library(ggplot2)
library(psych)
## 
## Attaching package: 'psych'
## 
## The following object is masked from 'package:ggplot2':
## 
##     %+%
require(RCurl)
## Loading required package: RCurl
## Loading required package: bitops
library(RCurl)
library(gsheet)
## Warning: package 'gsheet' was built under R version 3.1.3
require(graphics)
library(car)
## 
## Attaching package: 'car'
## 
## The following object is masked from 'package:psych':
## 
##     logit
setwd("~/Google Drive/Fat_data/") #this needs to be where you save the datasheets

# Download a sheet

# michelle_url <- 'https://docs.google.com/spreadsheets/d/1lokeoeVa4z9iGwnf6nofGrjopOvXDFXVO26o8QsmYNs/pubhtml'
# a <- gsheet2tbl(michelle_url)
# 
# lisa_url<- 'https://docs.google.com/spreadsheets/d/1EKG5b24MM4tLqrugrsOkDsTEtYatyhIQgcZuqu8kne4/pubhtml'
# b <- gsheet2tbl(lisa_url)
# names(b)<-NULL
# 
# katey_url<-'https://docs.google.com/spreadsheets/d/1QeMCQOrQeqVWu_PJnZ0kV68gYSnHZo2x1GRqyjCSYFQ/pubhtml'
# c <- gsheet2tbl(katey_url)
# names(c)<-NULL
# 
# ellen_url<-'https://docs.google.com/spreadsheets/d/1PQ4u68Yx1JJCqItxob6bmZnvPU2LS3Wp8Z5LLtjw--s/pubhtml'
# d <- gsheet2tbl(ellen_url)
# names(d)<-NULL
# 
# total_data<-rbind(a,b,c,d)

# Download the same sheet by id
#b <- gsheet2tbl('https://docs.google.com/spreadsheets/d/1lokeoeVa4z9iGwnf6nofGrjopOvXDFXVO26o8QsmYNs/pubhtml', sheetid = 1)

#total_data<-read.csv("data.csv", header=T, sep=",")

Lisa_data<-read.csv("lisa_data.csv", header=T, sep=",")

Michelle_data<-read.csv("michelle_data.csv", header=T, sep=",")
#names(Michelle_data) <- NULL

Ellen_data<-read.csv("ellen_data.csv", header=T, sep=",")
#names(Ellen_data) <- NULL

Katey_data<-read.csv("katey_data.csv", header=T, sep=",")  
#names(Katey_data) <- NULL

total_data <- rbind(Lisa_data, Michelle_data, Ellen_data, Katey_data)

total_data$coder<-as.factor(total_data$coder)
total_data$subjNum<-as.factor(total_data$subjNum)
total_data<-na.omit(total_data)

write.table(total_data, "FHS_fat_data.csv", row.names=F, sep=",")

#####HEPATIC FAT#####
plot(Hep_fat ~ coder, data = total_data)

describeBy(total_data$Hep_fat, total_data$coder)
## group: Lisa
##   vars n  mean   sd median trimmed  mad   min   max range  skew kurtosis
## 1    1 3 20.71 7.09   22.7   20.71 5.74 12.83 26.58 13.75 -0.26    -2.33
##     se
## 1 4.09
## -------------------------------------------------------- 
## group: Michelle
##   vars n  mean   sd median trimmed  mad   min   max range skew kurtosis
## 1    1 8 23.96 9.16  21.72   23.96 4.16 16.14 45.36 29.22 1.46     0.81
##     se
## 1 3.24
## -------------------------------------------------------- 
## group: ellen
##   vars n  mean   sd median trimmed  mad   min   max range  skew kurtosis
## 1    1 3 25.57 5.09  26.15   25.57 6.22 20.22 30.35 10.12 -0.11    -2.33
##     se
## 1 2.94
## -------------------------------------------------------- 
## group: Katey
##   vars n  mean    sd median trimmed  mad   min   max range skew kurtosis
## 1    1 6 22.04 11.25  18.64   22.04 6.32 12.62 43.49 30.87    1    -0.68
##     se
## 1 4.59
hepFat<-aov(Hep_fat~coder, data=total_data)
summary(hepFat)
##             Df Sum Sq Mean Sq F value Pr(>F)
## coder        3   48.2   16.08   0.187  0.903
## Residuals   16 1373.2   85.82
summary.lm(hepFat)
## 
## Call:
## aov(formula = Hep_fat ~ coder, data = total_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -9.4165 -5.4540 -0.7779  1.7344 21.4536 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)   
## (Intercept)     20.705      5.349   3.871  0.00135 **
## coderMichelle    3.259      6.272   0.520  0.61043   
## coderellen       4.868      7.564   0.644  0.52896   
## coderKatey       1.335      6.551   0.204  0.84107   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.264 on 16 degrees of freedom
## Multiple R-squared:  0.03394,    Adjusted R-squared:  -0.1472 
## F-statistic: 0.1874 on 3 and 16 DF,  p-value: 0.9034
pairwise.t.test(total_data$Hep_fat, total_data$coder, paired=FALSE, p.adjust.method="bonferroni")
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  total_data$Hep_fat and total_data$coder 
## 
##          Lisa Michelle ellen
## Michelle 1    -        -    
## ellen    1    1        -    
## Katey    1    1        1    
## 
## P value adjustment method: bonferroni
fullPlot1<-ggplot(
  total_data, aes(
    coder, Hep_fat, fill=as.factor(coder)))+stat_summary(
      fun.y=mean, geom="bar", position="dodge")+stat_summary(
        fun.data=mean_cl_normal, geom="errorbar", position=position_dodge(width=0.90), width=0.2)+labs(
          x = "coder", y = "hep fat")+ labs(
            title="hep fat")
fullPlot1

bartlett.test(Hep_fat ~ coder, data = total_data)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Hep_fat by coder
## Bartlett's K-squared = 1.4687, df = 3, p-value = 0.6895
leveneTest(Hep_fat ~ coder, data = total_data)
## Levene's Test for Homogeneity of Variance (center = median)
##       Df F value Pr(>F)
## group  3  0.2334 0.8717
##       16
#####SAT FAT#####
plot(SAT ~ coder, data = total_data)

describeBy(total_data$SAT, total_data$coder)
## group: Lisa
##   vars n   mean     sd median trimmed    mad    min    max  range skew
## 1    1 3 476.35 429.52 344.21  476.35 319.92 128.43 956.42 827.99 0.28
##   kurtosis     se
## 1    -2.33 247.98
## -------------------------------------------------------- 
## group: Michelle
##   vars n   mean     sd median trimmed    mad    min    max  range skew
## 1    1 8 592.47 329.76 516.86  592.47 375.17 202.69 1048.6 845.91 0.26
##   kurtosis     se
## 1    -1.81 116.59
## -------------------------------------------------------- 
## group: ellen
##   vars n   mean     sd median trimmed    mad    min  max   range skew
## 1    1 3 887.31 651.82 670.11  887.31 442.23 371.83 1620 1248.17  0.3
##   kurtosis     se
## 1    -2.33 376.33
## -------------------------------------------------------- 
## group: Katey
##   vars n   mean     sd median trimmed    mad    min  max   range  skew
## 1    1 6 704.65 450.06 762.55  704.65 593.19 143.02 1300 1156.98 -0.07
##   kurtosis     se
## 1    -1.83 183.74
satFat<-aov(SAT~coder, data=total_data)
summary(satFat)
##             Df  Sum Sq Mean Sq F value Pr(>F)
## coder        3  303641  101214   0.541  0.661
## Residuals   16 2992690  187043
summary.lm(satFat)
## 
## Call:
## aov(formula = SAT ~ coder, data = total_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -561.63 -303.96  -68.54  349.69  732.69 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)  
## (Intercept)      476.4      249.7   1.908   0.0745 .
## coderMichelle    116.1      292.8   0.397   0.6969  
## coderellen       411.0      353.1   1.164   0.2616  
## coderKatey       228.3      305.8   0.747   0.4662  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 432.5 on 16 degrees of freedom
## Multiple R-squared:  0.09211,    Adjusted R-squared:  -0.07811 
## F-statistic: 0.5411 on 3 and 16 DF,  p-value: 0.661
pairwise.t.test(total_data$SAT, total_data$coder, paired=FALSE, p.adjust.method="bonferroni")
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  total_data$SAT and total_data$coder 
## 
##          Lisa Michelle ellen
## Michelle 1    -        -    
## ellen    1    1        -    
## Katey    1    1        1    
## 
## P value adjustment method: bonferroni
fullPlot2<-ggplot(
  total_data, aes(
    coder,SAT, fill=as.factor(coder)))+stat_summary(
      fun.y=mean, geom="bar", position="dodge")+stat_summary(
        fun.data=mean_cl_normal, geom="errorbar", position=position_dodge(width=0.90), width=0.2)+labs(
          x = "coder", y = "SAT")+ labs(
            title="SAT")
fullPlot2

bartlett.test(SAT ~ coder, data = total_data)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  SAT by coder
## Bartlett's K-squared = 1.5624, df = 3, p-value = 0.6679
leveneTest(SAT ~ coder, data = total_data)
## Levene's Test for Homogeneity of Variance (center = median)
##       Df F value Pr(>F)
## group  3  0.2394 0.8676
##       16
#####VAT FAT#####
plot(VAT ~ coder, data = total_data)

describeBy(total_data$VAT, total_data$coder)
## group: Lisa
##   vars n   mean     sd median trimmed   mad   min    max  range  skew
## 1    1 3 223.37 134.54 274.46  223.37 74.75 70.76 324.88 254.12 -0.32
##   kurtosis    se
## 1    -2.33 77.68
## -------------------------------------------------------- 
## group: Michelle
##   vars n   mean    sd median trimmed   mad   min    max  range skew
## 1    1 8 150.47 70.26 118.09  150.47 52.17 59.98 254.75 194.77  0.3
##   kurtosis    se
## 1    -1.76 24.84
## -------------------------------------------------------- 
## group: ellen
##   vars n   mean     sd median trimmed   mad    min max  range  skew
## 1    1 3 418.09 200.05    499  418.09 97.85 190.26 565 374.74 -0.34
##   kurtosis    se
## 1    -2.33 115.5
## -------------------------------------------------------- 
## group: Katey
##   vars n   mean     sd  median trimmed    mad    min  max   range  skew
## 1    1 6 935.73 509.98 1038.94  935.73 587.19 233.79 1450 1216.21 -0.26
##   kurtosis    se
## 1    -1.93 208.2
vatFat<-aov(VAT~coder, data=total_data)
summary(vatFat)
##             Df  Sum Sq Mean Sq F value  Pr(>F)   
## coder        3 2287162  762387   8.406 0.00139 **
## Residuals   16 1451213   90701                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary.lm(vatFat)
## 
## Call:
## aov(formula = VAT ~ coder, data = total_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -701.94  -56.12   11.63  102.20  514.27 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)   
## (Intercept)      223.4      173.9   1.285  0.21721   
## coderMichelle    -72.9      203.9  -0.358  0.72536   
## coderellen       194.7      245.9   0.792  0.44003   
## coderKatey       712.4      213.0   3.345  0.00411 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 301.2 on 16 degrees of freedom
## Multiple R-squared:  0.6118, Adjusted R-squared:  0.539 
## F-statistic: 8.406 on 3 and 16 DF,  p-value: 0.001393
pairwise.t.test(total_data$VAT, total_data$coder, paired=FALSE, p.adjust.method="bonferroni")
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  total_data$VAT and total_data$coder 
## 
##          Lisa   Michelle ellen 
## Michelle 1.0000 -        -     
## ellen    1.0000 1.0000   -     
## Katey    0.0247 0.0011   0.1632
## 
## P value adjustment method: bonferroni
fullPlot4<-ggplot(
  total_data, aes(
    coder,VAT, fill=as.factor(coder)))+stat_summary(
      fun.y=mean, geom="bar", position="dodge")+stat_summary(
        fun.data=mean_cl_normal, geom="errorbar", position=position_dodge(width=0.90), width=0.2)+labs(
          x = "coder", y = "VAT")+ labs(
            title="VAT")
fullPlot4

bartlett.test(VAT ~ coder, data = total_data)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  VAT by coder
## Bartlett's K-squared = 17.4819, df = 3, p-value = 0.0005625
leveneTest(VAT ~ coder, data = total_data)
## Levene's Test for Homogeneity of Variance (center = median)
##       Df F value   Pr(>F)   
## group  3  5.7902 0.007057 **
##       16                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#####HEPATIC FAT BY SUBJECT#####
describeBy(total_data$Hep_fat, total_data$subjNum)
## group: FHS_001
##   vars n  mean   sd median trimmed  mad   min   max range  skew kurtosis
## 1    1 4 23.11 4.77   24.8   23.11 2.32 16.27 26.58 10.31 -0.58    -1.83
##     se
## 1 2.38
## -------------------------------------------------------- 
## group: FHS_003
##   vars n  mean   sd median trimmed  mad min   max range skew kurtosis   se
## 1    1 4 24.81 4.07  23.94   24.81 3.09  21 30.35  9.35 0.39    -1.93 2.04
## -------------------------------------------------------- 
## group: FHS_004
##   vars n  mean   sd median trimmed  mad   min   max range skew kurtosis
## 1    1 4 16.09 3.09  15.65   16.09 2.46 12.83 20.22  7.39  0.3    -1.88
##     se
## 1 1.54
## -------------------------------------------------------- 
## group: FHS_005
##   vars n  mean   sd median trimmed  mad   min   max range skew kurtosis
## 1    1 2 44.43 1.32  44.43   44.43 1.38 43.49 45.36  1.87    0    -2.75
##     se
## 1 0.93
## -------------------------------------------------------- 
## group: FHS_006
##   vars n  mean   sd median trimmed  mad   min   max range skew kurtosis
## 1    1 2 15.72 4.38  15.72   15.72 4.59 12.62 18.82  6.19    0    -2.75
##    se
## 1 3.1
## -------------------------------------------------------- 
## group: FHS_009
##   vars n  mean   sd median trimmed  mad min   max range skew kurtosis   se
## 1    1 2 21.34 3.31  21.34   21.34 3.47  19 23.69  4.69    0    -2.75 2.34
## -------------------------------------------------------- 
## group: FHS_011
## NULL
## -------------------------------------------------------- 
## group: FHS_013
##   vars n  mean sd median trimmed mad   min   max range skew kurtosis se
## 1    1 1 23.79 NA  23.79   23.79   0 23.79 23.79     0   NA       NA NA
## -------------------------------------------------------- 
## group: FHS_016
##   vars n  mean sd median trimmed mad   min   max range skew kurtosis se
## 1    1 1 19.98 NA  19.98   19.98   0 19.98 19.98     0   NA       NA NA
hepFat2<-aov(Hep_fat~subjNum, data=total_data)
summary(hepFat2)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## subjNum      7 1243.1  177.58   11.95 0.000146 ***
## Residuals   12  178.3   14.86                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary.lm(hepFat2)
## 
## Call:
## aov(formula = Hep_fat ~ subjNum, data = total_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.8395 -2.1613  0.0264  2.5168  5.5423 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     23.1123     1.9275  11.991 4.88e-08 ***
## subjNumFHS_003   1.6930     2.7259   0.621   0.5462    
## subjNumFHS_004  -7.0208     2.7259  -2.576   0.0243 *  
## subjNumFHS_005  21.3149     3.3385   6.385 3.48e-05 ***
## subjNumFHS_006  -7.3921     3.3385  -2.214   0.0469 *  
## subjNumFHS_009  -1.7694     3.3385  -0.530   0.6058    
## subjNumFHS_013   0.6804     4.3100   0.158   0.8772    
## subjNumFHS_016  -3.1292     4.3100  -0.726   0.4817    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.855 on 12 degrees of freedom
## Multiple R-squared:  0.8745, Adjusted R-squared:  0.8014 
## F-statistic: 11.95 on 7 and 12 DF,  p-value: 0.0001464
hepFat3<-aov(Hep_fat~subjNum+coder, data=total_data)
summary.lm(hepFat3)
## 
## Call:
## aov(formula = Hep_fat ~ subjNum + coder, data = total_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.7284 -1.2678  0.0000  0.9703  4.0973 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    22.48119    2.15044  10.454 2.47e-06 ***
## subjNumFHS_003  1.69295    2.15044   0.787  0.45136    
## subjNumFHS_004 -7.02082    2.15044  -3.265  0.00976 ** 
## subjNumFHS_005 23.11787    2.77621   8.327 1.60e-05 ***
## subjNumFHS_006 -5.58912    2.77621  -2.013  0.07494 .  
## subjNumFHS_009  0.03358    2.77621   0.012  0.99061    
## subjNumFHS_013  1.17538    3.61973   0.325  0.75282    
## subjNumFHS_016 -2.63422    3.61973  -0.728  0.48527    
## coderMichelle   0.13613    2.32274   0.059  0.95454    
## coderellen      4.86817    2.48312   1.961  0.08158 .  
## coderKatey     -2.47997    2.32274  -1.068  0.31346    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.041 on 9 degrees of freedom
## Multiple R-squared:  0.9414, Adjusted R-squared:  0.8764 
## F-statistic: 14.47 on 10 and 9 DF,  p-value: 0.0002222
pairwise.t.test(total_data$Hep_fat, total_data$coder, paired=FALSE, p.adjust.method="bonferroni")
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  total_data$Hep_fat and total_data$coder 
## 
##          Lisa Michelle ellen
## Michelle 1    -        -    
## ellen    1    1        -    
## Katey    1    1        1    
## 
## P value adjustment method: bonferroni
fullPlot11<-ggplot(
  total_data, aes(
    subjNum, Hep_fat, fill=as.factor(coder)))+stat_summary(
      fun.y=mean, geom="bar", position="dodge")+stat_summary(
        fun.data=mean_cl_normal, geom="errorbar", position=position_dodge(width=0.90), width=0.2)+labs(
          x = "subjNum", y = "hep fat")+ labs(
            title="hep fat")
fullPlot11

#####SAT BY SUBJECT#####
describeBy(total_data$SAT, total_data$subjNum)
## group: FHS_001
##   vars n    mean     sd median trimmed    mad    min  max  range skew
## 1    1 4 1100.88 356.47 985.81 1100.88 150.72 811.89 1620 808.11 0.62
##   kurtosis     se
## 1    -1.76 178.24
## -------------------------------------------------------- 
## group: FHS_003
##   vars n   mean     sd median trimmed   mad   min    max  range skew
## 1    1 4 392.81 191.61 335.67  392.81 84.81 229.8 670.11 440.31 0.59
##   kurtosis    se
## 1    -1.77 95.81
## -------------------------------------------------------- 
## group: FHS_004
##   vars n   mean     sd median trimmed   mad    min    max range skew
## 1    1 4 211.49 111.61 172.86  211.49 55.05 128.43 371.83 243.4 0.58
##   kurtosis    se
## 1    -1.82 55.81
## -------------------------------------------------------- 
## group: FHS_005
##   vars n   mean     sd median trimmed    mad    min  max range skew
## 1    1 2 1174.3 177.77 1174.3  1174.3 186.36 1048.6 1300 251.4    0
##   kurtosis    se
## 1    -2.75 125.7
## -------------------------------------------------------- 
## group: FHS_006
##   vars n   mean     sd median trimmed    mad    min  max  range skew
## 1    1 2 919.63 156.09 919.63  919.63 163.64 809.26 1030 220.74    0
##   kurtosis     se
## 1    -2.75 110.37
## -------------------------------------------------------- 
## group: FHS_009
##   vars n   mean    sd median trimmed   mad    min    max  range skew
## 1    1 2 650.37 88.87 650.37  650.37 93.17 587.53 713.21 125.68    0
##   kurtosis    se
## 1    -2.75 62.84
## -------------------------------------------------------- 
## group: FHS_011
## NULL
## -------------------------------------------------------- 
## group: FHS_013
##   vars n  mean sd median trimmed mad   min   max range skew kurtosis se
## 1    1 1 446.2 NA  446.2   446.2   0 446.2 446.2     0   NA       NA NA
## -------------------------------------------------------- 
## group: FHS_016
##   vars n   mean sd median trimmed mad    min    max range skew kurtosis se
## 1    1 1 303.16 NA 303.16  303.16   0 303.16 303.16     0   NA       NA NA
satFat2<-aov(SAT~subjNum, data=total_data)
summary(satFat2)
##             Df  Sum Sq Mean Sq F value  Pr(>F)   
## subjNum      7 2703738  386248   7.822 0.00111 **
## Residuals   12  592593   49383                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary.lm(satFat2)
## 
## Call:
## aov(formula = SAT ~ subjNum, data = total_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -288.99  -91.85  -55.72   74.72  519.12 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     1100.88     111.11   9.908 3.96e-07 ***
## subjNumFHS_003  -708.06     157.13  -4.506 0.000719 ***
## subjNumFHS_004  -889.38     157.13  -5.660 0.000106 ***
## subjNumFHS_005    73.42     192.45   0.382 0.709487    
## subjNumFHS_006  -181.25     192.45  -0.942 0.364872    
## subjNumFHS_009  -450.51     192.45  -2.341 0.037324 *  
## subjNumFHS_013  -654.68     248.45  -2.635 0.021773 *  
## subjNumFHS_016  -797.72     248.45  -3.211 0.007482 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 222.2 on 12 degrees of freedom
## Multiple R-squared:  0.8202, Adjusted R-squared:  0.7154 
## F-statistic: 7.822 on 7 and 12 DF,  p-value: 0.001109
satFat3<-aov(SAT~subjNum+coder, data=total_data)
summary.lm(satFat3)
## 
## Call:
## aov(formula = SAT ~ subjNum + coder, data = total_data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -195.344  -56.653    4.489   52.553  200.204 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    1008.835    100.038  10.085 3.34e-06 ***
## subjNumFHS_003 -708.064    100.038  -7.078 5.81e-05 ***
## subjNumFHS_004 -889.385    100.038  -8.890 9.44e-06 ***
## subjNumFHS_005  186.863    129.149   1.447  0.18185    
## subjNumFHS_006  -67.809    129.149  -0.525  0.61224    
## subjNumFHS_009 -337.069    129.149  -2.610  0.02827 *  
## subjNumFHS_013 -521.445    168.389  -3.097  0.01279 *  
## subjNumFHS_016 -664.483    168.389  -3.946  0.00337 ** 
## coderMichelle   -41.190    108.053  -0.381  0.71190    
## coderellen      410.962    115.514   3.558  0.00614 ** 
## coderKatey       -1.604    108.053  -0.015  0.98848    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 141.5 on 9 degrees of freedom
## Multiple R-squared:  0.9454, Adjusted R-squared:  0.8846 
## F-statistic: 15.57 on 10 and 9 DF,  p-value: 0.0001649
pairwise.t.test(total_data$SAT, total_data$coder, paired=FALSE, p.adjust.method="bonferroni")
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  total_data$SAT and total_data$coder 
## 
##          Lisa Michelle ellen
## Michelle 1    -        -    
## ellen    1    1        -    
## Katey    1    1        1    
## 
## P value adjustment method: bonferroni
fullPlot21<-ggplot(
  total_data, aes(
    subjNum, SAT, fill=as.factor(coder)))+stat_summary(
      fun.y=mean, geom="bar", position="dodge")+stat_summary(
        fun.data=mean_cl_normal, geom="errorbar", position=position_dodge(width=0.90), width=0.2)+labs(
          x = "subjNum", y = "SAT")+ labs(
            title="SAT")
fullPlot21

#####VAT BY SUBJECT#####
describeBy(total_data$VAT, total_data$subjNum)
## group: FHS_001
##   vars n   mean     sd median trimmed   mad    min  max  range skew
## 1    1 4 570.59 424.61 444.94  570.59 253.9 222.49 1170 947.51 0.52
##   kurtosis    se
## 1    -1.87 212.3
## -------------------------------------------------------- 
## group: FHS_003
##   vars n   mean     sd median trimmed    mad    min max  range skew
## 1    1 4 365.23 119.57 353.58  365.23 131.91 254.75 499 244.25 0.09
##   kurtosis    se
## 1    -2.32 59.79
## -------------------------------------------------------- 
## group: FHS_004
##   vars n   mean    sd median trimmed   mad   min    max  range  skew
## 1    1 4 152.97 72.96 153.67  152.97 86.52 70.76 233.79 163.02 -0.01
##   kurtosis    se
## 1    -2.19 36.48
## -------------------------------------------------------- 
## group: FHS_005
##   vars n   mean     sd median trimmed   mad   min  max  range skew
## 1    1 2 784.55 941.09 784.55  784.55 986.6 119.1 1450 1330.9    0
##   kurtosis     se
## 1    -2.75 665.45
## -------------------------------------------------------- 
## group: FHS_006
##   vars n   mean     sd median trimmed     mad   min  max   range skew
## 1    1 2 739.99 961.68 739.99  739.99 1008.18 59.98 1420 1360.02    0
##   kurtosis     se
## 1    -2.75 680.01
## -------------------------------------------------------- 
## group: FHS_009
##   vars n   mean     sd median trimmed    mad    min    max  range skew
## 1    1 2 562.32 488.71 562.32  562.32 512.34 216.74 907.89 691.14    0
##   kurtosis     se
## 1    -2.75 345.57
## -------------------------------------------------------- 
## group: FHS_011
## NULL
## -------------------------------------------------------- 
## group: FHS_013
##   vars n   mean sd median trimmed mad    min    max range skew kurtosis se
## 1    1 1 105.81 NA 105.81  105.81   0 105.81 105.81     0   NA       NA NA
## -------------------------------------------------------- 
## group: FHS_016
##   vars n   mean sd median trimmed mad    min    max range skew kurtosis se
## 1    1 1 107.81 NA 107.81  107.81   0 107.81 107.81     0   NA       NA NA
vatFat2<-aov(VAT~subjNum, data=total_data)
summary(vatFat2)
##             Df  Sum Sq Mean Sq F value Pr(>F)
## subjNum      7 1089335  155619   0.705  0.669
## Residuals   12 2649040  220753
summary.lm(vatFat2)
## 
## Call:
## aov(formula = VAT ~ subjNum, data = total_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -680.01 -144.29   -2.80   94.06  680.01 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)  
## (Intercept)     570.593    234.922   2.429   0.0318 *
## subjNumFHS_003 -205.365    332.230  -0.618   0.5480  
## subjNumFHS_004 -417.623    332.230  -1.257   0.2327  
## subjNumFHS_005  213.957    406.897   0.526   0.6086  
## subjNumFHS_006  169.399    406.897   0.416   0.6845  
## subjNumFHS_009   -8.277    406.897  -0.020   0.9841  
## subjNumFHS_013 -464.781    525.301  -0.885   0.3937  
## subjNumFHS_016 -462.782    525.301  -0.881   0.3956  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 469.8 on 12 degrees of freedom
## Multiple R-squared:  0.2914, Adjusted R-squared:  -0.122 
## F-statistic: 0.7049 on 7 and 12 DF,  p-value: 0.6691
satFat3<-aov(SAT~subjNum+coder, data=total_data)
summary.lm(satFat3)
## 
## Call:
## aov(formula = SAT ~ subjNum + coder, data = total_data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -195.344  -56.653    4.489   52.553  200.204 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    1008.835    100.038  10.085 3.34e-06 ***
## subjNumFHS_003 -708.064    100.038  -7.078 5.81e-05 ***
## subjNumFHS_004 -889.385    100.038  -8.890 9.44e-06 ***
## subjNumFHS_005  186.863    129.149   1.447  0.18185    
## subjNumFHS_006  -67.809    129.149  -0.525  0.61224    
## subjNumFHS_009 -337.069    129.149  -2.610  0.02827 *  
## subjNumFHS_013 -521.445    168.389  -3.097  0.01279 *  
## subjNumFHS_016 -664.483    168.389  -3.946  0.00337 ** 
## coderMichelle   -41.190    108.053  -0.381  0.71190    
## coderellen      410.962    115.514   3.558  0.00614 ** 
## coderKatey       -1.604    108.053  -0.015  0.98848    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 141.5 on 9 degrees of freedom
## Multiple R-squared:  0.9454, Adjusted R-squared:  0.8846 
## F-statistic: 15.57 on 10 and 9 DF,  p-value: 0.0001649
pairwise.t.test(total_data$VAT, total_data$coder, paired=FALSE, p.adjust.method="bonferroni")
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  total_data$VAT and total_data$coder 
## 
##          Lisa   Michelle ellen 
## Michelle 1.0000 -        -     
## ellen    1.0000 1.0000   -     
## Katey    0.0247 0.0011   0.1632
## 
## P value adjustment method: bonferroni
fullPlot31<-ggplot(
  total_data, aes(
    subjNum, VAT, fill=as.factor(coder)))+stat_summary(
      fun.y=mean, geom="bar", position="dodge")+stat_summary(
        fun.data=mean_cl_normal, geom="errorbar", position=position_dodge(width=0.90), width=0.2)+labs(
          x = "subjNum", y = "VAT")+ labs(
            title="VAT")
fullPlot31