Updated: 2020-08-16 11:44:29 PDT

Original version created 2020-05-03. See below for revision history

Intro


The spread of the SARS-COV-19 viral disease defies description in terms of a single statistic. To be informed about personal risk we need to know more than how many people have been sick at a national level or even state level, we need information about how many people are currently sick in our communicty and how the number of sick people is changing is changing at a state and even county level. It can be hard to find this information.

This analysis seeks to fill partially that gap. It includes:
1. Several national pictures of disease trends to enable a “large pattern” view of how disease has and is evolving a on country-wide scale.
2. A per capita analysis of disease spread.
3. A more granular analysis of regions, states, and counties to shed light on local disease pattern evolution.
4. Details of the time evolution of growth statistics.


This computed document is constantly evolving, so please “refresh” for the latest updates. If you have suggestions or comments please reach out on twitter @WinstonOnData or facebook.

National Maps

There are plenty of online maps. I’ve deprecated a few of the ones I’ve computer since they are no longer relevant to the analysis of disease trends. They are published:
- here.

Cases and Deaths per Capita

This chart reveals a more interesting pattern of disease spread. I haven’t found one of these online.
Groups of cities (e.g. Chicago, Indianapolis, and Detroit) and paths between connected communities are clearly visible.

Reproduction and Control

\(R_e\) is a measure of disease growth. For recovery to begin disease growth must turn from positive to negative (i.e. from \(log_2\)(\(R_e\)) > 0 to \(log_2\)(\(R_e\)) < 0).

After achieving negative growth growth, the next phase of recovery is maintaining consistently lower levels of disease. Control can be measured as a ratio of current disease levels to maximum disease levels. If disease levels are currently at a maximum, control is 0 %.

\[ control = 100 \times (1 - \frac{active \space disease}{max(active \space disease)} ) \% \]

State Level Data


County Level Data


state R_e cases daily_cases
Montana 1.23 5680 146
North Dakota 1.16 8416 157
Kansas 1.15 34211 493
Vermont 1.15 1486 6
Kentucky 1.13 40702 754
Delaware 1.12 15995 108
West Virginia 1.12 8439 142
California 1.11 620667 9024
Idaho 1.11 27874 527
Illinois 1.10 205356 1921
Missouri 1.10 59471 1134
Indiana 1.09 81569 1012
Iowa 1.09 51794 519
Nebraska 1.08 30094 302
Rhode Island 1.08 18583 105
South Dakota 1.08 9918 97
Georgia 1.07 217077 3487
Michigan 1.07 101244 782
Texas 1.06 555672 8112
Virginia 1.06 84440 886
Arkansas 1.05 51727 755
Ohio 1.04 107983 1209
Pennsylvania 1.04 128586 843
Wisconsin 1.04 65490 859
Minnesota 1.03 64507 700
New Jersey 1.03 188324 388
Tennessee 1.02 129999 1885
Washington 1.02 69572 732
Maine 1.01 4132 15
New York 1.01 429498 660
Oklahoma 1.01 48183 810
Oregon 1.01 22954 302
Florida 1.00 572476 6887
New Hampshire 1.00 6984 27
North Carolina 1.00 144602 1500
Maryland 0.99 100541 774
Nevada 0.99 61126 845
Utah 0.99 46516 406
Wyoming 0.99 3216 33
Alabama 0.97 108998 1364
Colorado 0.96 53155 410
Mississippi 0.96 72464 917
New Mexico 0.96 23433 188
South Carolina 0.95 106784 1119
Louisiana 0.93 138541 1351
Connecticut 0.91 50762 84
Arizona 0.85 194113 1144
Massachusetts 0.85 122089 271

National Statistics

Total & Active Cases, and Deaths

These trend charts show the national disease statistics. The raw data are shown. since these showdaily trends that are systematically related ot the M-F work week, possibly due to reporting delays, numbers showsn

Mortality Trend

\(R_e\) Trend

National effective reproduction rate

Distribution of \(R_e\) Values

Howver, there is a wiude dirstubtion of \(R_e\) across regions and counties. The distributions in the graph below looks roughly symmetrical because the x-scale is logarithmic.

Distribution of Baseline Control

Similarly for disease control, when take at the county level, there is a wide distribution of Baseline Control.

Regional Snapshots

Regional snapshots reveal the highly nuanced behavior of disease spread. Each snaphot includes multiple states and selected counties.

How to read the charts

There are four components:
1. State Maps show the number of active cases and with the Reproduction rate encoded as color.
2. State Graphs State-wide trend graphs.
3. Severity Ranking These is a table of counties where the highest number of new cases are expected. Severity is a compounded function \(f(R, cases(t))\). This is useful for finding new (often unexpected) “hot spots.” Added per capita rates.
4. County Graphs encode the R-value in the active number of cases. R is the Reproduction Rate.

(NOTE: R < 1 implies a shrinking number of active cases, R > 1 implies a growing number of active cases. For R = 1, active cases are stable. ).


Washington and Oregon

WA
county ST case rank severity R_e cases cases/100k daily cases
King WA 1 1 1.0 17546 810 160
Grant WA 9 2 1.2 1781 1880 40
Spokane WA 5 3 1.0 4824 970 79
Pierce WA 3 4 1.0 6761 790 94
Clallam WA 24 5 1.5 142 190 6
Snohomish WA 4 6 1.0 6527 830 55
Chelan WA 10 7 1.1 1504 1990 32
Yakima WA 2 8 1.0 11226 4500 50
Clark WA 8 9 1.1 2247 480 32
Franklin WA 7 11 1.0 3802 4190 27
Benton WA 6 19 0.8 4032 2080 23
OR
county ST case rank severity R_e cases cases/100k daily cases
Multnomah OR 1 1 1.0 5257 660 63
Marion OR 3 2 1.0 3120 930 37
Washington OR 2 3 1.0 3310 570 39
Malheur OR 6 4 1.1 884 2900 18
Jackson OR 9 5 1.1 548 260 14
Clackamas OR 5 6 1.0 1647 410 19
Umatilla OR 4 7 0.9 2451 3190 29
Lane OR 8 14 1.0 629 170 8
Deschutes OR 7 16 0.9 644 360 8
## Warning: Removed 1 rows containing missing values (geom_col).

California

CA
county ST case rank severity R_e cases cases/100k daily cases
Los Angeles CA 1 1 1.0 221598 2190 2299
Riverside CA 2 2 1.2 45945 1930 701
Stanislaus CA 13 3 1.3 12012 2230 296
Sacramento CA 11 4 1.3 13480 890 337
Merced CA 20 5 1.3 6844 2540 250
San Bernardino CA 4 6 1.1 39926 1870 605
Contra Costa CA 14 7 1.3 10841 960 271
San Joaquin CA 9 8 1.3 14660 2000 277
Orange CA 3 9 1.1 43159 1360 506
Alameda CA 8 11 1.2 14752 900 288
Fresno CA 7 13 1.1 19642 2010 364
Kern CA 6 15 1.0 26692 3020 473
San Diego CA 5 17 1.0 34658 1050 358

Four Corners

AZ
county ST case rank severity R_e cases cases/100k daily cases
Pima AZ 2 1 1.1 19325 1900 236
Maricopa AZ 1 2 0.8 130105 3060 669
Yuma AZ 3 3 0.8 11908 5730 55
Cochise AZ 11 4 1.0 1783 1410 20
Mohave AZ 6 5 1.0 3371 1640 26
Pinal AZ 4 6 0.9 8714 2080 41
Yavapai AZ 10 7 0.9 2155 960 25
Coconino AZ 8 9 0.9 3175 2260 14
Apache AZ 7 10 0.9 3257 4550 14
Navajo AZ 5 11 0.9 5463 5030 14
Santa Cruz AZ 9 14 0.8 2709 5820 7
CO
county ST case rank severity R_e cases cases/100k daily cases
El Paso CO 4 1 1.0 5513 800 64
Adams CO 3 2 1.0 6812 1370 57
Denver CO 1 3 0.9 10573 1520 59
Jefferson CO 5 4 1.0 4405 770 36
Mesa CO 16 5 1.2 364 240 9
Larimer CO 9 6 1.0 1677 500 22
Arapahoe CO 2 7 0.9 7573 1190 43
Weld CO 6 8 1.0 3824 1300 20
Boulder CO 7 10 0.9 2169 680 17
Douglas CO 8 11 1.0 1819 550 13
UT
county ST case rank severity R_e cases cases/100k daily cases
Salt Lake UT 1 1 1.0 21715 1940 175
Utah UT 2 2 1.0 9339 1580 108
Weber UT 4 3 1.0 2951 1190 28
Davis UT 3 4 1.0 3399 1000 30
Washington UT 5 5 0.9 2611 1630 19
Wasatch UT 10 6 1.1 592 1940 5
Cache UT 6 7 0.9 1984 1620 11
Tooele UT 9 9 0.9 611 940 5
Summit UT 7 11 1.0 726 1790 2
San Juan UT 8 17 0.7 661 4330 2
NM
county ST case rank severity R_e cases cases/100k daily cases
Lea NM 7 1 1.1 921 1310 23
Eddy NM 13 2 1.3 359 630 10
Doña Ana NM 4 3 1.0 2651 1230 33
Chaves NM 11 4 1.1 538 820 16
Bernalillo NM 1 5 0.9 5362 790 36
Lincoln NM 17 6 1.2 150 770 4
McKinley NM 2 7 1.0 4110 5640 9
Santa Fe NM 9 10 0.9 695 470 8
San Juan NM 3 11 1.0 3091 2430 7
Sandoval NM 5 12 0.8 1165 830 5
Cibola NM 8 15 0.6 733 2720 7
Otero NM 6 19 0.5 1110 1690 1

Mid-Atlantic

NJ
county ST case rank severity R_e cases cases/100k daily cases
Bergen NJ 1 1 1.1 21310 2290 45
Union NJ 6 2 1.2 16997 3070 22
Passaic NJ 5 3 1.1 18008 3570 33
Hudson NJ 3 4 1.1 20004 2990 28
Camden NJ 9 5 1.0 8818 1740 33
Gloucester NJ 16 6 1.1 3395 1170 24
Essex NJ 2 7 1.0 20138 2540 29
Middlesex NJ 4 8 1.0 18277 2210 27
Monmouth NJ 8 9 1.0 10563 1690 27
Ocean NJ 7 12 0.9 10802 1820 22
PA
county ST case rank severity R_e cases cases/100k daily cases
Philadelphia PA 1 1 1.0 32140 2040 133
York PA 13 2 1.2 2818 630 45
Fayette PA 25 3 1.3 624 470 21
Allegheny PA 4 4 1.0 9403 770 87
Delaware PA 3 5 1.0 9666 1720 66
Union PA 39 6 1.3 302 670 13
Lancaster PA 6 7 1.0 6186 1150 46
Montgomery PA 2 10 1.0 10358 1260 41
Berks PA 7 11 1.1 5553 1330 29
Bucks PA 5 16 1.0 7385 1180 31
Chester PA 8 17 0.9 5322 1030 29
Lehigh PA 9 19 1.0 5068 1400 18
MD
county ST case rank severity R_e cases cases/100k daily cases
Baltimore city MD 4 1 1.0 13448 2190 151
Prince George’s MD 1 2 1.0 25052 2760 149
Montgomery MD 2 3 1.0 18979 1820 96
Baltimore MD 3 4 0.9 13986 1690 133
Anne Arundel MD 5 5 0.9 7681 1350 55
Howard MD 6 6 1.0 4057 1290 35
Allegany MD 21 7 1.4 324 450 6
Harford MD 9 8 1.0 2124 850 26
Charles MD 8 9 1.0 2152 1360 22
Frederick MD 7 10 1.1 3182 1280 16
VA
county ST case rank severity R_e cases cases/100k daily cases
Floyd VA 72 1 1.9 118 750 11
Wise VA 50 2 1.7 220 560 16
Fairfax VA 1 3 1.1 16878 1480 86
Greensville VA 26 4 1.4 558 4790 14
Prince William VA 2 5 1.0 9844 2160 70
Pittsylvania VA 25 6 1.2 575 930 21
Virginia Beach city VA 4 7 0.9 5445 1210 83
Loudoun VA 3 8 1.1 5474 1420 35
Chesterfield VA 5 10 1.0 4613 1360 45
Henrico VA 6 12 1.0 4089 1260 37
Norfolk city VA 7 13 0.9 4004 1630 52
Arlington VA 8 21 1.0 3189 1380 21
Newport News city VA 9 23 1.0 1966 1090 23
WV
county ST case rank severity R_e cases cases/100k daily cases
Logan WV 5 1 1.4 327 970 20
Kanawha WV 1 2 1.1 1057 570 21
Raleigh WV 7 3 1.2 298 390 10
Cabell WV 4 4 1.1 452 470 10
Wood WV 9 5 1.3 270 320 3
Fayette WV 18 6 1.2 166 380 3
Berkeley WV 3 7 1.1 732 640 6
Monongalia WV 2 14 1.0 977 930 5
Jefferson WV 6 17 1.1 303 540 1
Ohio WV 8 23 0.8 279 660 2
DE
county ST case rank severity R_e cases cases/100k daily cases
Sussex DE 2 1 1.2 6074 2770 38
Kent DE 3 2 1.3 2429 1390 22
New Castle DE 1 3 1.0 7492 1350 47

Deep South

AL
county ST case rank severity R_e cases cases/100k daily cases
Clarke AL 34 1 1.5 924 3790 44
Mobile AL 2 2 1.0 11328 2730 205
Jefferson AL 1 3 1.0 14370 2180 187
Washington AL 47 4 1.3 490 2940 17
Montgomery AL 3 5 1.0 7296 3210 78
Jackson AL 28 6 1.1 1178 2260 30
Baldwin AL 6 7 0.9 3959 1900 54
Tuscaloosa AL 5 8 1.0 4595 2230 46
Madison AL 4 9 0.9 5842 1630 58
Shelby AL 7 11 0.9 3730 1770 42
Lee AL 9 13 1.0 3021 1900 30
Marshall AL 8 22 0.9 3378 3550 27
MS
county ST case rank severity R_e cases cases/100k daily cases
Lee MS 10 1 1.2 1698 2000 43
Union MS 37 2 1.2 765 2700 23
Harrison MS 3 3 1.0 2802 1380 53
Stone MS 74 4 1.3 246 1340 9
DeSoto MS 2 5 0.9 3938 2240 51
Tippah MS 55 6 1.2 432 1960 12
Washington MS 9 7 1.0 1814 3850 26
Jackson MS 5 10 0.9 2517 1770 39
Hinds MS 1 11 0.8 5957 2460 51
Forrest MS 8 17 0.9 1931 2560 23
Madison MS 4 25 0.9 2554 2470 19
Jones MS 7 30 0.9 2002 2920 18
Rankin MS 6 31 0.8 2417 1600 20
LA
county ST case rank severity R_e cases cases/100k daily cases
East Baton Rouge LA 2 1 0.9 12932 2910 135
Lafayette LA 4 2 0.9 8150 3390 107
Jefferson LA 1 3 0.9 15853 3640 100
West Feliciana LA 51 4 1.4 395 2570 7
St. Tammany LA 7 5 1.0 5556 2200 62
Tangipahoa LA 9 6 1.0 3714 2850 43
Ouachita LA 8 7 0.9 5131 3290 48
Orleans LA 3 11 0.9 11000 2820 46
Caddo LA 6 15 0.9 6972 2810 50
Calcasieu LA 5 29 0.7 7129 3560 46

FL and GA

FL
county ST case rank severity R_e cases cases/100k daily cases
Lafayette FL 59 1 3.6 572 6540 110
Suwannee FL 34 2 1.7 2128 4840 118
Baker FL 46 3 1.6 1216 4380 94
Miami-Dade FL 1 4 1.0 144633 5330 1840
Union FL 64 5 1.6 493 3240 30
Broward FL 2 6 0.9 66600 3490 678
Escambia FL 11 7 1.1 10408 3340 192
Palm Beach FL 3 8 0.9 39212 2710 374
Hillsborough FL 4 9 0.9 34279 2490 308
Orange FL 5 10 1.0 33258 2520 264
Polk FL 9 11 1.0 15405 2300 191
Duval FL 6 13 1.0 24674 2670 224
Lee FL 8 15 1.0 17309 2410 124
Pinellas FL 7 16 0.9 18729 1960 148
GA
county ST case rank severity R_e cases cases/100k daily cases
Gwinnett GA 2 1 1.0 21615 2400 319
Cobb GA 3 2 1.1 15054 2020 274
Fulton GA 1 3 1.0 22076 2160 314
DeKalb GA 4 4 1.0 15044 2020 204
Cherokee GA 11 5 1.2 3972 1640 97
Richmond GA 9 6 1.1 4997 2480 115
Bleckley GA 110 7 1.4 291 2280 16
Chatham GA 6 14 1.0 6290 2190 99
Clayton GA 7 15 1.1 5466 1960 77
Hall GA 5 18 1.0 6540 3340 81
Muscogee GA 8 22 1.0 5065 2580 59

Texas & Oklahoma

TX
county ST case rank severity R_e cases cases/100k daily cases
Collin TX 13 1 1.4 9284 980 290
Fort Bend TX 10 2 1.3 11770 1590 409
Harris TX 1 3 1.0 92880 2020 1286
Nueces TX 9 4 1.2 17103 4740 398
Bee TX 45 5 1.4 1516 4640 98
Williamson TX 16 6 1.3 7544 1430 165
Tarrant TX 4 7 1.0 36869 1830 592
Dallas TX 2 10 1.0 57821 2240 534
El Paso TX 8 11 1.1 17944 2140 274
Hidalgo TX 6 12 1.1 21805 2570 335
Cameron TX 7 15 0.9 19240 4560 482
Travis TX 5 16 1.0 24123 2000 221
Bexar TX 3 41 0.8 44384 2300 203
OK
county ST case rank severity R_e cases cases/100k daily cases
Hughes OK 42 1 1.7 172 1280 7
Tulsa OK 2 2 1.0 11483 1790 183
Oklahoma OK 1 3 1.0 11589 1480 176
Pittsburg OK 25 4 1.3 460 1040 26
Garfield OK 14 5 1.2 569 910 20
Lincoln OK 37 6 1.4 222 640 10
Osage OK 20 7 1.3 490 1040 13
Rogers OK 5 10 1.0 1122 1240 26
Wagoner OK 7 11 1.0 969 1240 20
Cleveland OK 3 13 0.9 3252 1180 42
Canadian OK 4 19 0.9 1333 980 21
Comanche OK 9 22 1.0 884 720 10
Texas OK 6 36 1.1 1074 5080 3
McCurtain OK 8 37 1.0 888 2690 5

Michigan & Wisconsin

MI
county ST case rank severity R_e cases cases/100k daily cases
Muskegon MI 13 1 1.6 1465 850 39
Macomb MI 3 2 1.1 11443 1320 133
Oakland MI 2 3 1.1 16304 1300 130
Wayne MI 1 4 1.0 29028 1650 137
Saginaw MI 8 5 1.1 2162 1120 26
Bay MI 21 6 1.2 700 670 13
Menominee MI 40 7 1.3 174 750 8
Kent MI 4 8 0.9 7784 1210 44
Washtenaw MI 6 11 1.0 3172 870 20
Ottawa MI 9 15 1.0 1922 680 14
Genesee MI 5 25 0.9 3751 920 17
Jackson MI 7 43 0.8 2465 1550 4
WI
county ST case rank severity R_e cases cases/100k daily cases
Sawyer WI 48 1 1.6 101 620 7
Milwaukee WI 1 2 1.0 22133 2320 183
Waukesha WI 3 3 1.1 4757 1190 93
Oneida WI 40 4 1.4 178 500 10
Green WI 38 5 1.5 199 540 7
Fond du Lac WI 16 6 1.2 750 730 18
Dane WI 2 7 1.0 4791 900 48
Brown WI 4 11 1.0 4472 1720 37
Outagamie WI 9 16 1.1 1382 750 23
Racine WI 5 19 0.9 3703 1900 36
Walworth WI 8 20 1.0 1453 1410 20
Kenosha WI 6 29 0.9 2793 1660 22
Rock WI 7 40 0.9 1617 1000 9

Minnesota, North Dakota, and South Dakota

MN
county ST case rank severity R_e cases cases/100k daily cases
Watonwan MN 22 1 1.7 366 3340 8
Hennepin MN 1 2 1.0 20363 1650 199
McLeod MN 29 3 1.5 245 680 12
Ramsey MN 2 4 1.0 8047 1490 92
Dakota MN 3 5 1.0 4775 1140 68
St. Louis MN 18 6 1.2 664 330 23
Anoka MN 4 7 1.0 3961 1140 51
Washington MN 6 8 1.1 2304 910 34
Scott MN 9 9 1.0 1706 1190 28
Olmsted MN 7 10 1.0 1829 1190 17
Stearns MN 5 19 0.9 2952 1880 10
Nobles MN 8 26 1.1 1782 8160 3
SD
county ST case rank severity R_e cases cases/100k daily cases
Yankton SD 10 1 1.5 134 590 3
Minnehaha SD 1 2 1.0 4587 2460 30
Codington SD 7 3 1.3 152 540 3
Lincoln SD 3 4 1.0 700 1270 11
Charles Mix SD 12 5 1.5 108 1160 1
Pennington SD 2 6 1.0 933 850 8
Brown SD 5 7 1.1 468 1200 5
Brookings SD 8 8 1.2 149 440 3
Clay SD 9 10 1.1 138 990 2
Beadle SD 4 11 1.2 597 3250 1
Union SD 6 13 0.9 225 1480 2
ND
county ST case rank severity R_e cases cases/100k daily cases
Stark ND 5 1 1.5 367 1190 19
McLean ND 14 2 1.6 98 1020 7
Morton ND 4 3 1.3 452 1480 16
Burleigh ND 2 4 1.1 1367 1460 34
Rolette ND 13 5 1.4 100 680 7
Grand Forks ND 3 6 1.3 747 1060 11
Ward ND 7 7 1.1 263 380 7
Cass ND 1 8 1.0 3122 1790 15
Mountrail ND 9 9 1.2 150 1480 3
Williams ND 6 11 1.1 303 890 6
Benson ND 8 13 1.0 165 2400 5

Connecticut, Massachusetts, and Rhode Island

CT
county ST case rank severity R_e cases cases/100k daily cases
New Haven CT 2 1 1.0 13316 1550 21
Fairfield CT 1 2 0.9 18190 1930 28
New London CT 5 3 1.0 1482 550 6
Hartford CT 3 4 0.8 12901 1440 17
Windham CT 8 5 1.0 760 650 5
Middlesex CT 6 6 1.0 1415 870 2
Litchfield CT 4 7 0.9 1631 890 3
Tolland CT 7 8 0.5 1067 710 2
MA
county ST case rank severity R_e cases cases/100k daily cases
Suffolk MA 2 1 0.9 22146 2800 56
Middlesex MA 1 2 0.9 26708 1670 58
Essex MA 3 3 0.9 18048 2310 46
Norfolk MA 5 4 0.8 10767 1540 28
Worcester MA 4 5 0.8 13754 1670 24
Bristol MA 6 6 0.8 9468 1690 22
Plymouth MA 7 7 0.9 9320 1820 14
Hampden MA 8 8 0.8 7677 1640 14
Barnstable MA 9 10 0.7 1816 850 3
RI
county ST case rank severity R_e cases cases/100k daily cases
Providence RI 1 1 1.1 15674 2470 90
Kent RI 2 2 1.0 1554 950 9
Washington RI 3 3 1.0 623 490 2
Newport RI 4 4 1.0 407 490 2
Bristol RI 5 5 0.9 324 660 1

New York

NY
county ST case rank severity R_e cases cases/100k daily cases
New York City NY 1 1 1.0 234448 2780 319
Suffolk NY 2 2 1.0 44126 2970 58
Monroe NY 8 3 1.1 5134 690 30
Westchester NY 4 4 1.0 36420 3760 34
Erie NY 7 5 1.0 9128 990 42
Nassau NY 3 6 0.9 43903 3240 43
Chemung NY 39 7 1.4 185 220 2
Orange NY 6 10 1.0 11242 2970 11
Rockland NY 5 11 1.1 13990 4320 8
Dutchess NY 9 12 1.0 4670 1590 11

Vermont, New Hampshire, and Maine

VT
county ST case rank severity R_e cases cases/100k daily cases
Chittenden VT 1 1 1.2 745 460 2
Bennington VT 5 2 1.1 92 260 1
Windham VT 3 3 1.3 105 240 0
Rutland VT 4 4 0.9 103 170 1
Franklin VT 2 5 0.8 120 240 0
ME
county ST case rank severity R_e cases cases/100k daily cases
Penobscot ME 5 1 1.3 162 110 2
Cumberland ME 1 2 1.0 2117 730 5
Androscoggin ME 3 3 1.1 575 540 2
York ME 2 4 0.8 687 340 2
Kennebec ME 4 5 0.6 173 140 0
NH
county ST case rank severity R_e cases cases/100k daily cases
Hillsborough NH 1 1 1.0 3924 950 13
Rockingham NH 2 2 1.0 1726 570 7
Strafford NH 4 3 1.0 371 290 3
Merrimack NH 3 4 1.1 472 320 1
Cheshire NH 6 5 1.1 106 140 1
Grafton NH 7 6 1.3 106 120 0
Belknap NH 5 7 1.0 121 200 1
Carroll NH 8 8 0.7 97 200 0

Carolinas

SC
county ST case rank severity R_e cases cases/100k daily cases
Richland SC 3 1 1.0 9395 2300 108
Charleston SC 1 2 0.9 12864 3260 92
Spartanburg SC 8 3 1.1 4377 1450 50
Aiken SC 15 4 1.1 2121 1270 44
Florence SC 10 5 1.0 3766 2720 59
Anderson SC 13 6 1.0 2597 1330 44
Greenwood SC 18 7 1.1 1538 2190 24
Greenville SC 2 8 0.9 11336 2270 77
Berkeley SC 6 10 1.0 4436 2120 43
Beaufort SC 7 11 0.9 4424 2420 58
York SC 9 12 1.0 3811 1470 45
Horry SC 4 13 0.9 8900 2770 55
Lexington SC 5 15 0.9 5201 1820 40
NC
county ST case rank severity R_e cases cases/100k daily cases
Mecklenburg NC 1 1 0.9 23247 2200 173
Wake NC 2 2 1.0 12745 1220 119
Stanly NC 36 3 1.2 1217 1990 28
Cumberland NC 8 4 1.0 3395 1020 54
Pitt NC 18 5 1.1 2246 1270 42
Union NC 9 6 1.0 3350 1480 44
Wilkes NC 43 7 1.3 899 1310 15
Forsyth NC 5 8 1.0 5530 1490 48
Guilford NC 4 9 1.0 5947 1140 56
Gaston NC 6 10 1.0 3545 1640 40
Durham NC 3 11 1.0 6410 2090 41
Johnston NC 7 34 0.9 3485 1820 32

North-Rockies

MT
county ST case rank severity R_e cases cases/100k daily cases
Phillips MT 10 1 2.7 111 2690 20
Yellowstone MT 1 2 1.2 1489 940 37
Flathead MT 4 3 1.1 397 400 12
Big Horn MT 3 4 1.0 513 3840 15
Missoula MT 5 5 1.1 378 330 9
Glacier MT 11 6 1.2 88 640 3
Silver Bow MT 9 7 1.1 113 320 4
Gallatin MT 2 8 0.9 1005 960 9
Lewis and Clark MT 8 9 1.0 178 270 4
Cascade MT 7 11 0.8 182 220 2
Lake MT 6 12 0.8 189 630 1
WY
county ST case rank severity R_e cases cases/100k daily cases
Washakie WY 11 1 1.5 96 1180 5
Campbell WY 8 2 1.4 142 300 3
Carbon WY 9 3 1.1 117 760 3
Natrona WY 6 4 1.0 247 310 2
Fremont WY 2 5 1.0 517 1290 3
Park WY 7 6 1.0 144 490 2
Sheridan WY 13 7 1.0 82 270 2
Sweetwater WY 5 8 0.9 274 620 2
Laramie WY 1 9 0.8 519 530 3
Teton WY 3 10 0.6 389 1690 2
Uinta WY 4 11 0.7 283 1370 1
ID
county ST case rank severity R_e cases cases/100k daily cases
Shoshone ID 22 1 2.1 172 1370 15
Bonneville ID 5 2 1.3 1394 1240 62
Ada ID 1 3 1.1 9903 2220 151
Canyon ID 2 4 1.0 6422 3030 116
Bannock ID 9 5 1.2 520 610 14
Bingham ID 12 6 1.2 363 800 13
Kootenai ID 3 7 1.0 2010 1310 34
Twin Falls ID 4 8 1.0 1541 1840 25
Jerome ID 8 12 1.1 524 2240 8
Cassia ID 7 20 0.9 554 2350 5
Blaine ID 6 22 1.1 584 2660 1

## Warning in FUN(X[[i]], ...): NaNs produced

Midwest

OH
county ST case rank severity R_e cases cases/100k daily cases
Madison OH 36 1 1.7 558 1270 30
Franklin OH 1 2 1.0 19489 1530 188
Cuyahoga OH 2 3 1.0 14281 1140 128
Hamilton OH 3 4 1.0 10094 1240 78
Montgomery OH 5 5 1.0 4673 880 53
Butler OH 7 6 1.1 3152 830 38
Perry OH 65 7 1.4 173 480 8
Lucas OH 4 9 0.9 5746 1330 68
Summit OH 6 10 1.0 3804 700 43
Mahoning OH 9 17 1.0 2684 1160 23
Marion OH 8 54 0.9 2964 4540 6
IL
county ST case rank severity R_e cases cases/100k daily cases
Cook IL 1 1 1.0 115298 2210 693
Morgan IL 30 2 1.6 378 1100 22
Logan IL 49 3 1.7 190 650 13
Greene IL 66 4 1.8 80 610 8
Madison IL 9 5 1.2 3018 1140 76
LaSalle IL 17 6 1.3 954 860 41
Will IL 5 7 1.1 9813 1420 99
DuPage IL 3 11 1.0 12828 1380 106
Lake IL 2 12 1.0 13241 1880 97
St. Clair IL 6 14 1.1 4811 1830 71
Kane IL 4 16 1.0 10251 1930 78
McHenry IL 8 26 1.0 3435 1120 37
Winnebago IL 7 48 0.9 3858 1350 13
IN
county ST case rank severity R_e cases cases/100k daily cases
Henry IN 37 1 1.6 469 970 12
Sullivan IN 66 2 1.6 176 850 11
Vigo IN 22 3 1.3 821 760 34
Marion IN 1 4 1.0 16806 1780 150
Lake IN 2 5 1.1 8053 1650 78
Hamilton IN 6 6 1.2 3090 980 52
Allen IN 4 7 1.1 4225 1140 53
St. Joseph IN 5 8 1.1 3823 1420 59
Elkhart IN 3 10 1.1 5175 2540 41
Vanderburgh IN 7 15 1.0 2175 1200 37
Hendricks IN 8 19 1.1 2030 1260 22
Johnson IN 9 30 1.0 1874 1240 15

Tennessee and Kentucky

TN
county ST case rank severity R_e cases cases/100k daily cases
Overton TN 68 1 1.5 260 1180 14
Weakley TN 40 2 1.3 616 1830 36
Shelby TN 1 3 0.9 25075 2680 265
Davidson TN 2 4 1.0 24086 3520 192
Hamilton TN 4 5 1.1 6690 1870 89
Knox TN 5 6 1.0 5498 1210 111
Madison TN 19 7 1.1 1343 1370 43
Rutherford TN 3 8 1.0 7004 2280 76
Williamson TN 6 12 1.0 3803 1740 45
Bradley TN 9 13 1.1 2141 2050 37
Wilson TN 8 16 1.0 2473 1860 32
Sumner TN 7 22 1.0 3626 2020 34
KY
county ST case rank severity R_e cases cases/100k daily cases
Jefferson KY 1 1 1.2 9590 1250 227
Clay KY 40 2 1.7 180 870 5
Fayette KY 2 3 1.1 4404 1380 93
Madison KY 12 4 1.3 638 710 25
Johnson KY 77 5 1.6 81 350 5
Hardin KY 8 6 1.3 754 700 21
Rowan KY 72 7 1.6 87 360 2
Christian KY 9 9 1.2 734 1020 15
Warren KY 3 13 1.0 2786 2200 27
Kenton KY 4 16 1.0 1532 930 18
Shelby KY 7 25 1.1 814 1740 9
Daviess KY 6 26 1.0 822 820 9
Boone KY 5 32 0.9 1156 900 10

Missouri and Arkansas

MO
county ST case rank severity R_e cases cases/100k daily cases
Washington MO 56 1 1.8 118 470 8
St. Louis MO 1 2 1.0 16464 1650 260
Polk MO 36 3 1.7 245 780 6
Greene MO 6 4 1.3 1888 650 57
St. Francois MO 20 5 1.4 494 740 20
Pike MO 53 6 1.5 143 770 8
Jackson MO 4 7 1.0 4579 660 95
St. Charles MO 3 10 1.0 4605 1180 76
St. Louis city MO 2 13 1.0 5619 1810 76
Jefferson MO 5 14 1.1 2067 930 48
Boone MO 7 16 1.1 1574 890 29
Jasper MO 8 29 1.1 1346 1130 12
Clay MO 9 31 1.0 1151 480 20
AR
county ST case rank severity R_e cases cases/100k daily cases
Pulaski AR 2 1 1.1 6069 1540 93
Poinsett AR 31 2 1.4 356 1480 19
Logan AR 32 3 1.3 354 1630 18
Saline AR 13 4 1.2 1224 1040 30
Sebastian AR 4 5 1.0 2465 1930 53
Chicot AR 19 6 1.1 898 8290 32
Garland AR 14 7 1.1 1192 1210 29
Jefferson AR 5 10 1.1 1696 2410 28
Hot Spring AR 6 11 1.2 1604 4790 13
Craighead AR 7 13 1.0 1506 1420 29
Crittenden AR 8 17 1.0 1475 3010 20
Pope AR 9 22 1.0 1421 2230 17
Benton AR 3 24 0.9 4931 1900 28
Washington AR 1 30 0.8 6453 2820 28

Conclusions

It’s in control some places, but not all places. And many places are completely out-of-control.

Stay Safe!
Be Diligent!
…and PLEASE WEAR A MASK



Built with R Version 4.0.2
This document took 1758 seconds to compute.
2020-08-16 12:13:47

version history

Today is 2020-08-16.
88 days ago: Multiple states.
80 days ago: \(R_e\) computation.
77 days ago: created color coding for \(R_e\) plots.
72 days ago: Reduced \(t_d\) from 14 to 12 days. 14 was the upper range of what most people are using. Wanted slightly higher bandwidth.
72 days ago: “persistence” time evolution.
65 days ago: “In control” mapping.
65 days ago: “Severity” tables to county analysis. Severity is computed from the number of new cases expected at current \(R_e\) for 6 days in the future. It does not trend \(R_e\), which could be a future enhancement.
57 days ago: Added census API functionality to compute per capita infection rates. Reduced spline spar = 0.65.
52 days ago: Added Per Capita US Map.
50 days ago: Deprecated national map.
46 days ago: added state “Hot 10” analysis.
41 days ago: cleaned up county analysis to show cases and actual data. Moved “Hot 10” analysis to separate web page. Moved “Hot 10” here.
39 days ago: added per capita disease and mortaility to state-level analysis.
27 days ago: changed to county boundaries on national map for per capita disease.
22 days ago: corrected factor of two error in death trend data.
18 days ago: removed “contained and uncontained” analysis, replacing it with county level control map.
13 days ago: added county level “baseline control” and \(R-e\) maps.
9 days ago: fixed normalization error on total disease stats plot.

Appendix: Methods

Disease data are sourced from the NYTimes Github Repo. Population data are sourced from the US Census census.gov

Case growth is assumed to follow a linear-partial differential equation. This type of model is useful in populations where there is still very low immunity and high susceptibility.

\[\frac{\partial}{\partial t} cases(t, t_d) = a \times cases(t, t_d) \] \(cases(t)\) is the number of active cases at \(t\) dependent on recent history, \(t_d\). The constant \(a\) and has units of \(time^{-1}\) and is typically computed on a daily basis

Solution results are often expressed in terms of the Effective Reproduction Rate \(R_e\), where \[a \space = \space ln(R_e).\]

\(R_e\) has a simple interpretation; when \(R_e \space > \space 1\) the number of \(cases(t)\) increases (exponentially) while when \(R_e \space < \space 1\) the number of \(cases(t)\) decreases.

Practically, computing \(a\) can be extremely complicated, depending on how functionally it is related to history \(t_d\). And guessing functional forms can be as much art as science. To avoid that, let’s keep things simple…

Assuming a straight-forward flat time of latent infection \(t_d\) = 12 days, with \[f(t) = \int_{t - t_d}^{t}cases(t')\; dt' ,\] \(R_e\) reduces to a simple computation

\[R_e(t) = \frac{cases(t)}{\int_{t - t_d}^{t}cases(t')\; dt'} \times t_d .\]

Typical range of \(t_d\) range \(7 \geq t_d \geq 14\). The only other numerical treatment is, in order to reduce noise the data, I smooth case data with a reticulated spline to compute derivatives.


DISCLAIMER: Results are for entertainment purposes only. Please consult local authorities for official data and forecasts.