library(readxl)
dengue <- read_excel("Documents/Data Analysis and econometrics/dengue.xlsx")
labels <- read_excel("Documents/Data Analysis and econometrics/labels.xlsx")
denguetest <- read_excel("Documents/Data Analysis and econometrics/denguetest.xlsx")
sub <- read_excel("Documents/Data Analysis and econometrics/sub.xlsx")
library(MASS)
library(forecast)
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
library(fpp2)
## Loading required package: ggplot2
## Loading required package: fma
##
## Attaching package: 'fma'
## The following objects are masked from 'package:MASS':
##
## cement, housing, petrol
## Loading required package: expsmooth
library(corrplot)
## corrplot 0.84 loaded
library(magrittr)
library(zoo)
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
library(RColorBrewer)
library(gridExtra)
library(MASS)
require(Amelia)
## Loading required package: Amelia
## Loading required package: Rcpp
## ##
## ## Amelia II: Multiple Imputation
## ## (Version 1.7.6, built: 2019-11-24)
## ## Copyright (C) 2005-2020 James Honaker, Gary King and Matthew Blackwell
## ## Refer to http://gking.harvard.edu/amelia/ for more information
## ##
library(Amelia)
library('broom')
library('purrr')
##
## Attaching package: 'purrr'
## The following object is masked from 'package:magrittr':
##
## set_names
library('lubridate')
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
library('timeDate')
library('tseries')
library('forecast')
library('prophet')
## Loading required package: rlang
##
## Attaching package: 'rlang'
## The following objects are masked from 'package:purrr':
##
## %@%, as_function, flatten, flatten_chr, flatten_dbl, flatten_int,
## flatten_lgl, flatten_raw, invoke, list_along, modify, prepend,
## splice
## The following object is masked from 'package:magrittr':
##
## set_names
library('ggplot2')
library('scales')
##
## Attaching package: 'scales'
## The following object is masked from 'package:purrr':
##
## discard
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:lubridate':
##
## intersect, setdiff, union
## The following object is masked from 'package:gridExtra':
##
## combine
## The following object is masked from 'package:MASS':
##
## select
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(psych)
##
## Attaching package: 'psych'
## The following objects are masked from 'package:scales':
##
## alpha, rescale
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
summary(dengue)
## city year weekofyear week_start_date
## Length:1456 Min. :1990 Min. : 1.00 Length:1456
## Class :character 1st Qu.:1997 1st Qu.:13.75 Class :character
## Mode :character Median :2002 Median :26.50 Mode :character
## Mean :2001 Mean :26.50
## 3rd Qu.:2005 3rd Qu.:39.25
## Max. :2010 Max. :53.00
##
## ndvi_ne ndvi_nw ndvi_se ndvi_sw
## Min. :-0.40625 Min. :-0.45610 Min. :-0.01553 Min. :-0.06346
## 1st Qu.: 0.04495 1st Qu.: 0.04922 1st Qu.: 0.15509 1st Qu.: 0.14421
## Median : 0.12882 Median : 0.12143 Median : 0.19605 Median : 0.18945
## Mean : 0.14229 Mean : 0.13055 Mean : 0.20378 Mean : 0.20231
## 3rd Qu.: 0.24848 3rd Qu.: 0.21660 3rd Qu.: 0.24885 3rd Qu.: 0.24698
## Max. : 0.50836 Max. : 0.45443 Max. : 0.53831 Max. : 0.54602
## NA's :194 NA's :52 NA's :22 NA's :22
## precipitation_amt_mm reanalysis_air_temp_k reanalysis_avg_temp_k
## Min. : 0.00 Min. :294.6 Min. :294.9
## 1st Qu.: 9.80 1st Qu.:297.7 1st Qu.:298.3
## Median : 38.34 Median :298.6 Median :299.3
## Mean : 45.76 Mean :298.7 Mean :299.2
## 3rd Qu.: 70.23 3rd Qu.:299.8 3rd Qu.:300.2
## Max. :390.60 Max. :302.2 Max. :302.9
## NA's :13 NA's :10 NA's :10
## reanalysis_dew_point_temp_k reanalysis_max_air_temp_k
## Min. :289.6 Min. :297.8
## 1st Qu.:294.1 1st Qu.:301.0
## Median :295.6 Median :302.4
## Mean :295.2 Mean :303.4
## 3rd Qu.:296.5 3rd Qu.:305.5
## Max. :298.4 Max. :314.0
## NA's :10 NA's :10
## reanalysis_min_air_temp_k reanalysis_precip_amt_kg_per_m2
## Min. :286.9 Min. : 0.00
## 1st Qu.:293.9 1st Qu.: 13.05
## Median :296.2 Median : 27.25
## Mean :295.7 Mean : 40.15
## 3rd Qu.:297.9 3rd Qu.: 52.20
## Max. :299.9 Max. :570.50
## NA's :10 NA's :10
## reanalysis_relative_humidity_percent reanalysis_sat_precip_amt_mm
## Min. :57.79 Min. : 0.00
## 1st Qu.:77.18 1st Qu.: 9.80
## Median :80.30 Median : 38.34
## Mean :82.16 Mean : 45.76
## 3rd Qu.:86.36 3rd Qu.: 70.23
## Max. :98.61 Max. :390.60
## NA's :10 NA's :13
## reanalysis_specific_humidity_g_per_kg reanalysis_tdtr_k station_avg_temp_c
## Min. :11.72 Min. : 1.357 Min. :21.40
## 1st Qu.:15.56 1st Qu.: 2.329 1st Qu.:26.30
## Median :17.09 Median : 2.857 Median :27.41
## Mean :16.75 Mean : 4.904 Mean :27.19
## 3rd Qu.:17.98 3rd Qu.: 7.625 3rd Qu.:28.16
## Max. :20.46 Max. :16.029 Max. :30.80
## NA's :10 NA's :10 NA's :43
## station_diur_temp_rng_c station_max_temp_c station_min_temp_c
## Min. : 4.529 Min. :26.70 Min. :14.7
## 1st Qu.: 6.514 1st Qu.:31.10 1st Qu.:21.1
## Median : 7.300 Median :32.80 Median :22.2
## Mean : 8.059 Mean :32.45 Mean :22.1
## 3rd Qu.: 9.567 3rd Qu.:33.90 3rd Qu.:23.3
## Max. :15.800 Max. :42.20 Max. :25.6
## NA's :43 NA's :20 NA's :14
## station_precip_mm
## Min. : 0.00
## 1st Qu.: 8.70
## Median : 23.85
## Mean : 39.33
## 3rd Qu.: 53.90
## Max. :543.30
## NA's :22
describe(dengue)
## Warning in describe(dengue): NAs introduced by coercion
## Warning in describe(dengue): NAs introduced by coercion
## Warning in FUN(newX[, i], ...): no non-missing arguments to min; returning Inf
## Warning in FUN(newX[, i], ...): no non-missing arguments to min; returning Inf
## Warning in FUN(newX[, i], ...): no non-missing arguments to max; returning -Inf
## Warning in FUN(newX[, i], ...): no non-missing arguments to max; returning -Inf
## vars n mean sd median trimmed
## city* 1 1456 NaN NA NA NaN
## year 2 1456 2001.03 5.41 2002.00 2001.30
## weekofyear 3 1456 26.50 15.02 26.50 26.50
## week_start_date* 4 1456 NaN NA NA NaN
## ndvi_ne 5 1262 0.14 0.14 0.13 0.14
## ndvi_nw 6 1404 0.13 0.12 0.12 0.13
## ndvi_se 7 1434 0.20 0.07 0.20 0.20
## ndvi_sw 8 1434 0.20 0.08 0.19 0.20
## precipitation_amt_mm 9 1443 45.76 43.72 38.34 40.16
## reanalysis_air_temp_k 10 1446 298.70 1.36 298.65 298.72
## reanalysis_avg_temp_k 11 1446 299.23 1.26 299.29 299.25
## reanalysis_dew_point_temp_k 12 1446 295.25 1.53 295.64 295.37
## reanalysis_max_air_temp_k 13 1446 303.43 3.23 302.40 303.10
## reanalysis_min_air_temp_k 14 1446 295.72 2.57 296.20 295.93
## reanalysis_precip_amt_kg_per_m2 15 1446 40.15 43.43 27.24 32.38
## reanalysis_relative_humidity_percent 16 1446 82.16 7.15 80.30 81.69
## reanalysis_sat_precip_amt_mm 17 1443 45.76 43.72 38.34 40.16
## reanalysis_specific_humidity_g_per_kg 18 1446 16.75 1.54 17.09 16.85
## reanalysis_tdtr_k 19 1446 4.90 3.55 2.86 4.36
## station_avg_temp_c 20 1413 27.19 1.29 27.41 27.27
## station_diur_temp_rng_c 21 1413 8.06 2.13 7.30 7.85
## station_max_temp_c 22 1436 32.45 1.96 32.80 32.52
## station_min_temp_c 23 1442 22.10 1.57 22.20 22.14
## station_precip_mm 24 1434 39.33 47.46 23.85 30.46
## mad min max range skew
## city* NA Inf -Inf -Inf NA
## year 5.93 1990.00 2010.00 20.00 -0.40
## weekofyear 19.27 1.00 53.00 52.00 0.00
## week_start_date* NA Inf -Inf -Inf NA
## ndvi_ne 0.15 -0.41 0.51 0.91 -0.11
## ndvi_nw 0.12 -0.46 0.45 0.91 -0.01
## ndvi_se 0.07 -0.02 0.54 0.55 0.57
## ndvi_sw 0.07 -0.06 0.55 0.61 0.75
## precipitation_amt_mm 44.23 0.00 390.60 390.60 1.73
## reanalysis_air_temp_k 1.57 294.64 302.20 7.56 -0.08
## reanalysis_avg_temp_k 1.43 294.89 302.93 8.04 -0.19
## reanalysis_dew_point_temp_k 1.52 289.64 298.45 8.81 -0.72
## reanalysis_max_air_temp_k 2.67 297.80 314.00 16.20 0.85
## reanalysis_min_air_temp_k 2.82 286.90 299.90 13.00 -0.67
## reanalysis_precip_amt_kg_per_m2 25.12 0.00 570.50 570.50 3.38
## reanalysis_relative_humidity_percent 5.68 57.79 98.61 40.82 0.57
## reanalysis_sat_precip_amt_mm 44.23 0.00 390.60 390.60 1.73
## reanalysis_specific_humidity_g_per_kg 1.63 11.72 20.46 8.75 -0.54
## reanalysis_tdtr_k 1.16 1.36 16.03 14.67 1.07
## station_avg_temp_c 1.28 21.40 30.80 9.40 -0.57
## station_diur_temp_rng_c 1.63 4.53 15.80 11.27 0.84
## station_max_temp_c 1.63 26.70 42.20 15.50 -0.26
## station_min_temp_c 1.63 14.70 25.60 10.90 -0.31
## station_precip_mm 26.76 0.00 543.30 543.30 2.98
## kurtosis se
## city* NA NA
## year -0.89 0.14
## weekofyear -1.20 0.39
## week_start_date* NA NA
## ndvi_ne -0.14 0.00
## ndvi_nw 0.05 0.00
## ndvi_se 0.56 0.00
## ndvi_sw 0.70 0.00
## precipitation_amt_mm 6.74 1.15
## reanalysis_air_temp_k -0.69 0.04
## reanalysis_avg_temp_k -0.54 0.03
## reanalysis_dew_point_temp_k -0.12 0.04
## reanalysis_max_air_temp_k -0.19 0.09
## reanalysis_min_air_temp_k -0.22 0.07
## reanalysis_precip_amt_kg_per_m2 22.12 1.14
## reanalysis_relative_humidity_percent -0.40 0.19
## reanalysis_sat_precip_amt_mm 6.74 1.15
## reanalysis_specific_humidity_g_per_kg -0.49 0.04
## reanalysis_tdtr_k -0.21 0.09
## station_avg_temp_c -0.16 0.03
## station_diur_temp_rng_c -0.26 0.06
## station_max_temp_c 0.21 0.05
## station_min_temp_c 0.21 0.04
## station_precip_mm 15.29 1.25
summary(labels)
## city year weekofyear total_cases
## Length:1456 Min. :1990 Min. : 1.00 Min. : 0.00
## Class :character 1st Qu.:1997 1st Qu.:13.75 1st Qu.: 5.00
## Mode :character Median :2002 Median :26.50 Median : 12.00
## Mean :2001 Mean :26.50 Mean : 24.68
## 3rd Qu.:2005 3rd Qu.:39.25 3rd Qu.: 28.00
## Max. :2010 Max. :53.00 Max. :461.00
describe(labels)
## Warning in describe(labels): NAs introduced by coercion
## Warning in FUN(newX[, i], ...): no non-missing arguments to min; returning Inf
## Warning in FUN(newX[, i], ...): no non-missing arguments to max; returning -Inf
## vars n mean sd median trimmed mad min max range skew
## city* 1 1456 NaN NA NA NaN NA Inf -Inf -Inf NA
## year 2 1456 2001.03 5.41 2002.0 2001.30 5.93 1990 2010 20 -0.40
## weekofyear 3 1456 26.50 15.02 26.5 26.50 19.27 1 53 52 0.00
## total_cases 4 1456 24.68 43.60 12.0 15.97 13.34 0 461 461 5.26
## kurtosis se
## city* NA NA
## year -0.89 0.14
## weekofyear -1.20 0.39
## total_cases 36.33 1.14
trainiq = dengue[dengue$city == 'iq',]
trainsj = dengue[dengue$city == 'sj',]
labelsiq = labels[labels$city == 'iq',]
labelssj = labels[labels$city == 'sj',]
sjtrain<-cbind(trainsj,labelssj)
iqtrain<-cbind(trainiq,labelsiq)
plot(sjtrain$week_start_date,sjtrain$total_cases,xlim=c(0,936))
## Warning in xy.coords(x, y, xlabel, ylabel, log): NAs introduced by coercion
trainsj<-trainsj%>%mutate(week_start_date=ymd(week_start_date))
train.sj<-cbind(trainsj,labelssj)
train.iq<-trainiq%>%mutate(week_start_date=ymd(week_start_date))
train.iq<-cbind(trainiq,labelsiq)
plot(train.sj$week_start_date,train.sj$total_cases, type = 'l',xlim=c(0,936))
plot(train.iq$week_start_date,train.iq$total_cases, type = 'l',xlim=c(0,520))
## Warning in xy.coords(x, y, xlabel, ylabel, log): NAs introduced by coercion
train.sj$city <- NULL
train.iq$city <- NULL
mycorSJdata = train.iq
mycorSJdata$week_start_date <- NULL
mycorIQdata = train.iq
mycorIQdata$week_start_date <- NULL
mycorSJdata$city<-NULL
mycorIQdata$city<-NULL
mycorSJ <- cor(mycorSJdata)
mycorIQ <- cor(mycorIQdata)
corrplot(mycorSJ)
corrplot(mycorIQ)
sj.ts = ts(train.sj$total_cases, frequency = 52)
plot(sj.ts)
iq.ts = ts(train.iq$total_cases, frequency = 52)
plot(iq.ts)
dec.sj.ts<-decompose(sj.ts,type="additive")
plot(dec.sj.ts)
dec.iq.ts<-decompose(iq.ts,type="additive")
plot(dec.iq.ts)
Slight upward trend in IQ, slight downward trend in SJ. More obvious yearly seasonality in SJ than IQ.
ggseasonplot(sj.ts)
ggseasonplot(iq.ts)
arima.sj=auto.arima(sj.ts)
arima.sj.fc=forecast(arima.sj,h=260)
autoplot(arima.sj.fc)
checkresiduals(arima.sj.fc)
##
## Ljung-Box test
##
## data: Residuals from ARIMA(1,1,1)
## Q* = 95.049, df = 102, p-value = 0.6741
##
## Model df: 2. Total lags used: 104
summary(arima.sj.fc)
##
## Forecast method: ARIMA(1,1,1)
##
## Model Information:
## Series: sj.ts
## ARIMA(1,1,1)
##
## Coefficients:
## ar1 ma1
## 0.7116 -0.5929
## s.e. 0.0948 0.1078
##
## sigma^2 estimated as 180.9: log likelihood=-3755.85
## AIC=7517.71 AICc=7517.73 BIC=7532.23
##
## Error measures:
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 0.001467535 13.42959 8.047587 NaN Inf 0.2202839 0.001092614
##
## Forecasts:
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## 19.00000 5.281867 -11.95649 22.52023 -21.08193 31.64567
## 19.01923 5.482448 -20.38332 31.34821 -34.07583 45.04072
## 19.03846 5.625183 -27.52871 38.77907 -45.07931 56.32968
## 19.05769 5.726756 -33.93894 45.39245 -54.93668 66.39020
## 19.07692 5.799036 -39.81021 51.40828 -63.95428 75.55236
## 19.09615 5.850472 -45.24684 56.94778 -72.29612 83.99706
## 19.11538 5.887074 -50.31797 62.09212 -80.07112 91.84527
## 19.13462 5.913120 -55.07530 66.90154 -87.36062 99.18686
## 19.15385 5.931655 -59.55999 71.42330 -94.22917 106.09248
## 19.17308 5.944845 -63.80587 75.69556 -100.72967 112.61936
## 19.19231 5.954231 -67.84125 79.74971 -106.90622 118.81468
## 19.21154 5.960911 -71.69005 83.61187 -112.79599 124.71781
## 19.23077 5.965664 -75.37262 87.30395 -118.43050 130.36183
## 19.25000 5.969046 -78.90634 90.84443 -123.83666 135.77475
## 19.26923 5.971453 -82.30617 94.24907 -129.03752 140.98042
## 19.28846 5.973166 -85.58498 97.53131 -134.05293 145.99926
## 19.30769 5.974384 -88.75392 100.70269 -138.90006 150.84883
## 19.32692 5.975252 -91.82271 103.77321 -143.59382 155.54433
## 19.34615 5.975869 -94.79980 106.75154 -148.14722 160.09896
## 19.36538 5.976308 -97.69263 109.64525 -152.57165 164.52427
## 19.38462 5.976621 -100.50773 112.46097 -156.87714 168.83038
## 19.40385 5.976843 -103.25088 115.20457 -161.07255 173.02623
## 19.42308 5.977001 -105.92721 117.88121 -165.16572 177.11972
## 19.44231 5.977114 -108.54129 120.49552 -169.16367 181.11790
## 19.46154 5.977194 -111.09722 123.05161 -173.07267 185.02706
## 19.48077 5.977251 -113.59866 125.55316 -176.89833 188.85283
## 19.50000 5.977292 -116.04893 128.00352 -180.64572 192.60030
## 19.51923 5.977321 -118.45103 130.40567 -184.31943 196.27407
## 19.53846 5.977341 -120.80768 132.76236 -187.92361 199.87829
## 19.55769 5.977356 -123.12134 135.07605 -191.46206 203.41678
## 19.57692 5.977366 -125.39429 137.34902 -194.93824 206.89298
## 19.59615 5.977374 -127.62859 139.58334 -198.35531 210.31006
## 19.61538 5.977379 -129.82615 141.78091 -201.71619 213.67095
## 19.63462 5.977383 -131.98871 143.94348 -205.02355 216.97832
## 19.65385 5.977385 -134.11791 146.07268 -208.27988 220.23465
## 19.67308 5.977387 -136.21523 148.17000 -211.48745 223.44223
## 19.69231 5.977389 -138.28206 150.23684 -214.64840 226.60318
## 19.71154 5.977390 -140.31970 152.27448 -217.76470 229.71948
## 19.73077 5.977390 -142.32935 154.28413 -220.83819 232.79297
## 19.75000 5.977391 -144.31213 156.26691 -223.87059 235.82537
## 19.76923 5.977391 -146.26908 158.22387 -226.86350 238.81828
## 19.78846 5.977391 -148.20120 160.15599 -229.81842 241.77321
## 19.80769 5.977391 -150.10941 162.06419 -232.73677 244.69156
## 19.82692 5.977392 -151.99457 163.94935 -235.61987 247.57466
## 19.84615 5.977392 -153.85750 165.81228 -238.46897 250.42376
## 19.86538 5.977392 -155.69896 167.65374 -241.28525 253.24003
## 19.88462 5.977392 -157.51968 169.47446 -244.06980 256.02459
## 19.90385 5.977392 -159.32035 171.27513 -246.82369 258.77847
## 19.92308 5.977392 -161.10161 173.05640 -249.54790 261.50268
## 19.94231 5.977392 -162.86409 174.81887 -252.24337 264.19815
## 19.96154 5.977392 -164.60835 176.56313 -254.91099 266.86577
## 19.98077 5.977392 -166.33496 178.28974 -257.55161 269.50639
## 20.00000 5.977392 -168.04444 179.99922 -260.16603 272.12081
## 20.01923 5.977392 -169.73729 181.69207 -262.75502 274.70980
## 20.03846 5.977392 -171.41398 183.36876 -265.31930 277.27408
## 20.05769 5.977392 -173.07497 185.02976 -267.85957 279.81435
## 20.07692 5.977392 -174.72070 186.67548 -270.37649 282.33127
## 20.09615 5.977392 -176.35157 188.30636 -272.87069 284.82548
## 20.11538 5.977392 -177.96798 189.92277 -275.34279 287.29757
## 20.13462 5.977392 -179.57032 191.52510 -277.79334 289.74813
## 20.15385 5.977392 -181.15893 193.11371 -280.22292 292.17770
## 20.17308 5.977392 -182.73417 194.68895 -282.63204 294.58682
## 20.19231 5.977392 -184.29637 196.25115 -285.02122 296.97600
## 20.21154 5.977392 -185.84585 197.80063 -287.39094 299.34572
## 20.23077 5.977392 -187.38291 199.33769 -289.74167 301.69645
## 20.25000 5.977392 -188.90785 200.86263 -292.07386 304.02865
## 20.26923 5.977392 -190.42095 202.37573 -294.38795 306.34273
## 20.28846 5.977392 -191.92248 203.87726 -296.68434 308.63912
## 20.30769 5.977392 -193.41270 205.36748 -298.96344 310.91822
## 20.32692 5.977392 -194.89187 206.84665 -301.22563 313.18042
## 20.34615 5.977392 -196.36022 208.31501 -303.47129 315.42607
## 20.36538 5.977392 -197.81800 209.77278 -305.70076 317.65555
## 20.38462 5.977392 -199.26542 211.22020 -307.91440 319.86919
## 20.40385 5.977392 -200.70271 212.65749 -310.11254 322.06733
## 20.42308 5.977392 -202.13007 214.08485 -312.29550 324.25028
## 20.44231 5.977392 -203.54770 215.50248 -314.46359 326.41837
## 20.46154 5.977392 -204.95581 216.91059 -316.61710 328.57188
## 20.48077 5.977392 -206.35458 218.30936 -318.75634 330.71112
## 20.50000 5.977392 -207.74420 219.69898 -320.88157 332.83635
## 20.51923 5.977392 -209.12483 221.07962 -322.99307 334.94786
## 20.53846 5.977392 -210.49667 222.45145 -325.09111 337.04590
## 20.55769 5.977392 -211.85986 223.81465 -327.17594 339.13072
## 20.57692 5.977392 -213.21458 225.16936 -329.24780 341.20258
## 20.59615 5.977392 -214.56097 226.51576 -331.30693 343.26172
## 20.61538 5.977392 -215.89920 227.85398 -333.35357 345.30835
## 20.63462 5.977392 -217.22940 229.18418 -335.38794 347.34272
## 20.65385 5.977392 -218.55172 230.50651 -337.41025 349.36504
## 20.67308 5.977392 -219.86630 231.82108 -339.42073 351.37551
## 20.69231 5.977392 -221.17327 233.12806 -341.41957 353.37435
## 20.71154 5.977392 -222.47277 234.42755 -343.40698 355.36176
## 20.73077 5.977392 -223.76491 235.71970 -345.38314 357.33792
## 20.75000 5.977392 -225.04983 237.00461 -347.34825 359.30304
## 20.76923 5.977392 -226.32764 238.28242 -349.30249 361.25728
## 20.78846 5.977392 -227.59846 239.55324 -351.24605 363.20083
## 20.80769 5.977392 -228.86240 240.81719 -353.17908 365.13386
## 20.82692 5.977392 -230.11958 242.07436 -355.10177 367.05655
## 20.84615 5.977392 -231.37010 243.32488 -357.01427 368.96905
## 20.86538 5.977392 -232.61406 244.56884 -358.91675 370.87153
## 20.88462 5.977392 -233.85157 245.80636 -360.80936 372.76414
## 20.90385 5.977392 -235.08273 247.03751 -362.69225 374.64704
## 20.92308 5.977392 -236.30763 248.26242 -364.56558 376.52036
## 20.94231 5.977392 -237.52637 249.48116 -366.42948 378.38427
## 20.96154 5.977392 -238.73905 250.69383 -368.28410 380.23889
## 20.98077 5.977392 -239.94574 251.90052 -370.12958 382.08436
## 21.00000 5.977392 -241.14654 253.10132 -371.96604 383.92083
## 21.01923 5.977392 -242.34153 254.29631 -373.79363 385.74841
## 21.03846 5.977392 -243.53080 255.48558 -375.61246 387.56724
## 21.05769 5.977392 -244.71443 256.66921 -377.42266 389.37745
## 21.07692 5.977392 -245.89249 257.84728 -379.22436 391.17914
## 21.09615 5.977392 -247.06508 259.01986 -381.01767 392.97245
## 21.11538 5.977392 -248.23225 260.18703 -382.80270 394.75749
## 21.13462 5.977392 -249.39409 261.34887 -384.57958 396.53436
## 21.15385 5.977392 -250.55066 262.50545 -386.34841 398.30320
## 21.17308 5.977392 -251.70205 263.65683 -388.10930 400.06409
## 21.19231 5.977392 -252.84831 264.80309 -389.86236 401.81714
## 21.21154 5.977392 -253.98952 265.94430 -391.60769 403.56247
## 21.23077 5.977392 -255.12574 267.08052 -393.34539 405.30017
## 21.25000 5.977392 -256.25704 268.21182 -395.07556 407.03034
## 21.26923 5.977392 -257.38348 269.33826 -396.79830 408.75308
## 21.28846 5.977392 -258.50512 270.45990 -398.51370 410.46848
## 21.30769 5.977392 -259.62202 271.57681 -400.22186 412.17664
## 21.32692 5.977392 -260.73425 272.68903 -401.92286 413.87765
## 21.34615 5.977392 -261.84186 273.79664 -403.61680 415.57159
## 21.36538 5.977392 -262.94490 274.89969 -405.30377 417.25855
## 21.38462 5.977392 -264.04344 275.99823 -406.98384 418.93862
## 21.40385 5.977392 -265.13753 277.09232 -408.65710 420.61189
## 21.42308 5.977392 -266.22722 278.18201 -410.32364 422.27843
## 21.44231 5.977392 -267.31257 279.26736 -411.98354 423.93832
## 21.46154 5.977392 -268.39362 280.34841 -413.63687 425.59165
## 21.48077 5.977392 -269.47044 281.42522 -415.28371 427.23849
## 21.50000 5.977392 -270.54305 282.49784 -416.92413 428.87892
## 21.51923 5.977392 -271.61153 283.56631 -418.55822 430.51301
## 21.53846 5.977392 -272.67590 284.63069 -420.18604 432.14083
## 21.55769 5.977392 -273.73623 285.69101 -421.80767 433.76246
## 21.57692 5.977392 -274.79255 286.74733 -423.42318 435.37796
## 21.59615 5.977392 -275.84491 287.79969 -425.03263 436.98741
## 21.61538 5.977392 -276.89336 288.84814 -426.63609 438.59087
## 21.63462 5.977392 -277.93793 289.89272 -428.23363 440.18841
## 21.65385 5.977392 -278.97868 290.93346 -429.82531 441.78009
## 21.67308 5.977392 -280.01564 291.97042 -431.41120 443.36599
## 21.69231 5.977392 -281.04885 293.00363 -432.99137 444.94615
## 21.71154 5.977392 -282.07836 294.03314 -434.56586 446.52064
## 21.73077 5.977392 -283.10420 295.05898 -436.13475 448.08953
## 21.75000 5.977392 -284.12641 296.08119 -437.69809 449.65287
## 21.76923 5.977392 -285.14503 297.09982 -439.25594 451.21072
## 21.78846 5.977392 -286.16011 298.11489 -440.80836 452.76314
## 21.80769 5.977392 -287.17166 299.12645 -442.35540 454.31018
## 21.82692 5.977392 -288.17974 300.13453 -443.89712 455.85191
## 21.84615 5.977392 -289.18438 301.13916 -445.43358 457.38836
## 21.86538 5.977392 -290.18560 302.14039 -446.96483 458.91961
## 21.88462 5.977392 -291.18346 303.13824 -448.49091 460.44570
## 21.90385 5.977392 -292.17797 304.13276 -450.01189 461.96667
## 21.92308 5.977392 -293.16918 305.12397 -451.52781 463.48260
## 21.94231 5.977392 -294.15712 306.11190 -453.03873 464.99351
## 21.96154 5.977392 -295.14181 307.09659 -454.54469 466.49947
## 21.98077 5.977392 -296.12330 308.07808 -456.04574 468.00052
## 22.00000 5.977392 -297.10160 309.05638 -457.54193 469.49671
## 22.01923 5.977392 -298.07676 310.03154 -459.03330 470.98809
## 22.03846 5.977392 -299.04880 311.00358 -460.51991 472.47470
## 22.05769 5.977392 -300.01775 311.97254 -462.00180 473.95658
## 22.07692 5.977392 -300.98365 312.93843 -463.47900 475.43379
## 22.09615 5.977392 -301.94651 313.90129 -464.95158 476.90636
## 22.11538 5.977392 -302.90637 314.86116 -466.41956 478.37435
## 22.13462 5.977392 -303.86326 315.81805 -467.88300 479.83778
## 22.15385 5.977392 -304.81721 316.77199 -469.34193 481.29671
## 22.17308 5.977392 -305.76823 317.72301 -470.79639 482.75118
## 22.19231 5.977392 -306.71636 318.67115 -472.24644 484.20122
## 22.21154 5.977392 -307.66163 319.61641 -473.69209 485.64688
## 22.23077 5.977392 -308.60405 320.55884 -475.13341 487.08819
## 22.25000 5.977392 -309.54366 321.49845 -476.57042 488.52520
## 22.26923 5.977392 -310.48048 322.43527 -478.00316 489.95795
## 22.28846 5.977392 -311.41454 323.36932 -479.43168 491.38646
## 22.30769 5.977392 -312.34585 324.30064 -480.85600 492.81078
## 22.32692 5.977392 -313.27445 325.22923 -482.27617 494.23095
## 22.34615 5.977392 -314.20036 326.15514 -483.69222 495.64700
## 22.36538 5.977392 -315.12359 327.07837 -485.10418 497.05897
## 22.38462 5.977392 -316.04418 327.99896 -486.51210 498.46688
## 22.40385 5.977392 -316.96214 328.91692 -487.91600 499.87079
## 22.42308 5.977392 -317.87750 329.83229 -489.31593 501.27071
## 22.44231 5.977392 -318.79028 330.74507 -490.71191 502.66669
## 22.46154 5.977392 -319.70051 331.65529 -492.10397 504.05876
## 22.48077 5.977392 -320.60819 332.56298 -493.49216 505.44694
## 22.50000 5.977392 -321.51336 333.46815 -494.87650 506.83128
## 22.51923 5.977392 -322.41604 334.37082 -496.25702 508.21181
## 22.53846 5.977392 -323.31624 335.27103 -497.63376 509.58855
## 22.55769 5.977392 -324.21399 336.16877 -499.00675 510.96153
## 22.57692 5.977392 -325.10930 337.06409 -500.37601 512.33079
## 22.59615 5.977392 -326.00220 337.95698 -501.74158 513.69636
## 22.61538 5.977392 -326.89270 338.84749 -503.10349 515.05827
## 22.63462 5.977392 -327.78083 339.73561 -504.46176 516.41654
## 22.65385 5.977392 -328.66660 340.62138 -505.81643 517.77121
## 22.67308 5.977392 -329.55003 341.50482 -507.16752 519.12231
## 22.69231 5.977392 -330.43114 342.38593 -508.51507 520.46985
## 22.71154 5.977392 -331.30995 343.26474 -509.85909 521.81387
## 22.73077 5.977392 -332.18648 344.14126 -511.19962 523.15441
## 22.75000 5.977392 -333.06074 345.01552 -512.53669 524.49147
## 22.76923 5.977392 -333.93275 345.88754 -513.87031 525.82510
## 22.78846 5.977392 -334.80253 346.75732 -515.20053 527.15531
## 22.80769 5.977392 -335.67010 347.62488 -516.52736 528.48214
## 22.82692 5.977392 -336.53547 348.49025 -517.85082 529.80561
## 22.84615 5.977392 -337.39865 349.35344 -519.17095 531.12574
## 22.86538 5.977392 -338.25968 350.21446 -520.48777 532.44256
## 22.88462 5.977392 -339.11855 351.07334 -521.80131 533.75609
## 22.90385 5.977392 -339.97530 351.93008 -523.11159 535.06637
## 22.92308 5.977392 -340.82992 352.78470 -524.41862 536.37341
## 22.94231 5.977392 -341.68245 353.63723 -525.72245 537.67723
## 22.96154 5.977392 -342.53289 354.48767 -527.02308 538.97787
## 22.98077 5.977392 -343.38126 355.33604 -528.32055 540.27534
## 23.00000 5.977392 -344.22757 356.18235 -529.61488 541.56966
## 23.01923 5.977392 -345.07184 357.02663 -530.90608 542.86087
## 23.03846 5.977392 -345.91409 357.86888 -532.19419 544.14898
## 23.05769 5.977392 -346.75433 358.70911 -533.47922 545.43401
## 23.07692 5.977392 -347.59257 359.54735 -534.76120 546.71599
## 23.09615 5.977392 -348.42883 360.38361 -536.04015 547.99493
## 23.11538 5.977392 -349.26312 361.21790 -537.31608 549.27087
## 23.13462 5.977392 -350.09545 362.05024 -538.58903 550.54381
## 23.15385 5.977392 -350.92585 362.88063 -539.85901 551.81379
## 23.17308 5.977392 -351.75431 363.70910 -541.12604 553.08082
## 23.19231 5.977392 -352.58086 364.53565 -542.39014 554.34492
## 23.21154 5.977392 -353.40552 365.36030 -543.65133 555.60612
## 23.23077 5.977392 -354.22828 366.18306 -544.90964 556.86443
## 23.25000 5.977392 -355.04917 367.00395 -546.16508 558.11986
## 23.26923 5.977392 -355.86819 367.82298 -547.41767 559.37246
## 23.28846 5.977392 -356.68537 368.64015 -548.66744 560.62222
## 23.30769 5.977392 -357.50071 369.45549 -549.91439 561.86917
## 23.32692 5.977392 -358.31422 370.26900 -551.15855 563.11333
## 23.34615 5.977392 -359.12592 371.08070 -552.39994 564.35472
## 23.36538 5.977392 -359.93582 371.89061 -553.63858 565.59336
## 23.38462 5.977392 -360.74393 372.69872 -554.87448 566.82926
## 23.40385 5.977392 -361.55027 373.50505 -556.10766 568.06244
## 23.42308 5.977392 -362.35484 374.30962 -557.33814 569.29293
## 23.44231 5.977392 -363.15766 375.11244 -558.56595 570.52073
## 23.46154 5.977392 -363.95873 375.91351 -559.79108 571.74587
## 23.48077 5.977392 -364.75807 376.71286 -561.01357 572.96836
## 23.50000 5.977392 -365.55570 377.51048 -562.23343 574.18822
## 23.51923 5.977392 -366.35161 378.30639 -563.45068 575.40546
## 23.53846 5.977392 -367.14583 379.10061 -564.66533 576.62011
## 23.55769 5.977392 -367.93836 379.89314 -565.87740 577.83218
## 23.57692 5.977392 -368.72921 380.68399 -567.08690 579.04169
## 23.59615 5.977392 -369.51840 381.47318 -568.29386 580.24865
## 23.61538 5.977392 -370.30593 382.26072 -569.49829 581.45307
## 23.63462 5.977392 -371.09182 383.04660 -570.70020 582.65499
## 23.65385 5.977392 -371.87607 383.83086 -571.89962 583.85440
## 23.67308 5.977392 -372.65870 384.61349 -573.09654 585.05133
## 23.69231 5.977392 -373.43972 385.39450 -574.29100 586.24579
## 23.71154 5.977392 -374.21913 386.17391 -575.48301 587.43779
## 23.73077 5.977392 -374.99694 386.95173 -576.67257 588.62736
## 23.75000 5.977392 -375.77317 387.72796 -577.85972 589.81450
## 23.76923 5.977392 -376.54783 388.50261 -579.04445 590.99924
## 23.78846 5.977392 -377.32092 389.27570 -580.22679 592.18157
## 23.80769 5.977392 -378.09246 390.04724 -581.40675 593.36153
## 23.82692 5.977392 -378.86244 390.81723 -582.58434 594.53913
## 23.84615 5.977392 -379.63089 391.58568 -583.75959 595.71437
## 23.86538 5.977392 -380.39781 392.35260 -584.93249 596.88728
## 23.88462 5.977392 -381.16322 393.11800 -586.10307 598.05786
## 23.90385 5.977392 -381.92711 393.88189 -587.27135 599.22613
## 23.92308 5.977392 -382.68950 394.64428 -588.43732 600.39211
## 23.94231 5.977392 -383.45040 395.40518 -589.60102 601.55580
## 23.96154 5.977392 -384.20981 396.16459 -590.76244 602.71722
## 23.98077 5.977392 -384.96775 396.92253 -591.92161 603.87639
arima.iq=auto.arima(iq.ts)
arima.iq.fc=forecast(arima.iq,h=156)
autoplot(arima.iq.fc)
checkresiduals(arima.iq.fc)
##
## Ljung-Box test
##
## data: Residuals from ARIMA(2,1,1)(0,0,2)[52]
## Q* = 66.923, df = 99, p-value = 0.9944
##
## Model df: 5. Total lags used: 104
summary(arima.iq.fc)
##
## Forecast method: ARIMA(2,1,1)(0,0,2)[52]
##
## Model Information:
## Series: iq.ts
## ARIMA(2,1,1)(0,0,2)[52]
##
## Coefficients:
## ar1 ar2 ma1 sma1 sma2
## -0.0275 -0.2503 -0.2229 0.0499 0.1531
## s.e. 0.1422 0.0538 0.1469 0.0417 0.0446
##
## sigma^2 estimated as 50.67: log likelihood=-1753.96
## AIC=3519.91 AICc=3520.08 BIC=3545.42
##
## Error measures:
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 0.009221677 7.077434 3.853981 NaN Inf 0.4082533 -0.001646214
##
## Forecasts:
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## 11.00000 3.524880 -5.598001 12.64776 -10.42736 17.47712
## 11.01923 3.224337 -8.177277 14.62595 -14.21293 20.66160
## 11.03846 3.250840 -9.050647 15.55233 -15.56266 22.06434
## 11.05769 3.043892 -10.331443 16.41923 -17.41192 23.49970
## 11.07692 3.813817 -10.760678 18.38831 -18.47595 26.10358
## 11.09615 3.440201 -12.178953 19.05935 -20.44723 27.32764
## 11.11538 3.918348 -12.636320 20.47302 -21.39983 29.23653
## 11.13462 3.951521 -13.503357 21.40640 -22.74341 30.64645
## 11.15385 3.879697 -14.440652 22.20005 -24.13886 31.89825
## 11.17308 4.344389 -14.798694 23.48747 -24.93243 33.62121
## 11.19231 5.399801 -14.530005 25.32961 -25.08021 35.87981
## 11.21154 5.799911 -14.887620 26.48744 -25.83894 37.43876
## 11.23077 6.684705 -14.734222 28.10363 -26.07272 39.44213
## 11.25000 9.674077 -12.451859 31.80001 -24.16462 43.51278
## 11.26923 7.954936 -14.856004 30.76588 -26.93139 42.84126
## 11.28846 12.303409 -11.172612 35.77943 -23.60007 48.20689
## 11.30769 9.620365 -14.502429 33.74316 -27.27227 46.51300
## 11.32692 10.307256 -14.445404 35.05992 -27.54867 48.16318
## 11.34615 8.158274 -17.208612 33.52516 -30.63703 46.95358
## 11.36538 5.832629 -20.133962 31.79922 -33.87984 45.54510
## 11.38462 5.414853 -21.137901 31.96761 -35.19408 46.02379
## 11.40385 4.874630 -22.251625 32.00088 -36.61140 46.36066
## 11.42308 4.333040 -23.354838 32.02092 -38.01191 46.67800
## 11.44231 5.350436 -22.887898 33.58877 -37.83637 48.53724
## 11.46154 3.321026 -25.457236 32.09929 -40.69153 47.33358
## 11.48077 2.874033 -26.434213 32.18228 -41.94906 47.69713
## 11.50000 2.725742 -27.103073 32.55456 -42.89349 48.34498
## 11.51923 3.892464 -26.447990 34.23292 -42.50926 50.29418
## 11.53846 4.624385 -26.219221 35.46799 -42.54684 51.79561
## 11.55769 7.439553 -23.899128 38.77823 -40.48882 55.36793
## 11.57692 8.509613 -23.316443 40.33567 -40.16414 57.18337
## 11.59615 7.361072 -24.945007 39.66715 -42.04681 56.76896
## 11.61538 6.174725 -26.604349 38.95380 -43.95654 56.30599
## 11.63462 6.624544 -26.620795 39.86988 -44.21981 57.46890
## 11.65385 5.009213 -28.695942 38.71437 -46.53837 56.55680
## 11.67308 4.635467 -29.523315 38.79425 -47.60588 56.87682
## 11.69231 5.020754 -29.585709 39.62722 -47.90526 57.94677
## 11.71154 4.969150 -30.079277 40.01758 -48.63279 58.57109
## 11.73077 4.009019 -31.475866 39.49391 -50.26043 58.27847
## 11.75000 4.722760 -31.193282 40.63880 -50.20609 59.65161
## 11.76923 3.697640 -32.644442 40.03972 -51.88278 59.27806
## 11.78846 3.943444 -32.819742 40.70663 -52.28100 60.16789
## 11.80769 3.940194 -33.239327 41.11971 -52.92098 60.80136
## 11.82692 3.707473 -33.883771 41.29872 -53.78337 61.19832
## 11.84615 3.630898 -34.367609 41.62941 -54.48280 61.74460
## 11.86538 3.257732 -35.143720 41.65918 -55.47222 61.98768
## 11.88462 3.152182 -35.648029 41.95239 -56.18762 62.49198
## 11.90385 3.356439 -35.838476 42.55135 -56.58701 63.29989
## 11.92308 3.736588 -35.849094 43.32227 -56.80449 64.27766
## 11.94231 3.431542 -36.541088 43.40417 -57.70132 64.56440
## 11.96154 3.745748 -36.610119 44.10162 -57.97323 65.46472
## 11.98077 3.411661 -37.323839 44.14716 -58.88791 65.71123
## 12.00000 3.237016 -37.938509 44.41254 -59.73552 66.20955
## 12.01923 3.319572 -38.275037 44.91418 -60.29389 66.93304
## 12.03846 3.069148 -38.924976 45.06327 -61.15532 67.29362
## 12.05769 2.941552 -39.452637 45.33574 -61.89476 67.77787
## 12.07692 3.441996 -39.352172 46.23616 -62.00604 68.89003
## 12.09615 3.812550 -39.376727 47.00183 -62.23975 69.86485
## 12.11538 3.812563 -39.767374 47.39250 -62.83720 70.46233
## 12.13462 4.000280 -39.967156 47.96772 -63.24211 71.24267
## 12.15385 3.823840 -40.527914 48.17559 -64.00631 71.65400
## 12.17308 3.208289 -41.524400 47.94098 -65.20446 71.62103
## 12.19231 3.139173 -41.971187 48.24953 -65.85117 72.12951
## 12.21154 3.161498 -42.323417 48.64641 -66.40168 72.72467
## 12.23077 2.875866 -42.980557 48.73229 -67.25548 73.00721
## 12.25000 2.949800 -43.275139 49.17474 -67.74514 73.64474
## 12.26923 2.768319 -43.822219 49.35886 -68.48576 74.02240
## 12.28846 2.670052 -44.283240 49.62334 -69.13881 74.47892
## 12.30769 3.023710 -44.289555 50.33698 -69.33569 75.38310
## 12.32692 2.805883 -44.864637 50.47640 -70.09989 75.71165
## 12.34615 3.071695 -44.953422 51.09681 -70.37638 76.51977
## 12.36538 4.258814 -44.118301 52.63593 -69.72760 78.24523
## 12.38462 3.726538 -45.000032 52.45311 -70.79432 78.24740
## 12.40385 3.595437 -45.478101 52.66897 -71.45606 78.64694
## 12.42308 3.120558 -46.297510 52.53863 -72.45786 78.69897
## 12.44231 2.946511 -46.813703 52.70672 -73.15517 79.04819
## 12.46154 2.625973 -47.474050 52.72600 -73.99540 79.24735
## 12.48077 2.971157 -47.466385 53.40870 -74.16641 80.10872
## 12.50000 2.458595 -48.314223 53.23141 -75.19173 80.10892
## 12.51923 3.341512 -47.764383 54.44741 -74.81821 81.50123
## 12.53846 3.887662 -47.549153 55.32448 -74.77816 82.55348
## 12.55769 4.669838 -47.095780 56.43546 -74.49884 83.83852
## 12.57692 4.591060 -47.501287 56.68341 -75.07731 84.25943
## 12.59615 3.870849 -48.546191 56.28789 -76.29410 84.03579
## 12.61538 4.418965 -48.320769 57.15870 -76.23950 85.07743
## 12.63462 5.282718 -47.777747 58.34318 -75.86626 86.43170
## 12.65385 4.856096 -48.523173 58.23536 -76.78045 86.49264
## 12.67308 4.439014 -49.257165 58.13519 -77.68221 86.56023
## 12.69231 4.692161 -49.319070 58.70339 -77.91089 87.29521
## 12.71154 5.466838 -48.857618 59.79129 -77.61525 88.54892
## 12.73077 4.363088 -50.272797 58.99897 -79.19529 87.92146
## 12.75000 3.569024 -51.376524 58.51457 -80.46294 87.60099
## 12.76923 4.437850 -50.815627 59.69133 -80.06505 88.94075
## 12.78846 4.007605 -51.552093 59.56730 -80.96362 88.97883
## 12.80769 4.261981 -51.602261 60.12622 -81.17500 89.69897
## 12.82692 3.694898 -52.472236 59.86203 -82.20532 89.59512
## 12.84615 3.394041 -53.074359 59.86244 -82.96693 89.75501
## 12.86538 4.211581 -52.556488 60.97965 -82.60769 91.03085
## 12.88462 4.016234 -53.049930 61.08240 -83.25893 91.29140
## 12.90385 3.874493 -53.488217 61.23720 -83.85420 91.60319
## 12.92308 4.312733 -53.344997 61.97046 -83.86716 92.49262
## 12.94231 3.253870 -54.697379 61.20512 -85.37492 91.88266
## 12.96154 3.226903 -55.016386 61.47019 -85.84852 92.30233
## 12.98077 3.689447 -54.844424 62.22332 -85.83038 93.20928
## 13.00000 3.647980 -55.329685 62.62564 -86.55057 93.84653
## 13.01923 3.533359 -55.843310 62.91003 -87.27542 94.34214
## 13.03846 3.546884 -56.188008 63.28178 -87.80975 94.90352
## 13.05769 3.575199 -56.526384 63.67678 -88.34224 95.49264
## 13.07692 3.571036 -56.904100 64.04617 -88.91770 96.05978
## 13.09615 3.564065 -57.279417 64.40755 -89.48801 96.61614
## 13.11538 3.565298 -57.642143 64.77274 -90.04340 97.17400
## 13.13462 3.567009 -58.003016 65.13703 -90.59622 97.73024
## 13.15385 3.566653 -58.364349 65.49765 -91.14864 98.28195
## 13.17308 3.566235 -58.723446 65.85591 -91.69761 98.83008
## 13.19231 3.566335 -59.079848 66.21252 -92.24273 99.37540
## 13.21154 3.566437 -59.434287 66.56716 -92.78486 99.91773
## 13.23077 3.566409 -59.786900 66.91972 -93.32412 100.45693
## 13.25000 3.566384 -60.137544 67.27031 -93.86037 100.99313
## 13.26923 3.566392 -60.486229 67.61901 -94.39364 101.52642
## 13.28846 3.566398 -60.833032 67.96583 -94.92403 102.05683
## 13.30769 3.566396 -61.177987 68.31078 -95.45159 102.58439
## 13.32692 3.566394 -61.521112 68.65390 -95.97636 103.10915
## 13.34615 3.566395 -61.862436 68.99523 -96.49837 103.63116
## 13.36538 3.566395 -62.201988 69.33478 -97.01767 104.15046
## 13.38462 3.566395 -62.539797 69.67259 -97.53430 104.66709
## 13.40385 3.566395 -62.875889 70.00868 -98.04831 105.18110
## 13.42308 3.566395 -63.210288 70.34308 -98.55973 105.69252
## 13.44231 3.566395 -63.543022 70.67581 -99.06860 106.20139
## 13.46154 3.566395 -63.874114 71.00690 -99.57496 106.70775
## 13.48077 3.566395 -64.203588 71.33638 -100.07885 107.21164
## 13.50000 3.566395 -64.531469 71.66426 -100.58030 107.71309
## 13.51923 3.566395 -64.857778 71.99057 -101.07935 108.21214
## 13.53846 3.566395 -65.182538 72.31533 -101.57603 108.70882
## 13.55769 3.566395 -65.505772 72.63856 -102.07037 109.20316
## 13.57692 3.566395 -65.827499 72.96029 -102.56241 109.69520
## 13.59615 3.566395 -66.147743 73.28053 -103.05218 110.18497
## 13.61538 3.566395 -66.466521 73.59931 -103.53971 110.67250
## 13.63462 3.566395 -66.783856 73.91665 -104.02503 111.15782
## 13.65385 3.566395 -67.099765 74.23256 -104.50817 111.64096
## 13.67308 3.566395 -67.414268 74.54706 -104.98916 112.12195
## 13.69231 3.566395 -67.727384 74.86017 -105.46803 112.60082
## 13.71154 3.566395 -68.039131 75.17192 -105.94481 113.07760
## 13.73077 3.566395 -68.349526 75.48232 -106.41952 113.55231
## 13.75000 3.566395 -68.658588 75.79138 -106.89218 114.02497
## 13.76923 3.566395 -68.966332 76.09912 -107.36284 114.49563
## 13.78846 3.566395 -69.272776 76.40557 -107.83150 114.96430
## 13.80769 3.566395 -69.577937 76.71073 -108.29821 115.43100
## 13.82692 3.566395 -69.881830 77.01462 -108.76297 115.89576
## 13.84615 3.566395 -70.184470 77.31726 -109.22582 116.35861
## 13.86538 3.566395 -70.485874 77.61866 -109.68678 116.81957
## 13.88462 3.566395 -70.786055 77.91885 -110.14587 117.27866
## 13.90385 3.566395 -71.085030 78.21782 -110.60311 117.73590
## 13.92308 3.566395 -71.382812 78.51560 -111.05853 118.19132
## 13.94231 3.566395 -71.679416 78.81221 -111.51214 118.64493
## 13.96154 3.566395 -71.974855 79.10765 -111.96398 119.09677
## 13.98077 3.566395 -72.269143 79.40193 -112.41405 119.54684
ets.sj=ets(sj.ts,model="ZZZ")
## Warning in ets(sj.ts, model = "ZZZ"): I can't handle data with frequency greater
## than 24. Seasonality will be ignored. Try stlf() if you need seasonal forecasts.
ets.sj.fc=forecast(ets.sj,h=260)
autoplot(ets.sj.fc)
checkresiduals(ets.sj.fc)
##
## Ljung-Box test
##
## data: Residuals from ETS(A,Ad,N)
## Q* = 93.059, df = 99, p-value = 0.6492
##
## Model df: 5. Total lags used: 104
summary(ets.sj.fc)
##
## Forecast method: ETS(A,Ad,N)
##
## Model Information:
## ETS(A,Ad,N)
##
## Call:
## ets(y = sj.ts, model = "ZZZ")
##
## Smoothing parameters:
## alpha = 0.9999
## beta = 0.1355
## phi = 0.8
##
## Initial states:
## l = 3.0767
## b = 0.2624
##
## sigma: 13.4753
##
## AIC AICc BIC
## 11279.55 11279.64 11308.60
##
## Error measures:
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 0.00139911 13.43929 8.026055 NaN Inf 0.2196945 0.01271293
##
## Forecasts:
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## 19.00000 5.228984 -12.04034 22.49831 -21.18217 31.64014
## 19.01923 5.412350 -20.36663 31.19133 -34.01320 44.83790
## 19.03846 5.559044 -27.46309 38.58118 -44.94396 56.06204
## 19.05769 5.676398 -33.91225 45.26505 -54.86921 66.22201
## 19.07692 5.770282 -39.91170 51.45226 -64.09428 75.63484
## 19.09615 5.845390 -45.55476 57.24554 -72.76435 84.45513
## 19.11538 5.905476 -50.89588 62.70683 -80.96470 92.77565
## 19.13462 5.953544 -55.97209 67.87917 -88.75353 100.66062
## 19.15385 5.992000 -60.81143 72.79542 -96.17502 108.15902
## 19.17308 6.022764 -65.43668 77.48221 -103.26503 115.31056
## 19.19231 6.047375 -69.86720 81.96195 -110.05395 122.14870
## 19.21154 6.067064 -74.11982 86.25395 -116.56819 128.70232
## 19.23077 6.082816 -78.20943 90.37506 -122.83105 134.99668
## 19.25000 6.095417 -82.14931 94.34014 -128.86325 141.05408
## 19.26923 6.105498 -85.95137 98.16237 -134.68334 146.89433
## 19.28846 6.113562 -89.62634 101.85346 -140.30798 152.53510
## 19.30769 6.120014 -93.18385 105.42388 -145.75214 157.99217
## 19.32692 6.125176 -96.63264 108.88299 -151.02935 163.27970
## 19.34615 6.129305 -99.98059 112.23920 -156.15178 168.41039
## 19.36538 6.132608 -103.23483 115.50005 -161.13046 173.39568
## 19.38462 6.135251 -106.40183 118.67233 -165.97536 178.24587
## 19.40385 6.137365 -109.48745 121.76218 -170.69553 182.97026
## 19.42308 6.139056 -112.49702 124.77513 -175.29916 187.57727
## 19.44231 6.140409 -115.43538 127.71620 -179.79371 192.07453
## 19.46154 6.141492 -118.30695 130.58993 -184.18597 196.46895
## 19.48077 6.142358 -121.11575 133.40046 -188.48212 200.76684
## 19.50000 6.143051 -123.86546 136.15156 -192.68781 204.97391
## 19.51923 6.143605 -126.55946 138.84667 -196.80822 209.09543
## 19.53846 6.144048 -129.20082 141.48891 -200.84806 213.13616
## 19.55769 6.144403 -131.79238 144.08118 -204.81170 217.10051
## 19.57692 6.144687 -134.33675 146.62612 -208.70312 220.99250
## 19.59615 6.144914 -136.83632 149.12615 -212.52601 224.81584
## 19.61538 6.145095 -139.29332 151.58351 -216.28377 228.57396
## 19.63462 6.145241 -141.70979 154.00027 -219.97952 232.27000
## 19.65385 6.145357 -144.08764 156.37835 -223.61618 235.90689
## 19.67308 6.145450 -146.42861 158.71951 -227.19644 239.48734
## 19.69231 6.145524 -148.73435 161.02540 -230.72281 243.01386
## 19.71154 6.145584 -151.00639 163.29755 -234.19761 246.48878
## 19.73077 6.145631 -153.24613 165.53739 -237.62302 249.91429
## 19.75000 6.145669 -155.45490 167.74624 -241.00107 253.29241
## 19.76923 6.145700 -157.63394 169.92534 -244.33365 256.62505
## 19.78846 6.145724 -159.78442 172.07587 -247.62253 259.91398
## 19.80769 6.145744 -161.90742 174.19890 -250.86938 263.16087
## 19.82692 6.145759 -164.00395 176.29547 -254.07577 266.36729
## 19.84615 6.145772 -166.07499 178.36654 -257.24316 269.53470
## 19.86538 6.145782 -168.12144 180.41300 -260.37293 272.66450
## 19.88462 6.145790 -170.14415 182.43572 -263.46640 275.75798
## 19.90385 6.145796 -172.14392 184.43551 -266.52479 278.81638
## 19.92308 6.145801 -174.12151 186.41312 -269.54926 281.84087
## 19.94231 6.145805 -176.07766 188.36927 -272.54093 284.83254
## 19.96154 6.145809 -178.01303 190.30464 -275.50083 287.79244
## 19.98077 6.145811 -179.92827 192.21990 -278.42995 290.72157
## 20.00000 6.145813 -181.82401 194.11564 -281.32923 293.62085
## 20.01923 6.145815 -183.70082 195.99245 -284.19956 296.49119
## 20.03846 6.145816 -185.55926 197.85089 -287.04180 299.33343
## 20.05769 6.145817 -187.39986 199.69149 -289.85675 302.14839
## 20.07692 6.145818 -189.22312 201.51475 -292.64519 304.93682
## 20.09615 6.145819 -191.02952 203.32116 -295.40784 307.69948
## 20.11538 6.145820 -192.81952 205.11116 -298.14541 310.43705
## 20.13462 6.145820 -194.59356 206.88520 -300.85857 313.15021
## 20.15385 6.145820 -196.35207 208.64371 -303.54797 315.83961
## 20.17308 6.145821 -198.09543 210.38707 -306.21421 318.50585
## 20.19231 6.145821 -199.82403 212.11568 -308.85789 321.14953
## 20.21154 6.145821 -201.53825 213.82990 -311.47956 323.77120
## 20.23077 6.145821 -203.23844 215.53008 -314.07977 326.37141
## 20.25000 6.145821 -204.92493 217.21657 -316.65904 328.95068
## 20.26923 6.145821 -206.59805 218.88970 -319.21786 331.50950
## 20.28846 6.145821 -208.25812 220.54976 -321.75671 334.04836
## 20.30769 6.145821 -209.90543 222.19708 -324.27606 336.56770
## 20.32692 6.145822 -211.54028 223.83192 -326.77634 339.06798
## 20.34615 6.145822 -213.16294 225.45458 -329.25799 341.54963
## 20.36538 6.145822 -214.77368 227.06533 -331.72140 344.01305
## 20.38462 6.145822 -216.37276 228.66441 -334.16699 346.45863
## 20.40385 6.145822 -217.96044 230.25208 -336.59513 348.88677
## 20.42308 6.145822 -219.53694 231.82859 -339.00618 351.29782
## 20.44231 6.145822 -221.10251 233.39415 -341.40051 353.69215
## 20.46154 6.145822 -222.65736 234.94901 -343.77846 356.07010
## 20.48077 6.145822 -224.20173 236.49337 -346.14035 358.43199
## 20.50000 6.145822 -225.73580 238.02744 -348.48652 360.77816
## 20.51923 6.145822 -227.25979 239.55144 -350.81726 363.10890
## 20.53846 6.145822 -228.77390 241.06554 -353.13289 365.42453
## 20.55769 6.145822 -230.27831 242.56995 -355.43368 367.72533
## 20.57692 6.145822 -231.77321 244.06485 -357.71993 370.01157
## 20.59615 6.145822 -233.25877 245.55041 -359.99190 372.28355
## 20.61538 6.145822 -234.73517 247.02681 -362.24986 374.54151
## 20.63462 6.145822 -236.20258 248.49422 -364.49407 376.78571
## 20.65385 6.145822 -237.66115 249.95279 -366.72477 379.01641
## 20.67308 6.145822 -239.11105 251.40270 -368.94220 381.23384
## 20.69231 6.145822 -240.55243 252.84408 -371.14660 383.43824
## 20.71154 6.145822 -241.98544 254.27708 -373.33819 385.62984
## 20.73077 6.145822 -243.41022 255.70186 -375.51721 387.80885
## 20.75000 6.145822 -244.82691 257.11855 -377.68385 389.97549
## 20.76923 6.145822 -246.23565 258.52729 -379.83833 392.12997
## 20.78846 6.145822 -247.63656 259.92821 -381.98084 394.27249
## 20.80769 6.145822 -249.02979 261.32144 -384.11160 396.40325
## 20.82692 6.145822 -250.41545 262.70710 -386.23079 398.52243
## 20.84615 6.145822 -251.79367 264.08532 -388.33859 400.63023
## 20.86538 6.145822 -253.16456 265.45621 -390.43519 402.72683
## 20.88462 6.145822 -254.52825 266.81989 -392.52077 404.81241
## 20.90385 6.145822 -255.88483 268.17648 -394.59549 406.88713
## 20.92308 6.145822 -257.23443 269.52608 -396.65952 408.95116
## 20.94231 6.145822 -258.57715 270.86880 -398.71303 411.00467
## 20.96154 6.145822 -259.91310 272.20474 -400.75618 413.04782
## 20.98077 6.145822 -261.24236 273.53401 -402.78912 415.08076
## 21.00000 6.145822 -262.56506 274.85670 -404.81200 417.10365
## 21.01923 6.145822 -263.88127 276.17291 -406.82498 419.11662
## 21.03846 6.145822 -265.19110 277.48274 -408.82819 421.11983
## 21.05769 6.145822 -266.49463 278.78628 -410.82177 423.11342
## 21.07692 6.145822 -267.79197 280.08361 -412.80587 425.09752
## 21.09615 6.145822 -269.08319 281.37483 -414.78062 427.07227
## 21.11538 6.145822 -270.36838 282.66002 -416.74615 429.03779
## 21.13462 6.145822 -271.64762 283.93926 -418.70258 430.99423
## 21.15385 6.145822 -272.92100 285.21264 -420.65005 432.94169
## 21.17308 6.145822 -274.18859 286.48024 -422.58867 434.88031
## 21.19231 6.145822 -275.45048 287.74213 -424.51856 436.81020
## 21.21154 6.145822 -276.70674 288.99838 -426.43984 438.73149
## 21.23077 6.145822 -277.95745 290.24909 -428.35263 440.64427
## 21.25000 6.145822 -279.20267 291.49431 -430.25703 442.54868
## 21.26923 6.145822 -280.44248 292.73412 -432.15316 444.44481
## 21.28846 6.145822 -281.67695 293.96860 -434.04113 446.33277
## 21.30769 6.145822 -282.90615 295.19780 -435.92102 448.21267
## 21.32692 6.145822 -284.13015 296.42179 -437.79296 450.08461
## 21.34615 6.145822 -285.34900 297.64064 -439.65704 451.94868
## 21.36538 6.145822 -286.56278 298.85442 -441.51336 453.80500
## 21.38462 6.145822 -287.77155 300.06319 -443.36201 455.65365
## 21.40385 6.145822 -288.97536 301.26701 -445.20308 457.49473
## 21.42308 6.145822 -290.17429 302.46593 -447.03668 459.32833
## 21.44231 6.145822 -291.36838 303.66003 -448.86289 461.15454
## 21.46154 6.145822 -292.55771 304.84935 -450.68180 462.97344
## 21.48077 6.145822 -293.74231 306.03395 -452.49350 464.78514
## 21.50000 6.145822 -294.92225 307.21390 -454.29806 466.58971
## 21.51923 6.145822 -296.09759 308.38923 -456.09559 468.38723
## 21.53846 6.145822 -297.26837 309.56002 -457.88615 470.17779
## 21.55769 6.145822 -298.43466 310.72630 -459.66982 471.96147
## 21.57692 6.145822 -299.59649 311.88814 -461.44670 473.73834
## 21.59615 6.145822 -300.75393 313.04557 -463.21684 475.50849
## 21.61538 6.145822 -301.90702 314.19866 -464.98034 477.27198
## 21.63462 6.145822 -303.05580 315.34745 -466.73726 479.02890
## 21.65385 6.145822 -304.20034 316.49198 -468.48767 480.77932
## 21.67308 6.145822 -305.34067 317.63231 -470.23166 482.52330
## 21.69231 6.145822 -306.47684 318.76848 -471.96928 484.26092
## 21.71154 6.145822 -307.60889 319.90054 -473.70061 485.99225
## 21.73077 6.145822 -308.73688 321.02852 -475.42571 487.71736
## 21.75000 6.145822 -309.86084 322.15248 -477.14466 489.43631
## 21.76923 6.145822 -310.98082 323.27246 -478.85752 491.14916
## 21.78846 6.145822 -312.09685 324.38849 -480.56435 492.85599
## 21.80769 6.145822 -313.20899 325.50063 -482.26521 494.55685
## 21.82692 6.145822 -314.31726 326.60890 -483.96017 496.25181
## 21.84615 6.145822 -315.42172 327.71336 -485.64929 497.94093
## 21.86538 6.145822 -316.52239 328.81403 -487.33263 499.62427
## 21.88462 6.145822 -317.61932 329.91097 -489.01024 501.30188
## 21.90385 6.145822 -318.71255 331.00420 -490.68219 502.97383
## 21.92308 6.145822 -319.80212 332.09376 -492.34853 504.64018
## 21.94231 6.145822 -320.88805 333.17969 -494.00932 506.30097
## 21.96154 6.145822 -321.97039 334.26203 -495.66462 507.95626
## 21.98077 6.145822 -323.04917 335.34081 -497.31447 509.60611
## 22.00000 6.145822 -324.12442 336.41607 -498.95893 511.25057
## 22.01923 6.145822 -325.19619 337.48783 -500.59806 512.88970
## 22.03846 6.145822 -326.26450 338.55615 -502.23190 514.52354
## 22.05769 6.145822 -327.32939 339.62103 -503.86051 516.15215
## 22.07692 6.145822 -328.39089 340.68253 -505.48393 517.77557
## 22.09615 6.145822 -329.44903 341.74068 -507.10222 519.39386
## 22.11538 6.145822 -330.50385 342.79549 -508.71542 521.00706
## 22.13462 6.145822 -331.55537 343.84701 -510.32358 522.61522
## 22.15385 6.145822 -332.60363 344.89527 -511.92675 524.21840
## 22.17308 6.145822 -333.64865 345.94029 -513.52498 525.81662
## 22.19231 6.145822 -334.69047 346.98211 -515.11830 527.40995
## 22.21154 6.145822 -335.72911 348.02076 -516.70677 528.99842
## 22.23077 6.145822 -336.76461 349.05626 -518.29043 530.58207
## 22.25000 6.145822 -337.79699 350.08864 -519.86932 532.16096
## 22.26923 6.145822 -338.82628 351.11793 -521.44349 533.73513
## 22.28846 6.145822 -339.85251 352.14416 -523.01297 535.30461
## 22.30769 6.145822 -340.87571 353.16735 -524.57781 536.86945
## 22.32692 6.145822 -341.89590 354.18754 -526.13805 538.42969
## 22.34615 6.145822 -342.91310 355.20474 -527.69373 539.98537
## 22.36538 6.145822 -343.92735 356.21899 -529.24489 541.53654
## 22.38462 6.145822 -344.93867 357.23031 -530.79157 543.08321
## 22.40385 6.145822 -345.94708 358.23873 -532.33381 544.62545
## 22.42308 6.145822 -346.95262 359.24426 -533.87164 546.16328
## 22.44231 6.145822 -347.95530 360.24694 -535.40511 547.69675
## 22.46154 6.145822 -348.95514 361.24679 -536.93424 549.22588
## 22.48077 6.145822 -349.95218 362.24383 -538.45908 550.75073
## 22.50000 6.145822 -350.94644 363.23809 -539.97967 552.27131
## 22.51923 6.145822 -351.93794 364.22958 -541.49603 553.78767
## 22.53846 6.145822 -352.92670 365.21834 -543.00820 555.29985
## 22.55769 6.145822 -353.91274 366.20438 -544.51623 556.80787
## 22.57692 6.145822 -354.89609 367.18773 -546.02013 558.31178
## 22.59615 6.145822 -355.87677 368.16841 -547.51995 559.81159
## 22.61538 6.145822 -356.85480 369.14644 -549.01572 561.30736
## 22.63462 6.145822 -357.83020 370.12184 -550.50747 562.79911
## 22.65385 6.145822 -358.80299 371.09464 -551.99523 564.28687
## 22.67308 6.145822 -359.77320 372.06485 -553.47903 565.77068
## 22.69231 6.145822 -360.74085 373.03249 -554.95892 567.25056
## 22.71154 6.145822 -361.70594 373.99759 -556.43490 568.72655
## 22.73077 6.145822 -362.66852 374.96016 -557.90703 570.19868
## 22.75000 6.145822 -363.62858 375.92023 -559.37533 571.66697
## 22.76923 6.145822 -364.58616 376.87781 -560.83982 573.13146
## 22.78846 6.145822 -365.54127 377.83292 -562.30054 574.59218
## 22.80769 6.145822 -366.49394 378.78558 -563.75751 576.04916
## 22.82692 6.145822 -367.44418 379.73582 -565.21077 577.50242
## 22.84615 6.145822 -368.39200 380.68364 -566.66035 578.95199
## 22.86538 6.145822 -369.33743 381.62908 -568.10626 580.39790
## 22.88462 6.145822 -370.28049 382.57213 -569.54854 581.84019
## 22.90385 6.145822 -371.22119 383.51284 -570.98722 583.27887
## 22.92308 6.145822 -372.15955 384.45120 -572.42232 584.71397
## 22.94231 6.145822 -373.09559 385.38724 -573.85387 586.14552
## 22.96154 6.145822 -374.02933 386.32097 -575.28190 587.57354
## 22.98077 6.145822 -374.96078 387.25242 -576.70642 588.99807
## 23.00000 6.145822 -375.88995 388.18160 -578.12748 590.41912
## 23.01923 6.145822 -376.81688 389.10852 -579.54508 591.83673
## 23.03846 6.145822 -377.74156 390.03320 -580.95927 593.25091
## 23.05769 6.145822 -378.66402 390.95567 -582.37005 594.66169
## 23.07692 6.145822 -379.58428 391.87592 -583.77746 596.06910
## 23.09615 6.145822 -380.50235 392.79399 -585.18152 597.47316
## 23.11538 6.145822 -381.41824 393.70988 -586.58226 598.87390
## 23.13462 6.145822 -382.33197 394.62361 -587.97969 600.27133
## 23.15385 6.145822 -383.24356 395.53520 -589.37384 601.66549
## 23.17308 6.145822 -384.15302 396.44466 -590.76474 603.05638
## 23.19231 6.145822 -385.06036 397.35200 -592.15240 604.44405
## 23.21154 6.145822 -385.96560 398.25725 -593.53685 605.82850
## 23.23077 6.145822 -386.86876 399.16041 -594.91812 607.20976
## 23.25000 6.145822 -387.76985 400.06150 -596.29622 608.58786
## 23.26923 6.145822 -388.66889 400.96053 -597.67117 609.96281
## 23.28846 6.145822 -389.56588 401.85752 -599.04299 611.33464
## 23.30769 6.145822 -390.46084 402.75248 -600.41172 612.70336
## 23.32692 6.145822 -391.35378 403.64543 -601.77736 614.06901
## 23.34615 6.145822 -392.24473 404.53637 -603.13995 615.43159
## 23.36538 6.145822 -393.13368 405.42533 -604.49949 616.79113
## 23.38462 6.145822 -394.02067 406.31231 -605.85601 618.14765
## 23.40385 6.145822 -394.90569 407.19733 -607.20953 619.50117
## 23.42308 6.145822 -395.78876 408.08040 -608.56007 620.85172
## 23.44231 6.145822 -396.66989 408.96154 -609.90765 622.19930
## 23.46154 6.145822 -397.54911 409.84075 -611.25229 623.54394
## 23.48077 6.145822 -398.42641 410.71805 -612.59401 624.88565
## 23.50000 6.145822 -399.30181 411.59346 -613.93282 626.22447
## 23.51923 6.145822 -400.17533 412.46697 -615.26875 627.56040
## 23.53846 6.145822 -401.04697 413.33862 -616.60182 628.89346
## 23.55769 6.145822 -401.91675 414.20840 -617.93203 630.22368
## 23.57692 6.145822 -402.78469 415.07633 -619.25942 631.55106
## 23.59615 6.145822 -403.65078 415.94242 -620.58400 632.87564
## 23.61538 6.145822 -404.51505 416.80669 -621.90578 634.19742
## 23.63462 6.145822 -405.37750 417.66914 -623.22479 635.51643
## 23.65385 6.145822 -406.23815 418.52979 -624.54103 636.83268
## 23.67308 6.145822 -407.09700 419.38865 -625.85454 638.14618
## 23.69231 6.145822 -407.95408 420.24572 -627.16532 639.45696
## 23.71154 6.145822 -408.80938 421.10102 -628.47340 640.76504
## 23.73077 6.145822 -409.66293 421.95457 -629.77878 642.07042
## 23.75000 6.145822 -410.51472 422.80637 -631.08149 643.37313
## 23.76923 6.145822 -411.36478 423.65642 -632.38154 644.67319
## 23.78846 6.145822 -412.21311 424.50475 -633.67895 645.97060
## 23.80769 6.145822 -413.05973 425.35137 -634.97374 647.26538
## 23.82692 6.145822 -413.90463 426.19628 -636.26591 648.55756
## 23.84615 6.145822 -414.74785 427.03949 -637.55549 649.84714
## 23.86538 6.145822 -415.58937 427.88102 -638.84250 651.13414
## 23.88462 6.145822 -416.42922 428.72087 -640.12694 652.41858
## 23.90385 6.145822 -417.26741 429.55905 -641.40883 653.70047
## 23.92308 6.145822 -418.10394 430.39558 -642.68819 654.97983
## 23.94231 6.145822 -418.93882 431.23046 -643.96503 656.25668
## 23.96154 6.145822 -419.77206 432.06371 -645.23937 657.53102
## 23.98077 6.145822 -420.60368 432.89533 -646.51122 658.80287
ets.iq=ets(iq.ts,model="ZZZ")
## Warning in ets(iq.ts, model = "ZZZ"): I can't handle data with frequency greater
## than 24. Seasonality will be ignored. Try stlf() if you need seasonal forecasts.
ets.iq.fc=forecast(ets.iq,h=156)
autoplot(ets.iq.fc)
checkresiduals(ets.iq.fc)
##
## Ljung-Box test
##
## data: Residuals from ETS(A,N,N)
## Q* = 121.31, df = 102, p-value = 0.09321
##
## Model df: 2. Total lags used: 104
summary(ets.iq.fc)
##
## Forecast method: ETS(A,N,N)
##
## Model Information:
## ETS(A,N,N)
##
## Call:
## ets(y = iq.ts, model = "ZZZ")
##
## Smoothing parameters:
## alpha = 0.6543
##
## Initial states:
## l = 0.0744
##
## sigma: 7.4063
##
## AIC AICc BIC
## 5338.417 5338.463 5351.178
##
## Error measures:
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 0.009226816 7.392083 3.699635 -Inf Inf 0.3919034 0.0713476
##
## Forecasts:
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## 11.00000 3.213589 -6.278017 12.70520 -11.30257 17.72975
## 11.01923 3.213589 -8.129126 14.55630 -14.13360 20.56078
## 11.03846 3.213589 -9.717915 16.14509 -16.56344 22.99062
## 11.05769 3.213589 -11.131807 17.55899 -18.72580 25.15298
## 11.07692 3.213589 -12.418334 18.84551 -20.69337 27.12055
## 11.09615 3.213589 -13.606744 20.03392 -22.51089 28.93807
## 11.11538 3.213589 -14.716559 21.14374 -24.20821 30.63539
## 11.13462 3.213589 -15.761575 22.18875 -25.80642 32.23360
## 11.15385 3.213589 -16.751967 23.17915 -27.32109 33.74827
## 11.17308 3.213589 -17.695501 24.12268 -28.76411 35.19128
## 11.19231 3.213589 -18.598258 25.02544 -30.14475 36.57193
## 11.21154 3.213589 -19.465107 25.89229 -31.47048 37.89766
## 11.23077 3.213589 -20.300021 26.72720 -32.74738 39.17455
## 11.25000 3.213589 -21.106289 27.53347 -33.98046 40.40763
## 11.26923 3.213589 -21.886672 28.31385 -35.17395 41.60113
## 11.28846 3.213589 -22.643513 29.07069 -36.33144 42.75861
## 11.30769 3.213589 -23.378822 29.80600 -37.45599 43.88317
## 11.32692 3.213589 -24.094339 30.52152 -38.55028 44.97746
## 11.34615 3.213589 -24.791581 31.21876 -39.61662 46.04380
## 11.36538 3.213589 -25.471880 31.89906 -40.65705 47.08423
## 11.38462 3.213589 -26.136415 32.56359 -41.67337 48.10055
## 11.40385 3.213589 -26.786234 33.21341 -42.66718 49.09436
## 11.42308 3.213589 -27.422272 33.84945 -43.63992 50.06710
## 11.44231 3.213589 -28.045371 34.47255 -44.59286 51.02004
## 11.46154 3.213589 -28.656290 35.08347 -45.52718 51.95436
## 11.48077 3.213589 -29.255716 35.68290 -46.44393 52.87111
## 11.50000 3.213589 -29.844275 36.27145 -47.34405 53.77123
## 11.51923 3.213589 -30.422537 36.84972 -48.22843 54.65561
## 11.53846 3.213589 -30.991025 37.41820 -49.09785 55.52503
## 11.55769 3.213589 -31.550217 37.97740 -49.95306 56.38024
## 11.57692 3.213589 -32.100556 38.52773 -50.79474 57.22191
## 11.59615 3.213589 -32.642449 39.06963 -51.62349 58.05067
## 11.61538 3.213589 -33.176273 39.60345 -52.43990 58.86708
## 11.63462 3.213589 -33.702378 40.12956 -53.24451 59.67169
## 11.65385 3.213589 -34.221091 40.64827 -54.03781 60.46499
## 11.67308 3.213589 -34.732714 41.15989 -54.82027 61.24745
## 11.69231 3.213589 -35.237529 41.66471 -55.59232 62.01950
## 11.71154 3.213589 -35.735802 42.16298 -56.35437 62.78154
## 11.73077 3.213589 -36.227781 42.65496 -57.10678 63.53396
## 11.75000 3.213589 -36.713699 43.14088 -57.84993 64.27711
## 11.76923 3.213589 -37.193773 43.62095 -58.58414 65.01132
## 11.78846 3.213589 -37.668210 44.09539 -59.30973 65.73691
## 11.80769 3.213589 -38.137205 44.56438 -60.02699 66.45417
## 11.82692 3.213589 -38.600939 45.02812 -60.73621 67.16339
## 11.84615 3.213589 -39.059586 45.48677 -61.43765 67.86483
## 11.86538 3.213589 -39.513311 45.94049 -62.13157 68.55874
## 11.88462 3.213589 -39.962267 46.38945 -62.81819 69.24536
## 11.90385 3.213589 -40.406603 46.83378 -63.49774 69.92492
## 11.92308 3.213589 -40.846459 47.27364 -64.17044 70.59762
## 11.94231 3.213589 -41.281966 47.70914 -64.83649 71.26367
## 11.96154 3.213589 -41.713252 48.14043 -65.49608 71.92326
## 11.98077 3.213589 -42.140436 48.56762 -66.14941 72.57659
## 12.00000 3.213589 -42.563635 48.99081 -66.79663 73.22381
## 12.01923 3.213589 -42.982957 49.41014 -67.43793 73.86511
## 12.03846 3.213589 -43.398506 49.82569 -68.07346 74.50064
## 12.05769 3.213589 -43.810384 50.23756 -68.70337 75.13055
## 12.07692 3.213589 -44.218685 50.64586 -69.32782 75.75499
## 12.09615 3.213589 -44.623502 51.05068 -69.94693 76.37411
## 12.11538 3.213589 -45.024921 51.45210 -70.56085 76.98803
## 12.13462 3.213589 -45.423028 51.85021 -71.16970 77.59688
## 12.15385 3.213589 -45.817902 52.24508 -71.77361 78.20078
## 12.17308 3.213589 -46.209621 52.63680 -72.37269 78.79987
## 12.19231 3.213589 -46.598260 53.02544 -72.96706 79.39424
## 12.21154 3.213589 -46.983890 53.41107 -73.55683 79.98401
## 12.23077 3.213589 -47.366580 53.79376 -74.14210 80.56928
## 12.25000 3.213589 -47.746397 54.17358 -74.72298 81.15016
## 12.26923 3.213589 -48.123403 54.55058 -75.29957 81.72674
## 12.28846 3.213589 -48.497661 54.92484 -75.87194 82.29912
## 12.30769 3.213589 -48.869229 55.29641 -76.44021 82.86739
## 12.32692 3.213589 -49.238166 55.66534 -77.00445 83.43163
## 12.34615 3.213589 -49.604525 56.03170 -77.56475 83.99193
## 12.36538 3.213589 -49.968361 56.39554 -78.12118 84.54836
## 12.38462 3.213589 -50.329724 56.75690 -78.67384 85.10102
## 12.40385 3.213589 -50.688665 57.11584 -79.22280 85.64997
## 12.42308 3.213589 -51.045232 57.47241 -79.76812 86.19530
## 12.44231 3.213589 -51.399470 57.82665 -80.30988 86.73706
## 12.46154 3.213589 -51.751426 58.17860 -80.84815 87.27533
## 12.48077 3.213589 -52.101142 58.52832 -81.38299 87.81017
## 12.50000 3.213589 -52.448661 58.87584 -81.91448 88.34166
## 12.51923 3.213589 -52.794024 59.22120 -82.44266 88.86984
## 12.53846 3.213589 -53.137270 59.56445 -82.96761 89.39479
## 12.55769 3.213589 -53.478438 59.90562 -83.48938 89.91656
## 12.57692 3.213589 -53.817565 60.24474 -84.00803 90.43521
## 12.59615 3.213589 -54.154687 60.58187 -84.52362 90.95080
## 12.61538 3.213589 -54.489840 60.91702 -85.03619 91.46337
## 12.63462 3.213589 -54.823057 61.25024 -85.54580 91.97298
## 12.65385 3.213589 -55.154372 61.58155 -86.05251 92.47968
## 12.67308 3.213589 -55.483818 61.91100 -86.55635 92.98353
## 12.69231 3.213589 -55.811424 62.23860 -87.05738 93.48456
## 12.71154 3.213589 -56.137222 62.56440 -87.55564 93.98282
## 12.73077 3.213589 -56.461241 62.88842 -88.05119 94.47837
## 12.75000 3.213589 -56.783511 63.21069 -88.54406 94.97124
## 12.76923 3.213589 -57.104058 63.53124 -89.03429 95.46147
## 12.78846 3.213589 -57.422911 63.85009 -89.52194 95.94912
## 12.80769 3.213589 -57.740097 64.16728 -90.00703 96.43421
## 12.82692 3.213589 -58.055640 64.48282 -90.48961 96.91679
## 12.84615 3.213589 -58.369566 64.79675 -90.96972 97.39690
## 12.86538 3.213589 -58.681901 65.10908 -91.44739 97.87457
## 12.88462 3.213589 -58.992667 65.41985 -91.92267 98.34985
## 12.90385 3.213589 -59.301888 65.72907 -92.39558 98.82276
## 12.92308 3.213589 -59.609587 66.03677 -92.86617 99.29335
## 12.94231 3.213589 -59.915787 66.34297 -93.33446 99.76164
## 12.96154 3.213589 -60.220508 66.64769 -93.80049 100.22767
## 12.98077 3.213589 -60.523773 66.95095 -94.26429 100.69147
## 13.00000 3.213589 -60.825601 67.25278 -94.72590 101.15308
## 13.01923 3.213589 -61.126014 67.55319 -95.18534 101.61252
## 13.03846 3.213589 -61.425030 67.85221 -95.64265 102.06983
## 13.05769 3.213589 -61.722670 68.14985 -96.09785 102.52503
## 13.07692 3.213589 -62.018951 68.44613 -96.55097 102.97815
## 13.09615 3.213589 -62.313893 68.74107 -97.00205 103.42923
## 13.11538 3.213589 -62.607514 69.03469 -97.45110 103.87828
## 13.13462 3.213589 -62.899830 69.32701 -97.89816 104.32534
## 13.15385 3.213589 -63.190859 69.61804 -98.34325 104.77043
## 13.17308 3.213589 -63.480619 69.90780 -98.78640 105.21358
## 13.19231 3.213589 -63.769125 70.19630 -99.22763 105.65481
## 13.21154 3.213589 -64.056394 70.48357 -99.66697 106.09415
## 13.23077 3.213589 -64.342441 70.76962 -100.10444 106.53162
## 13.25000 3.213589 -64.627282 71.05446 -100.54007 106.96725
## 13.26923 3.213589 -64.910932 71.33811 -100.97388 107.40105
## 13.28846 3.213589 -65.193406 71.62059 -101.40588 107.83306
## 13.30769 3.213589 -65.474719 71.90190 -101.83611 108.26329
## 13.32692 3.213589 -65.754884 72.18206 -102.26459 108.69177
## 13.34615 3.213589 -66.033915 72.46109 -102.69133 109.11851
## 13.36538 3.213589 -66.311827 72.73901 -103.11636 109.54354
## 13.38462 3.213589 -66.588632 73.01581 -103.53970 109.96688
## 13.40385 3.213589 -66.864344 73.29152 -103.96136 110.38854
## 13.42308 3.213589 -67.138975 73.56615 -104.38137 110.80855
## 13.44231 3.213589 -67.412539 73.83972 -104.79975 111.22693
## 13.46154 3.213589 -67.685046 74.11223 -105.21652 111.64370
## 13.48077 3.213589 -67.956511 74.38369 -105.63169 112.05887
## 13.50000 3.213589 -68.226944 74.65412 -106.04528 112.47246
## 13.51923 3.213589 -68.496357 74.92354 -106.45731 112.88449
## 13.53846 3.213589 -68.764762 75.19194 -106.86780 113.29498
## 13.55769 3.213589 -69.032169 75.45935 -107.27676 113.70394
## 13.57692 3.213589 -69.298590 75.72577 -107.68422 114.11140
## 13.59615 3.213589 -69.564036 75.99122 -108.09018 114.51736
## 13.61538 3.213589 -69.828518 76.25570 -108.49467 114.92185
## 13.63462 3.213589 -70.092045 76.51922 -108.89770 115.32488
## 13.65385 3.213589 -70.354628 76.78181 -109.29929 115.72647
## 13.67308 3.213589 -70.616278 77.04346 -109.69945 116.12663
## 13.69231 3.213589 -70.877003 77.30418 -110.09819 116.52537
## 13.71154 3.213589 -71.136814 77.56399 -110.49554 116.92272
## 13.73077 3.213589 -71.395720 77.82290 -110.89150 117.31868
## 13.75000 3.213589 -71.653731 78.08091 -111.28610 117.71328
## 13.76923 3.213589 -71.910856 78.33804 -111.67934 118.10651
## 13.78846 3.213589 -72.167104 78.59428 -112.07123 118.49841
## 13.80769 3.213589 -72.422484 78.84966 -112.46180 118.88898
## 13.82692 3.213589 -72.677004 79.10418 -112.85106 119.27824
## 13.84615 3.213589 -72.930673 79.35785 -113.23901 119.66619
## 13.86538 3.213589 -73.183501 79.61068 -113.62568 120.05286
## 13.88462 3.213589 -73.435494 79.86267 -114.01107 120.43825
## 13.90385 3.213589 -73.686661 80.11384 -114.39520 120.82237
## 13.92308 3.213589 -73.937011 80.36419 -114.77807 121.20525
## 13.94231 3.213589 -74.186551 80.61373 -115.15971 121.58689
## 13.96154 3.213589 -74.435290 80.86247 -115.54012 121.96730
## 13.98077 3.213589 -74.683233 81.11041 -115.91932 122.34650
nn.sj=nnetar(sj.ts)
nn.sj.fc=forecast(nn.sj,n=260)
autoplot(nn.sj.fc)
checkresiduals(nn.sj.fc)
## Warning in modeldf.default(object): Could not find appropriate degrees of
## freedom for this model.
summary(nn.sj.fc)
##
## Forecast method: NNAR(14,1,8)[52]
##
## Model Information:
##
## Average of 20 networks, each of which is
## a 15-8-1 network with 137 weights
## options were - linear output units
##
## Error measures:
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set -0.02916514 7.021991 5.081972 -Inf Inf 0.1391071 -0.01325086
##
## Forecasts:
## Point Forecast
## 19.000 5.636054
## 19.019 5.481144
## 19.038 6.587799
## 19.058 7.893551
## 19.077 9.098632
## 19.096 10.047051
## 19.115 10.972826
## 19.135 12.226914
## 19.154 13.734772
## 19.173 14.857715
## 19.192 15.717831
## 19.212 16.951791
## 19.231 18.257685
## 19.250 19.425901
## 19.269 20.350479
## 19.288 21.333160
## 19.308 22.312748
## 19.327 23.173866
## 19.346 24.162363
## 19.365 24.676934
## 19.385 25.313397
## 19.404 26.013609
## 19.423 25.853803
## 19.442 26.097070
## 19.462 26.674429
## 19.481 27.395998
## 19.500 28.185928
## 19.519 28.789048
## 19.538 29.531838
## 19.558 30.268589
## 19.577 31.117487
## 19.596 32.133863
## 19.615 33.232231
## 19.635 34.595599
## 19.654 36.077810
## 19.673 37.646087
## 19.692 39.440548
## 19.712 41.426356
## 19.731 43.920015
## 19.750 46.794865
## 19.769 50.510984
## 19.788 54.584619
## 19.808 59.299671
## 19.827 65.785479
## 19.846 74.773417
## 19.865 86.039247
## 19.885 99.752117
## 19.904 115.641071
## 19.923 133.910542
## 19.942 154.677391
## 19.962 180.357549
## 19.981 215.796986
## 20.000 264.860850
## 20.019 318.911058
## 20.038 363.098967
## 20.058 393.115811
## 20.077 410.006571
## 20.096 420.652047
## 20.115 424.286053
## 20.135 420.884599
## 20.154 418.657236
## 20.173 417.595582
## 20.192 389.691186
## 20.212 338.130200
## 20.231 259.842459
## 20.250 178.994082
## 20.269 141.315097
## 20.288 141.074214
## 20.308 126.892590
## 20.327 88.930609
## 20.346 66.379349
## 20.365 51.128456
## 20.385 37.188452
## 20.404 30.606656
## 20.423 19.245871
## 20.442 13.975828
## 20.462 10.058445
## 20.481 10.123173
## 20.500 12.229238
## 20.519 8.518315
## 20.538 7.560043
## 20.558 6.308464
## 20.577 5.077719
## 20.596 4.577098
## 20.615 4.438929
## 20.635 4.047917
## 20.654 4.402446
## 20.673 4.452874
## 20.692 5.026385
## 20.712 5.446411
## 20.731 6.245654
## 20.750 7.325255
## 20.769 7.946419
## 20.788 9.044674
## 20.808 10.096176
## 20.827 11.137957
## 20.846 12.259916
## 20.865 13.414459
## 20.885 14.504755
## 20.904 15.704603
## 20.923 16.862360
## 20.942 18.009336
## 20.962 19.368308
## 20.981 21.739064
nn.iq=nnetar(iq.ts)
nn.iq.fc=forecast(nn.iq,n=156)
autoplot(nn.iq.fc)
checkresiduals(nn.iq.fc)
## Warning in modeldf.default(object): Could not find appropriate degrees of
## freedom for this model.
summary(nn.iq.fc)
##
## Forecast method: NNAR(5,1,4)[52]
##
## Model Information:
##
## Average of 20 networks, each of which is
## a 6-4-1 network with 33 weights
## options were - linear output units
##
## Error measures:
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set -0.00372408 4.902024 3.230232 -Inf Inf 0.3421794 -0.0109473
##
## Forecasts:
## Point Forecast
## 11.000 3.179567
## 11.019 3.599909
## 11.038 4.134918
## 11.058 4.259176
## 11.077 4.276526
## 11.096 4.336583
## 11.115 4.332559
## 11.135 4.272942
## 11.154 4.273593
## 11.173 4.336713
## 11.192 4.361805
## 11.212 4.395136
## 11.231 4.504078
## 11.250 4.494154
## 11.269 4.554716
## 11.288 4.591500
## 11.308 4.583940
## 11.327 4.590418
## 11.346 4.559163
## 11.365 4.407235
## 11.385 4.391956
## 11.404 4.340081
## 11.423 4.325099
## 11.442 4.308486
## 11.462 4.397355
## 11.481 4.480902
## 11.500 4.550891
## 11.519 4.380260
## 11.538 4.320281
## 11.558 4.213387
## 11.577 4.112986
## 11.596 4.039953
## 11.615 3.977682
## 11.635 3.983444
## 11.654 3.920986
## 11.673 3.903571
## 11.692 3.886314
## 11.712 3.874947
## 11.731 3.889114
## 11.750 3.975537
## 11.769 3.948728
## 11.788 3.999365
## 11.808 3.994948
## 11.827 4.067616
## 11.846 4.155332
## 11.865 4.113750
## 11.885 4.132617
## 11.904 4.152840
## 11.923 4.107991
## 11.942 4.248878
## 11.962 4.312154
## 11.981 4.291229
## 12.000 4.329927
## 12.019 4.334642
## 12.038 4.322136
## 12.058 4.313349
## 12.077 4.305046
## 12.096 4.293419
## 12.115 4.284675
## 12.135 4.278853
## 12.154 4.273410
## 12.173 4.267729
## 12.192 4.263267
## 12.212 4.258934
## 12.231 4.253012
## 12.250 4.249188
## 12.269 4.244352
## 12.288 4.239950
## 12.308 4.236713
## 12.327 4.233841
## 12.346 4.232289
## 12.365 4.234481
## 12.385 4.235757
## 12.404 4.238458
## 12.423 4.240957
## 12.442 4.243510
## 12.462 4.243425
## 12.481 4.242112
## 12.500 4.239682
## 12.519 4.241799
## 12.538 4.243426
## 12.558 4.247327
## 12.577 4.252581
## 12.596 4.258396
## 12.615 4.264530
## 12.635 4.269331
## 12.654 4.275099
## 12.673 4.279796
## 12.692 4.284063
## 12.712 4.287756
## 12.731 4.290346
## 12.750 4.290304
## 12.769 4.291506
## 12.788 4.290627
## 12.808 4.290296
## 12.827 4.287967
## 12.846 4.284356
## 12.865 4.282793
## 12.885 4.280409
## 12.904 4.278079
## 12.923 4.277478
## 12.942 4.273142
## 12.962 4.269181
## 12.981 4.266601
library(GGally)
## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
##
## Attaching package: 'GGally'
## The following object is masked from 'package:dplyr':
##
## nasa
## The following object is masked from 'package:fma':
##
## pigs
sj.ts %>%
as.data.frame() %>%
GGally::ggpairs()
## Don't know how to automatically pick scale for object of type ts. Defaulting to continuous.
train.sj.1<-train.sj
train.sj.1$year<-NULL
train.sj.1$weekofyear<-NULL
train.sj.1 %>%
as.data.frame() %>%
GGally::ggpairs()
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 191 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 49 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 19 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 19 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 9 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 9 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning: Removed 191 rows containing missing values (geom_point).
## Warning: Removed 191 rows containing non-finite values (stat_density).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 205 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 191 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 191 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 195 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 194 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 194 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 194 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 194 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 194 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 194 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 194 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 195 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 194 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 194 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 194 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 194 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 194 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 194 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 194 rows containing missing values
## Warning: Removed 191 rows containing non-finite values (stat_boxplot).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 191 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 191 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 191 rows containing missing values
## Warning: Removed 49 rows containing missing values (geom_point).
## Warning: Removed 205 rows containing missing values (geom_point).
## Warning: Removed 49 rows containing non-finite values (stat_density).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 49 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 49 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 55 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 52 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 52 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 52 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 52 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 52 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 52 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 52 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 55 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 52 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 52 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 52 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 52 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 52 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 52 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 52 rows containing missing values
## Warning: Removed 49 rows containing non-finite values (stat_boxplot).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 49 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 49 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 49 rows containing missing values
## Warning: Removed 19 rows containing missing values (geom_point).
## Warning: Removed 191 rows containing missing values (geom_point).
## Warning: Removed 49 rows containing missing values (geom_point).
## Warning: Removed 19 rows containing non-finite values (stat_density).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 19 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 25 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 22 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 22 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 22 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 22 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 22 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 22 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 22 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 25 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 22 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 22 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 22 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 22 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 22 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 22 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 22 rows containing missing values
## Warning: Removed 19 rows containing non-finite values (stat_boxplot).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 19 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 19 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 19 rows containing missing values
## Warning: Removed 19 rows containing missing values (geom_point).
## Warning: Removed 191 rows containing missing values (geom_point).
## Warning: Removed 49 rows containing missing values (geom_point).
## Warning: Removed 19 rows containing missing values (geom_point).
## Warning: Removed 19 rows containing non-finite values (stat_density).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 25 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 22 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 22 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 22 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 22 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 22 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 22 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 22 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 25 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 22 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 22 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 22 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 22 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 22 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 22 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 22 rows containing missing values
## Warning: Removed 19 rows containing non-finite values (stat_boxplot).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 19 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 19 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 19 rows containing missing values
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 195 rows containing missing values (geom_point).
## Warning: Removed 55 rows containing missing values (geom_point).
## Warning: Removed 25 rows containing missing values (geom_point).
## Warning: Removed 25 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing non-finite values (stat_density).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 9 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 9 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 9 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 9 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 9 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 9 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 9 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 9 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 9 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 9 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 9 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 9 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 9 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 9 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 9 rows containing missing values
## Warning: Removed 9 rows containing non-finite values (stat_boxplot).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 9 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 9 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 9 rows containing missing values
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 194 rows containing missing values (geom_point).
## Warning: Removed 52 rows containing missing values (geom_point).
## Warning: Removed 22 rows containing missing values (geom_point).
## Warning: Removed 22 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing non-finite values (stat_density).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 9 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning: Removed 6 rows containing non-finite values (stat_boxplot).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 194 rows containing missing values (geom_point).
## Warning: Removed 52 rows containing missing values (geom_point).
## Warning: Removed 22 rows containing missing values (geom_point).
## Warning: Removed 22 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing non-finite values (stat_density).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 9 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning: Removed 6 rows containing non-finite values (stat_boxplot).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 194 rows containing missing values (geom_point).
## Warning: Removed 52 rows containing missing values (geom_point).
## Warning: Removed 22 rows containing missing values (geom_point).
## Warning: Removed 22 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing non-finite values (stat_density).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 9 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning: Removed 6 rows containing non-finite values (stat_boxplot).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 194 rows containing missing values (geom_point).
## Warning: Removed 52 rows containing missing values (geom_point).
## Warning: Removed 22 rows containing missing values (geom_point).
## Warning: Removed 22 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing non-finite values (stat_density).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 9 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning: Removed 6 rows containing non-finite values (stat_boxplot).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 194 rows containing missing values (geom_point).
## Warning: Removed 52 rows containing missing values (geom_point).
## Warning: Removed 22 rows containing missing values (geom_point).
## Warning: Removed 22 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing non-finite values (stat_density).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 9 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning: Removed 6 rows containing non-finite values (stat_boxplot).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 194 rows containing missing values (geom_point).
## Warning: Removed 52 rows containing missing values (geom_point).
## Warning: Removed 22 rows containing missing values (geom_point).
## Warning: Removed 22 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing non-finite values (stat_density).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 9 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning: Removed 6 rows containing non-finite values (stat_boxplot).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 194 rows containing missing values (geom_point).
## Warning: Removed 52 rows containing missing values (geom_point).
## Warning: Removed 22 rows containing missing values (geom_point).
## Warning: Removed 22 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing non-finite values (stat_density).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 9 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning: Removed 6 rows containing non-finite values (stat_boxplot).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 195 rows containing missing values (geom_point).
## Warning: Removed 55 rows containing missing values (geom_point).
## Warning: Removed 25 rows containing missing values (geom_point).
## Warning: Removed 25 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing non-finite values (stat_density).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 9 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 9 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 9 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 9 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 9 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 9 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 9 rows containing missing values
## Warning: Removed 9 rows containing non-finite values (stat_boxplot).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 9 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 9 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 9 rows containing missing values
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 194 rows containing missing values (geom_point).
## Warning: Removed 52 rows containing missing values (geom_point).
## Warning: Removed 22 rows containing missing values (geom_point).
## Warning: Removed 22 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing non-finite values (stat_density).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning: Removed 6 rows containing non-finite values (stat_boxplot).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 194 rows containing missing values (geom_point).
## Warning: Removed 52 rows containing missing values (geom_point).
## Warning: Removed 22 rows containing missing values (geom_point).
## Warning: Removed 22 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing non-finite values (stat_density).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning: Removed 6 rows containing non-finite values (stat_boxplot).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 194 rows containing missing values (geom_point).
## Warning: Removed 52 rows containing missing values (geom_point).
## Warning: Removed 22 rows containing missing values (geom_point).
## Warning: Removed 22 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing non-finite values (stat_density).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning: Removed 6 rows containing non-finite values (stat_boxplot).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 194 rows containing missing values (geom_point).
## Warning: Removed 52 rows containing missing values (geom_point).
## Warning: Removed 22 rows containing missing values (geom_point).
## Warning: Removed 22 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing non-finite values (stat_density).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning: Removed 6 rows containing non-finite values (stat_boxplot).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 194 rows containing missing values (geom_point).
## Warning: Removed 52 rows containing missing values (geom_point).
## Warning: Removed 22 rows containing missing values (geom_point).
## Warning: Removed 22 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing non-finite values (stat_density).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning: Removed 6 rows containing non-finite values (stat_boxplot).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 194 rows containing missing values (geom_point).
## Warning: Removed 52 rows containing missing values (geom_point).
## Warning: Removed 22 rows containing missing values (geom_point).
## Warning: Removed 22 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing non-finite values (stat_density).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning: Removed 6 rows containing non-finite values (stat_boxplot).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 194 rows containing missing values (geom_point).
## Warning: Removed 52 rows containing missing values (geom_point).
## Warning: Removed 22 rows containing missing values (geom_point).
## Warning: Removed 22 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing non-finite values (stat_density).
## Warning: Removed 6 rows containing non-finite values (stat_boxplot).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 191 rows containing non-finite values (stat_bin).
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 49 rows containing non-finite values (stat_bin).
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 19 rows containing non-finite values (stat_bin).
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 19 rows containing non-finite values (stat_bin).
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 9 rows containing non-finite values (stat_bin).
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 6 rows containing non-finite values (stat_bin).
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 6 rows containing non-finite values (stat_bin).
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 6 rows containing non-finite values (stat_bin).
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 6 rows containing non-finite values (stat_bin).
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 6 rows containing non-finite values (stat_bin).
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 6 rows containing non-finite values (stat_bin).
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 6 rows containing non-finite values (stat_bin).
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 9 rows containing non-finite values (stat_bin).
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 6 rows containing non-finite values (stat_bin).
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 6 rows containing non-finite values (stat_bin).
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 6 rows containing non-finite values (stat_bin).
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 6 rows containing non-finite values (stat_bin).
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 6 rows containing non-finite values (stat_bin).
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 6 rows containing non-finite values (stat_bin).
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 6 rows containing non-finite values (stat_bin).
## Warning: Removed 191 rows containing missing values (geom_point).
## Warning: Removed 49 rows containing missing values (geom_point).
## Warning: Removed 19 rows containing missing values (geom_point).
## Warning: Removed 19 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 191 rows containing missing values (geom_point).
## Warning: Removed 49 rows containing missing values (geom_point).
## Warning: Removed 19 rows containing missing values (geom_point).
## Warning: Removed 19 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 191 rows containing missing values (geom_point).
## Warning: Removed 49 rows containing missing values (geom_point).
## Warning: Removed 19 rows containing missing values (geom_point).
## Warning: Removed 19 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 rows containing missing values (geom_point).
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
train.iq.1<-train.iq
train.iq.1$year<-NULL
train.iq.1$weekofyear<-NULL
count.sj<-ggplot(data=train.sj.1,aes(x=train.sj.1$total_cases))
count.sj<-count.sj+geom_bar(stat="count")+xlab("Total Dengue Cases")
count.sj
## Warning: Use of `train.sj.1$total_cases` is discouraged. Use `total_cases`
## instead.
count.iq<-ggplot(data=train.iq.1,aes(x=train.iq.1$total_cases))
count.iq<-count.iq+geom_bar(stat="count")+xlab("Total Dengue Cases")
count.iq
## Warning: Use of `train.iq.1$total_cases` is discouraged. Use `total_cases`
## instead.
train.sj.2<-ts(train.sj.1,frequency=52)
## Warning in data.matrix(data): NAs introduced by coercion
tslm.SJ.1 <- tslm(total_cases~weekofyear+reanalysis_dew_point_temp_k+reanalysis_max_air_temp_k, data=train.sj.2)
coefficients(tslm.SJ.1)
## (Intercept) weekofyear
## -715.9606828 0.8971327
## reanalysis_dew_point_temp_k reanalysis_max_air_temp_k
## 0.3493944 2.0676910
accuracy(tslm.SJ.1)
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 9.731015e-16 49.15302 27.11494 -Inf Inf 0.7395291 0.958288
autoplot(train.sj.2[,'total_cases'], series="Data") +
autolayer(fitted(tslm.SJ.1), series="Fitted") +
xlab("Year") + ylab("") +
ggtitle("Cases of Dengue") +
guides(colour=guide_legend(title=" "))
train.iq.2<-ts(train.iq.1,frequency=52)
## Warning in data.matrix(data): NAs introduced by coercion
## Warning in data.matrix(data): NAs introduced by coercion
tslm.IQ.1 <- tslm(total_cases~weekofyear+reanalysis_dew_point_temp_k+reanalysis_max_air_temp_k, data=train.iq.2)
coefficients(tslm.IQ.1)
## (Intercept) weekofyear
## -5.089092e+02 7.999541e-03
## reanalysis_dew_point_temp_k reanalysis_max_air_temp_k
## 1.758915e+00 -1.124429e-02
accuracy(tslm.IQ.1)
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set -3.444989e-16 10.49556 6.422777 NaN Inf 0.6794027 0.7102048
autoplot(train.iq.2[,'total_cases'], series="Data") +
autolayer(fitted(tslm.IQ.1), series="Fitted") +
xlab("Year") + ylab("") +
ggtitle("Cases of Dengue") +
guides(colour=guide_legend(title=" "))
tslm.sj.2<-tslm(total_cases~weekofyear+reanalysis_dew_point_temp_k+reanalysis_max_air_temp_k+station_avg_temp_c+station_precip_mm+year,data=train.sj.2)
coefficients(tslm.sj.2)
## (Intercept) weekofyear
## 2162.99189108 0.73714678
## reanalysis_dew_point_temp_k reanalysis_max_air_temp_k
## -0.82416595 10.95041794
## station_avg_temp_c station_precip_mm
## -5.04667903 0.01906517
## year
## -2.53640747
autoplot(train.sj.2[,'total_cases'], series="Data") +
autolayer(fitted(tslm.sj.2), series="Fitted") +
xlab("Year") + ylab("") +
ggtitle("Cases of Dengue") +
guides(colour=guide_legend(title=" "))
tslm.iq.2<-tslm(total_cases~weekofyear+reanalysis_dew_point_temp_k+reanalysis_max_air_temp_k+station_avg_temp_c+station_precip_mm+year,data=train.iq.2)
coefficients(tslm.iq.2)
## (Intercept) weekofyear
## -1.394915e+03 9.959076e-03
## reanalysis_dew_point_temp_k reanalysis_max_air_temp_k
## 1.227983e+00 7.960885e-03
## station_avg_temp_c station_precip_mm
## 4.424241e-01 6.979751e-03
## year
## 5.107205e-01
accuracy(tslm.iq.2)
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 1.338396e-16 9.08503 5.921679 NaN Inf 0.6417092 0.6174369
autoplot(train.iq.2[,'total_cases'], series="Data") +
autolayer(fitted(tslm.iq.2), series="Fitted") +
xlab("Year") + ylab("") +
ggtitle("Cases of Dengue") +
guides(colour=guide_legend(title=" "))
tslm.sj.3<-tslm(total_cases~reanalysis_specific_humidity_g_per_kg+reanalysis_dew_point_temp_k+station_avg_temp_c+reanalysis_max_air_temp_k+weekofyear+year,data = train.sj.2)
coefficients(tslm.sj.3)
## (Intercept) reanalysis_specific_humidity_g_per_kg
## 8549.0911435 23.2904557
## reanalysis_dew_point_temp_k station_avg_temp_c
## -22.9561337 -5.2926474
## reanalysis_max_air_temp_k weekofyear
## 10.1158117 0.7135182
## year
## -2.5268664
accuracy(tslm.sj.3)
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set -1.482868e-15 47.78175 26.06667 -Inf Inf 0.7109388 0.9512268
autoplot(train.sj.2[,'total_cases'], series="Data") +
autolayer(fitted(tslm.iq.2), series="Fitted") +
xlab("Year") + ylab("") +
ggtitle("Cases of Dengue") +
guides(colour=guide_legend(title=" "))
tslm.iq.3<-tslm(total_cases~reanalysis_specific_humidity_g_per_kg+reanalysis_dew_point_temp_k+station_avg_temp_c+reanalysis_max_air_temp_k+weekofyear+year,data = train.iq.2)
coefficients(tslm.iq.3)
## (Intercept) reanalysis_specific_humidity_g_per_kg
## 1.362886e+03 9.254170e+00
## reanalysis_dew_point_temp_k station_avg_temp_c
## -8.121326e+00 2.306411e-01
## reanalysis_max_air_temp_k weekofyear
## -7.220113e-02 -9.525546e-04
## year
## 4.497959e-01
accuracy(tslm.iq.3)
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set -1.097635e-16 9.038929 5.837813 -Inf Inf 0.6357542 0.6264961
autoplot(train.iq.2[,'total_cases'], series="Data") +
autolayer(fitted(tslm.iq.2), series="Fitted") +
xlab("Year") + ylab("") +
ggtitle("Cases of Dengue") +
guides(colour=guide_legend(title=" "))