Industrial Production Index (INDPRO) Index 2012=100, Monthly, Seasonally Adjusted
symbol <-fredr_series_observations(series_id = "INDPRO",
observation_start = as.Date("2019-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
indicator %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
date
|
value
|
2019-01-01
|
110.12
|
2019-02-01
|
109.56
|
2019-03-01
|
109.68
|
2019-04-01
|
108.99
|
2019-05-01
|
109.23
|
2019-06-01
|
109.28
|
2019-07-01
|
109.09
|
2019-08-01
|
109.85
|
2019-09-01
|
109.47
|
2019-10-01
|
109.03
|
2019-11-01
|
110.04
|
2019-12-01
|
109.65
|
2020-01-01
|
109.18
|
2020-02-01
|
109.30
|
2020-03-01
|
104.60
|
2020-04-01
|
91.21
|
2020-05-01
|
92.01
|
2020-06-01
|
97.22
|
2020-07-01
|
100.17
|
indicator <-as.data.frame(symbol)[,c(1,3)]
indicator %>% ggplot() +
geom_line(mapping = aes(x=date,y=value),color="red",size=1) +
labs(title = "Industrial Production Index (INDPRO) Index",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
x="Time", y="Index 2012=100",
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego")+
theme_economist()

Capacity Utilization: Manufacturing (SIC) (CUMFNS) Percent of Capacity, monthly
symbol <-fredr_series_observations(series_id = "CUMFNS",
observation_start = as.Date("2019-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
indicator %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
date
|
value
|
2019-01-01
|
76.74
|
2019-02-01
|
76.28
|
2019-03-01
|
76.16
|
2019-04-01
|
75.41
|
2019-05-01
|
75.39
|
2019-06-01
|
75.72
|
2019-07-01
|
75.32
|
2019-08-01
|
75.69
|
2019-09-01
|
75.11
|
2019-10-01
|
74.60
|
2019-11-01
|
75.20
|
2019-12-01
|
75.25
|
2020-01-01
|
75.19
|
2020-02-01
|
75.16
|
2020-03-01
|
71.42
|
2020-04-01
|
60.03
|
2020-05-01
|
62.30
|
2020-06-01
|
66.91
|
2020-07-01
|
69.19
|
indicator <-as.data.frame(symbol)[,c(1,3)]
indicator %>% ggplot() +
geom_line(mapping = aes(x=date,y=value),color="red",size=1) +
labs(title = "Capacity Utilization: Manufacturing",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
x="Time", y="Percent of Capacity",
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego")+
theme_economist()

Capacity Utilization : Total Industry (TCU) Monthly. Percent Capacity
symbol <-fredr_series_observations(series_id = "TCU",
observation_start = as.Date("2019-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
indicator %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
date
|
value
|
2019-01-01
|
79.00
|
2019-02-01
|
78.46
|
2019-03-01
|
78.40
|
2019-04-01
|
77.76
|
2019-05-01
|
77.80
|
2019-06-01
|
77.69
|
2019-07-01
|
77.42
|
2019-08-01
|
77.84
|
2019-09-01
|
77.43
|
2019-10-01
|
76.99
|
2019-11-01
|
77.57
|
2019-12-01
|
77.17
|
2020-01-01
|
76.88
|
2020-02-01
|
76.93
|
2020-03-01
|
73.61
|
2020-04-01
|
64.20
|
2020-05-01
|
64.78
|
2020-06-01
|
68.46
|
2020-07-01
|
70.56
|
indicator <-as.data.frame(symbol)[,c(1,3)]
indicator %>% ggplot() +
geom_line(mapping = aes(x=date,y=value),color="red",size=1) +
labs(title = "Capacity Utilization Index: Total Industry (TCU)",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
x="Monthly", y="percent",
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego")+
theme_economist()

Industrial Production: Manufacturing (NAICS) (IPGMFN) Index 2012=100, Monthly
symbol <-fredr_series_observations(series_id = "IPGMFN",
observation_start = as.Date("2019-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
indicator %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
date
|
value
|
2019-01-01
|
104.33
|
2019-02-01
|
105.52
|
2019-03-01
|
106.91
|
2019-04-01
|
105.68
|
2019-05-01
|
105.70
|
2019-06-01
|
108.15
|
2019-07-01
|
103.77
|
2019-08-01
|
107.68
|
2019-09-01
|
106.66
|
2019-10-01
|
106.30
|
2019-11-01
|
105.77
|
2019-12-01
|
104.51
|
2020-01-01
|
103.60
|
2020-02-01
|
105.47
|
2020-03-01
|
101.32
|
2020-04-01
|
84.06
|
2020-05-01
|
88.19
|
2020-06-01
|
96.34
|
2020-07-01
|
95.74
|
indicator <-as.data.frame(symbol)[,c(1,3)]
indicator %>% ggplot() +
geom_line(mapping = aes(x=date,y=value),color="red",size=1) +
labs(title = "Industrial Production: Manufacturing (NAICS)",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
x="Time", y="Index 2012=100",
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego")+
theme_economist()

Capacity Utilization: Manufacturing (NAICS) (MCUMFN) Monthly. Percent Capacity
symbol <-fredr_series_observations(series_id = "MCUMFN",
observation_start = as.Date("2019-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
indicator %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
date
|
value
|
2019-01-01
|
77.24
|
2019-02-01
|
76.75
|
2019-03-01
|
76.64
|
2019-04-01
|
75.88
|
2019-05-01
|
75.88
|
2019-06-01
|
76.22
|
2019-07-01
|
75.83
|
2019-08-01
|
76.21
|
2019-09-01
|
75.62
|
2019-10-01
|
75.10
|
2019-11-01
|
75.76
|
2019-12-01
|
75.84
|
2020-01-01
|
75.74
|
2020-02-01
|
75.66
|
2020-03-01
|
71.91
|
2020-04-01
|
60.37
|
2020-05-01
|
62.72
|
2020-06-01
|
67.45
|
2020-07-01
|
69.77
|
indicator <-as.data.frame(symbol)[,c(1,3)]
indicator %>% ggplot() +
geom_line(mapping = aes(x=date,y=value),color="red",size=1) +
labs(title = "Capacity Utilization: Manufacturing (NAICS)",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
x="Monthly", y="Percent Capacity",
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego")+
theme_economist()

Industrial Production : Crude oil (IPG211111CN) Index 2012=100, monthly
symbol <-fredr_series_observations(series_id = "IPG211111CN",
observation_start = as.Date("2019-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
indicator %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
date
|
value
|
2019-01-01
|
182.6
|
2019-02-01
|
178.5
|
2019-03-01
|
181.9
|
2019-04-01
|
185.4
|
2019-05-01
|
185.3
|
2019-06-01
|
184.5
|
2019-07-01
|
180.9
|
2019-08-01
|
189.5
|
2019-09-01
|
190.9
|
2019-10-01
|
193.9
|
2019-11-01
|
196.8
|
2019-12-01
|
196.0
|
2020-01-01
|
195.2
|
2020-02-01
|
195.0
|
2020-03-01
|
194.9
|
2020-04-01
|
183.5
|
2020-05-01
|
153.1
|
2020-06-01
|
153.0
|
2020-07-01
|
155.0
|
indicator <-as.data.frame(symbol)[,c(1,3)]
indicator %>% ggplot() +
geom_line(mapping = aes(x=date,y=value),color="red",size=1) +
labs(title = " Crude oil Production",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
x="Monthly", y="Index 2012 = 100",
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego")+
theme_economist()

Industrial Production: Durable manufacturing: Motor vehicles and parts (IPG3361T3N) Index 2012=100, monthly
symbol <-fredr_series_observations(series_id = "IPG3361T3N",
observation_start = as.Date("2019-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
14
|
2020-02-01
|
139.29
|
15
|
2020-03-01
|
100.47
|
16
|
2020-04-01
|
22.34
|
17
|
2020-05-01
|
46.58
|
18
|
2020-06-01
|
106.74
|
19
|
2020-07-01
|
106.33
|
indicator <-as.data.frame(symbol)[,c(1,3)]
indicator %>% ggplot() +
geom_line(mapping = aes(x=date,y=value),color="red",size=1) +
labs(title = "Motor vehicles and parts Production",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
x="Time", y="Index 2012=100",
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego")+
theme_economist()

Industrial Production: Consumer goods (IPB51000N) Index 2012=100, monthly
symbol <-fredr_series_observations(series_id = "IPB51000N",
observation_start = as.Date("2019-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
14
|
2020-02-01
|
107.57
|
15
|
2020-03-01
|
101.03
|
16
|
2020-04-01
|
83.83
|
17
|
2020-05-01
|
87.31
|
18
|
2020-06-01
|
98.59
|
19
|
2020-07-01
|
101.13
|
indicator <-as.data.frame(symbol)[,c(1,3)]
indicator %>% ggplot() +
geom_line(mapping = aes(x=date,y=value),color="red",size=1) +
labs(title = "Consumer goods Production",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
x="Time", y=" Index 2012=100",
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego")+
theme_economist()

Industrial Production: Nondurable manufacturing: Food, beverage, and tobacco (IPG311A2N) Index 2012=100, monthly
symbol <-fredr_series_observations(series_id = "IPG311A2N",
observation_start = as.Date("2019-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
14
|
2020-02-01
|
110.13
|
15
|
2020-03-01
|
109.29
|
16
|
2020-04-01
|
98.29
|
17
|
2020-05-01
|
100.90
|
18
|
2020-06-01
|
108.14
|
19
|
2020-07-01
|
106.05
|
indicator <-as.data.frame(symbol)[,c(1,3)]
indicator %>% ggplot() +
geom_line(mapping = aes(x=date,y=value),color="red",size=1) +
labs(title = "Production of Food, Beverage, and Tobacco",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
x="Time", y=" Index 2012=100",
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego")+
theme_economist()

Industrial Production: Durable manufacturing: Aerospace and miscellaneous transportation equipment (IPG3364T9N) Index 2012=100, monthly
symbol <-fredr_series_observations(series_id = "IPG3364T9N",
observation_start = as.Date("2019-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
14
|
2020-02-01
|
91.10
|
15
|
2020-03-01
|
86.75
|
16
|
2020-04-01
|
65.23
|
17
|
2020-05-01
|
72.97
|
18
|
2020-06-01
|
75.35
|
19
|
2020-07-01
|
78.82
|
indicator <-as.data.frame(symbol)[,c(1,3)]
indicator %>% ggplot() +
geom_line(mapping = aes(x=date,y=value),color="red",size=1) +
labs(title = " Industrial Production: Aerospace and miscellaneous transportation equipment",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
x="Time", y=" Index 2012=100",
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego")+
theme_economist()

Capacity Utilization: Durable Manufacturing: Automobile and light duty motor vehicle (CAPUTLG33611S) Percent of Capacity, monthly
symbol <-fredr_series_observations(series_id = "CAPUTLG33611S",
observation_start = as.Date("2019-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
14
|
2020-02-01
|
85.1555
|
15
|
2020-03-01
|
52.4922
|
16
|
2020-04-01
|
0.7261
|
17
|
2020-05-01
|
17.2452
|
18
|
2020-06-01
|
62.2646
|
19
|
2020-07-01
|
91.9485
|
indicator <-as.data.frame(symbol)[,c(1,3)]
indicator %>% ggplot() +
geom_line(mapping = aes(x=date,y=value),color="red",size=1) +
labs(title = " Capacity Utilization: Automobile and light duty motor vehicle",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
x="Time", y=" Index 2012=100",
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego")+
theme_economist()
