PCoA not included the families from old DB3
pca = read_core_pcoa("/pita/users/rotem/eyes/human/Feaces/res/core-metrics-results/unweighted_unifrac_pcoa_results.qza")
names(pca) = paste0("PCoA_", 1:length(names(pca)))
faith = read_faith_qzv("res/core-metrics-results/faith-pd-correlation.qzv")
names(faith)[1] = "sampleid"
faith$sampleid = faith$sampleid %>% as.character()
sum(data$reads_number > 2000)
## [1] 135
data =
data %>%
left_join(pca %>% rownames_to_column("sampleid"))
## Joining, by = "sampleid"
## Warning: Column `sampleid` joining factor and character vector, coercing into
## character vector
data = data %>% left_join(faith %>% select(sampleid, faith_pd), by = names(faith)[1])
create_dt(data)
pl =
ggplot(data, aes(x = PCoA_1, y = PCoA_2, color = Age, name = sample_ID)) +
geom_point() +
theme_rh
plotly::ggplotly(pl)
pl =
data %>%
ggplot(aes(x = Age, y = faith_pd, fill = Family, color = Family)) +
geom_point(show.legend = F) +
theme_rh + theme(axis.text.x = element_text(angle = -45, hjust = 0))
plotly::ggplotly(pl)
# data %>%
# ggplot(aes(fill = Retinal_degeneration_type, x = Age)) +
# geom_histogram(stat = 'count') + theme_rh
library(forcats)
pl =
data %>%
filter(grepl("FR.*", Family)) %>%
arrange(Date_of_diagnosis) %>%
mutate(sample_ID = factor(sample_ID, levels = sample_ID)) %>%
mutate(Date_of_diagnosis = replace_na(Date_of_diagnosis, "Healthy")) %>%
group_by(Family) %>%
mutate( index = min(Date_of_diagnosis, na.rm = T)
, family_disease = paste(Family, na.omit(Retinal_degeneration_type))) %>%
ggplot(aes(
x = sample_ID
, y = Age
, sample = sample_ID)) +
geom_point() +
geom_point(aes( y = Age_on_diagnosis
, fill = Retinal_degeneration_type
, color = Retinal_degeneration_type)) +
geom_linerange(aes(
x = sample_ID
, ymin = Age_on_diagnosis
, ymax = Age
, color = Retinal_degeneration_type)) +
# geom_point(data = data %>% group_by(Family) %>%
# slice(which.min(Date_of_diagnosis)), aes(size = 1/Date_of_diagnosis), color = "red") +
# facet_wrap(~Date_of_diagnosis)+
facet_wrap(~family_disease, nrow = 4, scales = 'free_x') +
theme_rh +
theme( strip.background = element_blank()
, strip.text = element_text(color = "red")
, axis.title.x = element_blank()
, axis.text.x = element_blank())
# pl
plotly::ggplotly(pl, width = 1000, height = 400)
pl =
ggplot(data, aes(x = PCoA_1, y = PCoA_2, color = Family, name = sample_ID)) +
geom_point() +
theme_rh
plotly::ggplotly(pl)
pl =
ggplot(data, aes(x = PCoA_1, y = PCoA_2, color = Gender, name = sample_ID)) +
geom_point() +
theme_rh
plotly::ggplotly(pl)
# faith = read_faith_qzv("res/core-metrics-results/faith-pd-correlation.qzv")
names(faith)[1] = "sampleid"
faith$sampleid = faith$sampleid %>% as.character()
data = data %>% left_join(faith %>% select(sampleid, contains("faith_pd")), by = names(faith)[1])
pl =
data %>%
ggplot(aes(x = Family, y = faith_pd.x, fill = Family)) +
geom_boxplot(show.legend = F) +
theme_rh + theme(axis.text.x = element_text(angle = -45, hjust = 0))
pl
## Warning: Removed 1 rows containing non-finite values (stat_boxplot).

library(ggpubr)
## Loading required package: magrittr
##
## Attaching package: 'magrittr'
## The following object is masked from 'package:purrr':
##
## set_names
## The following object is masked from 'package:tidyr':
##
## extract
families_with_healthy_and_ill =
data %>%
filter(Age > 20) %>%
filter(grepl("FR.*", Family)) %>%
group_by(Family) %>%
summarise(n = n()) %>%
filter(n > 1) %>% pull(Family)
pl =
data %>%
filter(Family %in% families_with_healthy_and_ill) %>%
filter(Age > 20) %>%
ggplot(aes(x = Retinal_degeneration_type, fill = Retinal_degeneration_type
, y = faith_pd.x)) +
geom_boxplot() +
geom_jitter(alpha = .5)+
facet_wrap(~Family, scales="free") +
# stat_compare_means(method = "t.test", label = "p.signif") +
theme_rh +
ggtitle("Alpha Diversity within familis above 20") +
theme( strip.background = element_blank())
# pl
plotly::ggplotly(pl, width = 1000)
my_comparisons = list(c("healthy","stargardt"), c("Healthy", "RP"))
my_comparisons = list(c(1,2), c(1,3))
data %>%
filter(Family %in% families_with_healthy_and_ill) %>%
filter (Age > 20) %>%
mutate(Retinal_degeneration_type = replace_na(Retinal_degeneration_type %>% as.character(), "Healthy")) %>%
filter(Retinal_degeneration_type %in% c('Healthy', 'RP', 'stargardt')) %>%
ggplot(aes(x = Retinal_degeneration_type, fill = Retinal_degeneration_type
, y = faith_pd.x)) +
geom_boxplot() +
geom_jitter(alpha = .5)+
stat_compare_means(comparisons = my_comparisons) +
theme_rh +
ggtitle("Alpha Diversity within diseases, age above 20") +
theme( strip.background = element_blank())
