdown       -6.1871107    0.4480669 7610.6826562 -13.808  < 2e-16 ***
## time_of_day     0.0241138    0.0115688 7531.1857722   2.084 0.037159 *  
## precipi        -1.8720810    0.9704045 7515.1716223  -1.929 0.053747 .  
## mean_temp      -0.0130543    0.0209011 7736.6886756  -0.625 0.532269    
## distance        0.0027902    0.0006905 7531.5766827   4.041 5.38e-05 ***
## dowMonday      -2.5388763    0.7606206 7514.6427501  -3.338 0.000848 ***
## dowSaturday     3.5035114    0.7860270 7505.2806861   4.457 8.42e-06 ***
## dowSunday       0.2051902    0.7817024 7508.4750933   0.262 0.792950    
## dowThursday    -2.6067522    0.7497389 7503.2754527  -3.477 0.000510 ***
## dowTuesday     -4.6947823    0.7431834 7509.5074100  -6.317 2.82e-10 ***
## dowWednesday   -2.7102946    0.7582951 7501.2961739  -3.574 0.000354 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) lckdwn tm_f_d precip mn_tmp distnc dwMndy dwStrd dwSndy
## lockdown    -0.280                                                        
## time_of_day -0.196  0.007                                                 
## precipi     -0.015 -0.200  0.020                                          
## mean_temp   -0.839  0.251  0.005 -0.049                                   
## distance    -0.061  0.112  0.009  0.000  0.037                            
## dowMonday   -0.364  0.003  0.035  0.053  0.157  0.019                     
## dowSaturday -0.210 -0.037 -0.002 -0.043  0.000 -0.017  0.512              
## dowSunday   -0.297  0.019 -0.010  0.015  0.096 -0.041  0.531  0.500       
## dowThursday -0.246 -0.029 -0.004  0.099  0.018  0.008  0.548  0.518  0.527
## dowTuesday  -0.331  0.079 -0.004 -0.033  0.119  0.016  0.558  0.525  0.538
## dowWednesdy -0.252  0.006  0.002  0.046  0.028  0.008  0.538  0.512  0.520
##             dwThrs dwTsdy
## lockdown                 
## time_of_day              
## precipi                  
## mean_temp                
## distance                 
## dowMonday                
## dowSaturday              
## dowSunday                
## dowThursday              
## dowTuesday   0.550       
## dowWednesdy  0.544  0.545
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ lockdown + dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 66814.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7596 -0.5577  0.0455  0.6018  4.0514 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 123.0    11.09   
##  Residual             298.8    17.29   
## Number of obs: 7753, groups:  subject, 253
## 
## Fixed effects:
##               Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)    55.0482     0.9109  573.1100  60.434  < 2e-16 ***
## lockdown       -6.4777     0.4236 7609.1116 -15.293  < 2e-16 ***
## dowMonday      -2.4670     0.7503 7505.7572  -3.288 0.001014 ** 
## dowSaturday     3.4947     0.7863 7508.9983   4.445 8.94e-06 ***
## dowSunday       0.4408     0.7783 7507.7673   0.566 0.571135    
## dowThursday    -2.4620     0.7468 7507.8901  -3.296 0.000984 ***
## dowTuesday     -4.7083     0.7387 7506.3417  -6.374 1.95e-10 ***
## dowWednesday   -2.6488     0.7582 7505.1034  -3.494 0.000479 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) lckdwn dwMndy dwStrd dwSndy dwThrs dwTsdy
## lockdown    -0.157                                          
## dowMonday   -0.446 -0.029                                   
## dowSaturday -0.422 -0.045  0.523                            
## dowSunday   -0.435  0.004  0.527  0.503                     
## dowThursday -0.450 -0.016  0.550  0.526  0.529              
## dowTuesday  -0.466  0.046  0.554  0.528  0.535  0.557       
## dowWednesdy -0.447  0.008  0.540  0.515  0.520  0.542  0.548

NA ~ Lockdown

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: NA_avg ~ lockdown + time_of_day + precipi + mean_temp + distance +  
##     dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 67166.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5853 -0.6257 -0.0664  0.5594  4.4828 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 208.3    14.43   
##  Residual             307.3    17.53   
## Number of obs: 7753, groups:  subject, 253
## 
## Fixed effects:
##                  Estimate   Std. Error           df t value    Pr(>|t|)    
## (Intercept)    40.3598640    1.9227581 2973.7340300  20.991     < 2e-16 ***
## lockdown        3.8025421    0.4558335 7570.7580217   8.342     < 2e-16 ***
## time_of_day    -0.0238897    0.0117555 7515.1508516  -2.032     0.04217 *  
## precipi         1.9196759    0.9858470 7503.6677665   1.947     0.05154 .  
## mean_temp       0.0119724    0.0213693 7719.1565000   0.560     0.57532    
## distance       -0.0022198    0.0007017 7514.2214403  -3.163     0.00157 ** 
## dowMonday       1.2524059    0.7727188 7503.1967918   1.621     0.10511    
## dowSaturday    -3.1316546    0.7984350 7497.1913075  -3.922 0.000088512 ***
## dowSunday      -0.8155057    0.7940847 7500.8703770  -1.027     0.30447    
## dowThursday     1.9764571    0.7615585 7496.4907083   2.595     0.00947 ** 
## dowTuesday      3.7478867    0.7549628 7501.1071802   4.964 0.000000705 ***
## dowWednesday    2.0234321    0.7702299 7495.1191918   2.627     0.00863 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) lckdwn tm_f_d precip mn_tmp distnc dwMndy dwStrd dwSndy
## lockdown    -0.267                                                        
## time_of_day -0.186  0.007                                                 
## precipi     -0.014 -0.200  0.020                                          
## mean_temp   -0.803  0.251  0.005 -0.049                                   
## distance    -0.058  0.112  0.009  0.000  0.037                            
## dowMonday   -0.347  0.003  0.036  0.053  0.158  0.019                     
## dowSaturday -0.200 -0.037 -0.002 -0.043  0.000 -0.018  0.512              
## dowSunday   -0.283  0.019 -0.010  0.015  0.096 -0.041  0.531  0.500       
## dowThursday -0.234 -0.029 -0.004  0.099  0.018  0.008  0.548  0.519  0.527
## dowTuesday  -0.316  0.079 -0.004 -0.033  0.119  0.016  0.558  0.525  0.538
## dowWednesdy -0.240  0.006  0.002  0.046  0.028  0.008  0.538  0.512  0.520
##             dwThrs dwTsdy
## lockdown                 
## time_of_day              
## precipi                  
## mean_temp                
## distance                 
## dowMonday                
## dowSaturday              
## dowSunday                
## dowThursday              
## dowTuesday   0.550       
## dowWednesdy  0.544  0.545
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: NA_avg ~ lockdown + dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 67161.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5735 -0.6284 -0.0673  0.5554  4.5122 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 208.5    14.44   
##  Residual             307.9    17.55   
## Number of obs: 7753, groups:  subject, 253
## 
## Fixed effects:
##               Estimate Std. Error        df t value    Pr(>|t|)    
## (Intercept)    40.5399     1.0871  436.9273  37.291     < 2e-16 ***
## lockdown        4.0654     0.4307 7571.0567   9.439     < 2e-16 ***
## dowMonday       1.1761     0.7618 7498.7955   1.544      0.1227    
## dowSaturday    -3.1100     0.7983 7501.0105  -3.895 0.000098856 ***
## dowSunday      -1.0190     0.7902 7501.7729  -1.290      0.1973    
## dowThursday     1.8249     0.7583 7500.9624   2.407      0.0161 *  
## dowTuesday      3.7597     0.7500 7500.4863   5.013 0.000000547 ***
## dowWednesday    1.9569     0.7698 7499.0195   2.542      0.0110 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) lckdwn dwMndy dwStrd dwSndy dwThrs dwTsdy
## lockdown    -0.133                                          
## dowMonday   -0.379 -0.029                                   
## dowSaturday -0.359 -0.046  0.523                            
## dowSunday   -0.371  0.004  0.527  0.503                     
## dowThursday -0.383 -0.016  0.550  0.526  0.529              
## dowTuesday  -0.397  0.046  0.554  0.528  0.535  0.558       
## dowWednesdy -0.381  0.008  0.540  0.515  0.520  0.542  0.548

PA ~ RE * Lockdown

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ roaming_entropy * lockdown + time_of_day + precipi +  
##     mean_temp + distance + dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 66802.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7583 -0.5562  0.0505  0.6093  4.0440 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 122.9    11.09   
##  Residual             297.6    17.25   
## Number of obs: 7753, groups:  subject, 253
## 
## Fixed effects:
##                             Estimate  Std. Error          df t value Pr(>|t|)
## (Intercept)                54.483369    1.899466 4733.185663  28.684  < 2e-16
## roaming_entropy             0.293447    0.292981 7619.289419   1.002 0.316573
## lockdown                   -6.831692    0.895424 7580.356521  -7.630 2.64e-14
## time_of_day                 0.024595    0.011565 7529.445607   2.127 0.033480
## precipi                    -1.839107    0.969954 7513.400047  -1.896 0.057988
## mean_temp                  -0.012451    0.020965 7733.803832  -0.594 0.552583
## distance                    0.002582    0.000706 7531.671010   3.657 0.000257
## dowMonday                  -2.440498    0.761113 7512.047215  -3.206 0.001349
## dowSaturday                 3.417232    0.789697 7504.457338   4.327 1.53e-05
## dowSunday                   0.358199    0.791788 7508.655234   0.452 0.650999
## dowThursday                -2.609492    0.749655 7501.237973  -3.481 0.000503
## dowTuesday                 -4.668881    0.742889 7507.337599  -6.285 3.47e-10
## dowWednesday               -2.655735    0.758212 7499.387445  -3.503 0.000463
## roaming_entropy:lockdown    1.158606    0.542039 7586.998947   2.137 0.032590
##                             
## (Intercept)              ***
## roaming_entropy             
## lockdown                 ***
## time_of_day              *  
## precipi                  .  
## mean_temp                   
## distance                 ***
## dowMonday                ** 
## dowSaturday              ***
## dowSunday                   
## dowThursday              ***
## dowTuesday               ***
## dowWednesday             ***
## roaming_entropy:lockdown *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ roaming_entropy * lockdown + dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 66801.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7564 -0.5571  0.0466  0.6022  4.0329 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 122.8    11.08   
##  Residual             298.4    17.27   
## Number of obs: 7753, groups:  subject, 253
## 
## Fixed effects:
##                           Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                53.8299     1.1557 1384.5528  46.576  < 2e-16 ***
## roaming_entropy             0.4920     0.2862 7616.6152   1.719 0.085574 .  
## lockdown                   -6.7142     0.8877 7585.8766  -7.564 4.37e-14 ***
## dowMonday                  -2.3425     0.7510 7504.1796  -3.119 0.001821 ** 
## dowSaturday                 3.4399     0.7895 7507.9983   4.357 1.34e-05 ***
## dowSunday                   0.6676     0.7875 7509.7399   0.848 0.396639    
## dowThursday                -2.4522     0.7467 7505.8425  -3.284 0.001028 ** 
## dowTuesday                 -4.6676     0.7384 7504.4309  -6.321 2.74e-10 ***
## dowWednesday               -2.5787     0.7580 7503.2646  -3.402 0.000673 ***
## roaming_entropy:lockdown    1.0385     0.5398 7590.3762   1.924 0.054410 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) rmng_n lckdwn dwMndy dwStrd dwSndy dwThrs dwTsdy dwWdns
## romng_ntrpy -0.616                                                        
## lockdown    -0.513  0.736                                                 
## dowMonday   -0.382  0.051  0.012                                          
## dowSaturday -0.378  0.075  0.064  0.522                                   
## dowSunday   -0.435  0.157  0.115  0.528  0.506                            
## dowThursday -0.372  0.029  0.019  0.550  0.526  0.527                     
## dowTuesday  -0.383  0.026  0.040  0.554  0.527  0.532  0.558              
## dowWednesdy -0.369  0.027  0.017  0.541  0.514  0.518  0.542  0.548       
## rmng_ntrpy:  0.306 -0.493 -0.781 -0.004 -0.091 -0.073 -0.024 -0.010 -0.001

PA ~ NL * Lockdown

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ novel_locations * lockdown + time_of_day + precipi +  
##     mean_temp + distance + dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 64753.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8414 -0.5483  0.0553  0.6007  4.0800 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 121.2    11.01   
##  Residual             295.4    17.19   
## Number of obs: 7519, groups:  subject, 249
## 
## Fixed effects:
##                              Estimate   Std. Error           df t value
## (Intercept)                52.9672016    1.8447225 4278.7362131  28.713
## novel_locations             0.0302826    0.0046105 7363.3261734   6.568
## lockdown                   -5.0629320    0.5503620 7390.5125056  -9.199
## time_of_day                 0.0290147    0.0117003 7298.3556906   2.480
## precipi                    -1.9355484    0.9690284 7283.9255619  -1.997
## mean_temp                  -0.0061121    0.0210864 7493.5500071  -0.290
## distance                    0.0009840    0.0007336 7311.8712455   1.341
## dowMonday                  -1.9176134    0.7792697 7282.6287622  -2.461
## dowSaturday                 3.3282634    0.7965258 7272.6261081   4.178
## dowSunday                   0.5668278    0.7936949 7276.5970184   0.714
## dowThursday                -2.4404664    0.7630201 7269.3322930  -3.198
## dowTuesday                 -4.2246989    0.7584080 7278.5027727  -5.570
## dowWednesday               -2.2226676    0.7791500 7268.4595329  -2.853
## novel_locations:lockdown   -0.0082004    0.0109194 7352.5164368  -0.751
##                          Pr(>|t|)    
## (Intercept)               < 2e-16 ***
## novel_locations          5.44e-11 ***
## lockdown                  < 2e-16 ***
## time_of_day               0.01317 *  
## precipi                   0.04582 *  
## mean_temp                 0.77193    
## distance                  0.17983    
## dowMonday                 0.01389 *  
## dowSaturday              2.97e-05 ***
## dowSunday                 0.47515    
## dowThursday               0.00139 ** 
## dowTuesday               2.63e-08 ***
## dowWednesday              0.00435 ** 
## novel_locations:lockdown  0.45268    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ novel_locations * lockdown + dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 64742.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8312 -0.5465  0.0516  0.6025  4.0690 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 121.1    11.0    
##  Residual             295.8    17.2    
## Number of obs: 7519, groups:  subject, 249
## 
## Fixed effects:
##                             Estimate  Std. Error          df t value Pr(>|t|)
## (Intercept)                53.121772    0.959370  701.900166  55.372  < 2e-16
## novel_locations             0.032484    0.004335 7355.348669   7.493 7.53e-14
## lockdown                   -5.168858    0.531430 7381.405129  -9.726  < 2e-16
## dowMonday                  -1.844018    0.768544 7273.261230  -2.399  0.01645
## dowSaturday                 3.276834    0.796362 7276.432394   4.115 3.92e-05
## dowSunday                   0.721322    0.788821 7275.113761   0.914  0.36052
## dowThursday                -2.254667    0.759206 7273.647964  -2.970  0.00299
## dowTuesday                 -4.206796    0.753528 7274.389071  -5.583 2.45e-08
## dowWednesday               -2.123642    0.778285 7272.194384  -2.729  0.00638
## novel_locations:lockdown   -0.009292    0.010882 7356.806450  -0.854  0.39323
##                             
## (Intercept)              ***
## novel_locations          ***
## lockdown                 ***
## dowMonday                *  
## dowSaturday              ***
## dowSunday                   
## dowThursday              ** 
## dowTuesday               ***
## dowWednesday             ** 
## novel_locations:lockdown    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) nvl_lc lckdwn dwMndy dwStrd dwSndy dwThrs dwTsdy dwWdns
## novel_lctns -0.287                                                        
## lockdown    -0.260  0.454                                                 
## dowMonday   -0.452  0.065  0.000                                          
## dowSaturday -0.414 -0.015 -0.005  0.526                                   
## dowSunday   -0.442  0.044  0.028  0.535  0.513                            
## dowThursday -0.458  0.053  0.023  0.558  0.536  0.541                     
## dowTuesday  -0.484  0.092  0.083  0.562  0.535  0.548  0.569              
## dowWednesdy -0.448  0.050  0.025  0.542  0.519  0.527  0.548  0.553       
## nvl_lctns:l  0.111 -0.366 -0.528 -0.006 -0.065 -0.011 -0.034 -0.030 -0.008

PA ~ Distance * Lockdown Varying Distances

PA ~ RE * Pre_COVID_RE Post-Lockdown

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ roaming_entropy * pre_covid_re + time_of_day + precipi +  
##     mean_temp + distance + dow + (1 | subject)
##    Data: df[which(df$lockdown == 1), ]
## 
## REML criterion at convergence: 25069
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5388 -0.5607  0.0590  0.5732  4.1536 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 171.8    13.11   
##  Residual             264.4    16.26   
## Number of obs: 2925, groups:  subject, 214
## 
## Fixed effects:
##                                  Estimate   Std. Error           df t value
## (Intercept)                    38.5265443    7.5158710  353.5894068   5.126
## roaming_entropy                -1.4271372    3.3708954 2889.6241913  -0.423
## pre_covid_re                    1.6274171    2.7789674  270.6408637   0.586
## time_of_day                    -0.0008738    0.0183000 2762.4672944  -0.048
## precipi                        -4.0172055    1.1507238 2748.3055933  -3.491
## mean_temp                       0.0539711    0.0446240 1083.2010358   1.209
## distance                       -0.0038979    0.0073188 2754.8888409  -0.533
## dowMonday                      -1.2661458    1.1394276 2730.3003359  -1.111
## dowSaturday                     2.8923753    1.2052134 2744.8103719   2.400
## dowSunday                       2.7646728    1.2293023 2732.4084599   2.249
## dowThursday                    -0.6215076    1.1436025 2725.8309514  -0.543
## dowTuesday                      1.0467584    1.2354475 2726.0394667   0.847
## dowWednesday                    0.8644845    1.2035310 2738.1766210   0.718
## roaming_entropy:pre_covid_re    1.5800457    1.3844358 2892.5158928   1.141
##                                 Pr(>|t|)    
## (Intercept)                  0.000000488 ***
## roaming_entropy                 0.672057    
## pre_covid_re                    0.558619    
## time_of_day                     0.961920    
## precipi                         0.000489 ***
## mean_temp                       0.226748    
## distance                        0.594355    
## dowMonday                       0.266575    
## dowSaturday                     0.016466 *  
## dowSunday                       0.024593 *  
## dowThursday                     0.586854    
## dowTuesday                      0.396919    
## dowWednesday                    0.472640    
## roaming_entropy:pre_covid_re    0.253843    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ roaming_entropy * pre_covid_re + +dow + (1 | subject)
##    Data: df[which(df$lockdown == 1), ]
## 
## REML criterion at convergence: 25066.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5265 -0.5443  0.0641  0.5712  3.9461 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 172.5    13.13   
##  Residual             265.3    16.29   
## Number of obs: 2925, groups:  subject, 214
## 
## Fixed effects:
##                               Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)                    42.3251     6.5694  268.3979   6.443  5.4e-10
## roaming_entropy                -1.0799     3.3734 2893.2604  -0.320   0.7489
## pre_covid_re                    1.3736     2.7647  266.6498   0.497   0.6197
## dowMonday                      -1.6153     1.1361 2731.9017  -1.422   0.1552
## dowSaturday                     1.8874     1.1761 2739.7806   1.605   0.1086
## dowSunday                       2.3385     1.2218 2729.2842   1.914   0.0557
## dowThursday                    -0.6211     1.1455 2729.0918  -0.542   0.5877
## dowTuesday                      0.4907     1.2233 2724.4238   0.401   0.6883
## dowWednesday                    0.4830     1.1971 2733.9484   0.403   0.6866
## roaming_entropy:pre_covid_re    1.4176     1.3831 2895.2946   1.025   0.3055
##                                 
## (Intercept)                  ***
## roaming_entropy                 
## pre_covid_re                    
## dowMonday                       
## dowSaturday                     
## dowSunday                    .  
## dowThursday                     
## dowTuesday                      
## dowWednesday                    
## roaming_entropy:pre_covid_re    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) rmng_n pr_cv_ dwMndy dwStrd dwSndy dwThrs dwTsdy dwWdns
## romng_ntrpy -0.333                                                        
## pre_covid_r -0.979  0.332                                                 
## dowMonday   -0.097 -0.012 -0.006                                          
## dowSaturday -0.099 -0.013  0.008  0.558                                   
## dowSunday   -0.086 -0.025 -0.008  0.540  0.521                            
## dowThursday -0.096 -0.020 -0.001  0.574  0.559  0.535                     
## dowTuesday  -0.079 -0.037 -0.014  0.537  0.518  0.499  0.534              
## dowWednesdy -0.090 -0.018 -0.007  0.556  0.530  0.511  0.545  0.511       
## rmng_ntr:__  0.340 -0.989 -0.349  0.016 -0.003  0.025  0.016  0.037  0.022

PA ~ NL * Pre_COVID_RE Post-Lockdown

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ novel_locations * pre_covid_re + time_of_day + precipi +  
##     mean_temp + distance + dow + (1 | subject)
##    Data: df[which(df$lockdown == 1), ]
## 
## REML criterion at convergence: 25093.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4882 -0.5539  0.0567  0.5683  4.1140 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 170.7    13.06   
##  Residual             265.5    16.29   
## Number of obs: 2925, groups:  subject, 214
## 
## Fixed effects:
##                                 Estimate  Std. Error          df t value
## (Intercept)                    35.929242    7.216043  309.360741   4.979
## novel_locations                 0.067198    0.093797 2877.426871   0.716
## pre_covid_re                    3.278750    2.628208  222.476453   1.248
## time_of_day                    -0.002540    0.018328 2762.944594  -0.139
## precipi                        -4.080380    1.152132 2748.543292  -3.542
## mean_temp                       0.055915    0.044632 1073.811082   1.253
## distance                       -0.004469    0.007820 2739.575791  -0.571
## dowMonday                      -1.343857    1.141654 2730.649062  -1.177
## dowSaturday                     2.990836    1.207676 2743.047227   2.477
## dowSunday                       2.773956    1.231268 2732.240469   2.253
## dowThursday                    -0.615422    1.145936 2725.449059  -0.537
## dowTuesday                      1.073488    1.236837 2725.613992   0.868
## dowWednesday                    0.783433    1.205776 2738.184672   0.650
## novel_locations:pre_covid_re   -0.010752    0.037368 2877.780966  -0.288
##                                Pr(>|t|)    
## (Intercept)                  0.00000106 ***
## novel_locations                0.473789    
## pre_covid_re                   0.213517    
## time_of_day                    0.889795    
## precipi                        0.000404 ***
## mean_temp                      0.210545    
## distance                       0.567773    
## dowMonday                      0.239253    
## dowSaturday                    0.013327 *  
## dowSunday                      0.024343 *  
## dowThursday                    0.591279    
## dowTuesday                     0.385509    
## dowWednesday                   0.515919    
## novel_locations:pre_covid_re   0.773574    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ novel_locations * pre_covid_re + dow + (1 | subject)
##    Data: df[which(df$lockdown == 1), ]
## 
## REML criterion at convergence: 25091.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4989 -0.5431  0.0569  0.5651  4.0133 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 171.4    13.09   
##  Residual             266.4    16.32   
## Number of obs: 2925, groups:  subject, 214
## 
## Fixed effects:
##                                Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    40.06134    6.24787  224.66766   6.412 8.37e-10
## novel_locations                 0.06353    0.09338 2882.03755   0.680   0.4964
## pre_covid_re                    2.91498    2.61625  219.08055   1.114   0.2664
## dowMonday                      -1.69589    1.13848 2732.19586  -1.490   0.1364
## dowSaturday                     1.98747    1.17980 2737.46142   1.685   0.0922
## dowSunday                       2.34314    1.22398 2729.10123   1.914   0.0557
## dowThursday                    -0.60792    1.14790 2728.63046  -0.530   0.5964
## dowTuesday                      0.51327    1.22500 2723.99297   0.419   0.6753
## dowWednesday                    0.39873    1.19955 2734.08959   0.332   0.7396
## novel_locations:pre_covid_re   -0.01038    0.03739 2881.69984  -0.278   0.7814
##                                 
## (Intercept)                  ***
## novel_locations                 
## pre_covid_re                    
## dowMonday                       
## dowSaturday                  .  
## dowSunday                    .  
## dowThursday                     
## dowTuesday                      
## dowWednesday                    
## novel_locations:pre_covid_re    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) nvl_lc pr_cv_ dwMndy dwStrd dwSndy dwThrs dwTsdy dwWdns
## novel_lctns -0.156                                                        
## pre_covid_r -0.979  0.156                                                 
## dowMonday   -0.103 -0.021 -0.004                                          
## dowSaturday -0.104 -0.025  0.005  0.558                                   
## dowSunday   -0.097 -0.010 -0.001  0.540  0.520                            
## dowThursday -0.104 -0.025  0.000  0.575  0.559  0.534                     
## dowTuesday  -0.096  0.002 -0.003  0.537  0.516  0.498  0.533              
## dowWednesdy -0.099 -0.022 -0.003  0.556  0.530  0.512  0.545  0.510       
## nvl_lctn:__  0.161 -0.994 -0.166  0.024  0.012  0.011  0.022 -0.001  0.025

```