Employed full time: Wage and salary workers: Software developers, applications and systems software occupations: 16 years and over: Men (LEU0254584000A)
Employed full time: Wage and salary workers: Software developers, applications and systems software occupations: 16 years and over: Women (LEU0254690800A)
index <-fredr_series_observations(series_id = "LEU0254584000A",
observation_start = as.Date("2000-01-01"))
index2 <-fredr_series_observations(series_id = "LEU0254690800A",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(index$date)
colnames(indicator) <- "date"
indicator$male <- index$value
indicator$female <- index2$value
indicator %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" ) %>%
column_spec(3, T, color = "blue")
date
|
male
|
female
|
2000-01-01
|
528
|
179
|
2001-01-01
|
551
|
160
|
2002-01-01
|
523
|
151
|
2003-01-01
|
545
|
156
|
2004-01-01
|
572
|
184
|
2005-01-01
|
612
|
165
|
2006-01-01
|
623
|
176
|
2007-01-01
|
694
|
178
|
2008-01-01
|
759
|
196
|
2009-01-01
|
710
|
192
|
2010-01-01
|
773
|
200
|
2011-01-01
|
812
|
179
|
2012-01-01
|
808
|
197
|
2013-01-01
|
844
|
209
|
2014-01-01
|
917
|
224
|
2015-01-01
|
1054
|
232
|
2016-01-01
|
1084
|
266
|
2017-01-01
|
1174
|
265
|
2018-01-01
|
1283
|
327
|
2019-01-01
|
1379
|
335
|
data_long <- melt(indicator, id.vars=c("date"))
colnames(data_long) <- c("date","Gender","Value")
# plotting data
data_long %>% ggplot() +
geom_line(mapping = aes(x=date,y=Value,color=Gender),size=1) +
labs(title = "Software developers by gender",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
x="Yearly", y="Thousands of Persons",
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego")+
theme_economist()

highchart() %>%
hc_chart(type = "column") %>%
hc_xAxis(categories = indicator$date) %>%
hc_add_series(name="Male _ Software Developers",data = indicator$male) %>%
hc_add_series(name="Female _ Software Developers",data = indicator$female) %>%
hc_subtitle(text=str_glue("From {min(indicator$date)} through {max(indicator$date)}"), align = "center") %>%
hc_title(text = "Software developers by gender",
style = list(fontWeight = "bold", fontSize = "20px"),
align = "center") %>%
hc_credits(enabled = TRUE,text = "Data Source: FRED Federal Reserve _ Illustration by @JoeLongSanDiego") %>%
hc_yAxis(title = list(text = "Thousands of Persons")) %>%
hc_add_theme(hc_theme_economist())
Employed full time: Wage and salary workers: Registered nurses occupations: Women (LEU0254701500A)
Employed full time: Wage and salary workers: Registered nurses occupations: Men (LEU0254594700A)
index <-fredr_series_observations(series_id = "LEU0254594700A",
observation_start = as.Date("2000-01-01"))
index2 <-fredr_series_observations(series_id = "LEU0254701500A",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(index$date)
colnames(indicator) <- "date"
indicator$male <- index$value
indicator$female <- index2$value
indicator %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" ) %>%
column_spec(3, T, color = "blue")
date
|
male
|
female
|
2000-01-01
|
143
|
1449
|
2001-01-01
|
148
|
1511
|
2002-01-01
|
140
|
1595
|
2003-01-01
|
179
|
1650
|
2004-01-01
|
148
|
1651
|
2005-01-01
|
151
|
1654
|
2006-01-01
|
185
|
1713
|
2007-01-01
|
192
|
1773
|
2008-01-01
|
210
|
1904
|
2009-01-01
|
197
|
1931
|
2010-01-01
|
207
|
1970
|
2011-01-01
|
208
|
1937
|
2012-01-01
|
230
|
1946
|
2013-01-01
|
254
|
2023
|
2014-01-01
|
245
|
2064
|
2015-01-01
|
278
|
2104
|
2016-01-01
|
285
|
2213
|
2017-01-01
|
283
|
2253
|
2018-01-01
|
315
|
2270
|
2019-01-01
|
320
|
2321
|
data_long <- melt(indicator, id.vars=c("date"))
colnames(data_long) <- c("date","Gender","Value")
# plotting data
data_long %>% ggplot() +
geom_line(mapping = aes(x=date,y=Value,color=Gender),size=1) +
labs(title = "Registered nurses occupations by gender",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
x="Yearly", y="Thousands of Persons",
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego")+
theme_economist()

highchart() %>%
hc_chart(type = "column") %>%
hc_xAxis(categories = indicator$date) %>%
hc_add_series(name="Male _ Registered nurses",data = indicator$male) %>%
hc_add_series(name="Female _ Registered nurses",data = indicator$female) %>%
hc_subtitle(text=str_glue("From {min(indicator$date)} through {max(indicator$date)}"), align = "center") %>%
hc_title(text = "Registered nurses occupations by gender",
style = list(fontWeight = "bold", fontSize = "20px"),
align = "center") %>%
hc_credits(enabled = TRUE,text = "Data Source: FRED Federal Reserve _ Illustration by @JoeLongSanDiego") %>%
hc_yAxis(title = list(text = "Thousands of Persons")) %>%
hc_add_theme(hc_theme_economist())
#—————————————————————
Employed full time: Wage and salary workers: Physicians and surgeons occupations: 16 years and over: Women (LEU0254701200A)
Employed full time: Wage and salary workers: Physicians and surgeons occupations: 16 years and over: Men (LEU0254594400A)
index <-fredr_series_observations(series_id = "LEU0254594400A",
observation_start = as.Date("2000-01-01"))
index2 <-fredr_series_observations(series_id = "LEU0254701200A",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(index$date)
colnames(indicator) <- "date"
indicator$male <- index$value
indicator$female <- index2$value
indicator %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" ) %>%
column_spec(3, T, color = "blue")
date
|
male
|
female
|
2000-01-01
|
327
|
144
|
2001-01-01
|
345
|
167
|
2002-01-01
|
369
|
162
|
2003-01-01
|
364
|
167
|
2004-01-01
|
382
|
173
|
2005-01-01
|
375
|
187
|
2006-01-01
|
370
|
188
|
2007-01-01
|
413
|
197
|
2008-01-01
|
405
|
189
|
2009-01-01
|
404
|
211
|
2010-01-01
|
416
|
189
|
2011-01-01
|
366
|
206
|
2012-01-01
|
429
|
226
|
2013-01-01
|
426
|
241
|
2014-01-01
|
475
|
284
|
2015-01-01
|
457
|
283
|
2016-01-01
|
497
|
308
|
2017-01-01
|
463
|
352
|
2018-01-01
|
475
|
352
|
2019-01-01
|
507
|
349
|
data_long <- melt(indicator, id.vars=c("date"))
colnames(data_long) <- c("date","Gender","Value")
# plotting data
data_long %>% ggplot() +
geom_line(mapping = aes(x=date,y=Value,color=Gender),size=1) +
labs(title = "Physicians and surgeons by gender",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
x="Yearly", y="Thousands of Persons",
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego")+
theme_economist()

highchart() %>%
hc_chart(type = "column") %>%
hc_xAxis(categories = indicator$date) %>%
hc_add_series(name="Male _ Physicians and surgeons",data = indicator$male) %>%
hc_add_series(name="Female _ Physicians and surgeons",data = indicator$female) %>%
hc_subtitle(text=str_glue("From {min(indicator$date)} through {max(indicator$date)}"), align = "center") %>%
hc_title(text = "Physicians and surgeons by gender",
style = list(fontWeight = "bold", fontSize = "20px"),
align = "center") %>%
hc_credits(enabled = TRUE,text = "Data Source: FRED Federal Reserve _ Illustration by @JoeLongSanDiego") %>%
hc_yAxis(title = list(text = "Thousands of Persons")) %>%
hc_add_theme(hc_theme_economist())
### Employed full time: Wage and salary workers: Secondary school teachers occupations: Men (LEU0254591000A) ### Employed full time: Wage and salary workers: Secondary school teachers occupations: Women (LEU0254697800A)
index <-fredr_series_observations(series_id = "LEU0254591000A",
observation_start = as.Date("2000-01-01"))
index2 <-fredr_series_observations(series_id = "LEU0254697800A",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(index$date)
colnames(indicator) <- "date"
indicator$male <- index$value
indicator$female <- index2$value
indicator %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" ) %>%
column_spec(3, T, color = "blue")
date
|
male
|
female
|
2000-01-01
|
417
|
595
|
2001-01-01
|
418
|
547
|
2002-01-01
|
403
|
512
|
2003-01-01
|
469
|
540
|
2004-01-01
|
458
|
555
|
2005-01-01
|
460
|
577
|
2006-01-01
|
453
|
535
|
2007-01-01
|
471
|
558
|
2008-01-01
|
490
|
596
|
2009-01-01
|
503
|
603
|
2010-01-01
|
504
|
612
|
2011-01-01
|
431
|
575
|
2012-01-01
|
465
|
578
|
2013-01-01
|
427
|
529
|
2014-01-01
|
432
|
549
|
2015-01-01
|
438
|
610
|
2016-01-01
|
403
|
562
|
2017-01-01
|
392
|
524
|
2018-01-01
|
392
|
556
|
2019-01-01
|
408
|
474
|
data_long <- melt(indicator, id.vars=c("date"))
colnames(data_long) <- c("date","Gender","Value")
# plotting data
data_long %>% ggplot() +
geom_line(mapping = aes(x=date,y=Value,color=Gender),size=1) +
labs(title = " Secondary school teachers by gender",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
x="Yearly", y="Thousands of Persons",
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego")+
theme_economist()

highchart() %>%
hc_chart(type = "column") %>%
hc_xAxis(categories = indicator$date) %>%
hc_add_series(name="Male _ Secondary school teachers",data = indicator$male) %>%
hc_add_series(name="Female _ Secondary school teachers",data = indicator$female) %>%
hc_subtitle(text=str_glue("From {min(indicator$date)} through {max(indicator$date)}"), align = "center") %>%
hc_title(text = " Secondary school teachers by gender",
style = list(fontWeight = "bold", fontSize = "20px"),
align = "center") %>%
hc_credits(enabled = TRUE,text = "Data Source: FRED Federal Reserve _ Illustration by @JoeLongSanDiego") %>%
hc_yAxis(title = list(text = "Thousands of Persons")) %>%
hc_add_theme(hc_theme_economist())
Employed full time: Wage and salary workers: Mathematicians occupations: 16 years and over (LEU0254477800A) Employed full time: Wage and salary workers: Statisticians occupations: 16 years and over (LEU0254478000A)
#——————————
index <-fredr_series_observations(series_id = "LEU0254477800A",
observation_start = as.Date("2000-01-01"))
index2 <-fredr_series_observations(series_id = "LEU0254478000A",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(index$date)
colnames(indicator) <- "date"
indicator$mathematician <- index$value
indicator$statistician <- index2$value
indicator %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" ) %>%
column_spec(3, T, color = "blue")
date
|
mathematician
|
statistician
|
2000-01-01
|
6
|
22
|
2001-01-01
|
7
|
20
|
2002-01-01
|
2
|
24
|
2003-01-01
|
3
|
15
|
2004-01-01
|
2
|
26
|
2005-01-01
|
2
|
30
|
2006-01-01
|
4
|
22
|
2007-01-01
|
3
|
31
|
2008-01-01
|
2
|
33
|
2009-01-01
|
3
|
33
|
2010-01-01
|
5
|
31
|
2011-01-01
|
2
|
30
|
2012-01-01
|
4
|
44
|
2013-01-01
|
2
|
65
|
2014-01-01
|
2
|
78
|
2015-01-01
|
6
|
76
|
2016-01-01
|
4
|
65
|
2017-01-01
|
2
|
77
|
2018-01-01
|
3
|
85
|
2019-01-01
|
2
|
90
|
data_long <- melt(indicator, id.vars=c("date"))
colnames(data_long) <- c("date","Index","Value")
# plotting data
data_long %>% ggplot() +
geom_line(mapping = aes(x=date,y=Value,color=Index),size=1) +
labs(title = "Employment levels for mathematicians and statisticians",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
x="Yearly", y="Thousands of Persons",
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego")+
theme_economist()

highchart() %>%
hc_chart(type = "column") %>%
hc_xAxis(categories = indicator$date) %>%
hc_add_series(name="Mathematicians",data = indicator$mathematician) %>%
hc_add_series(name="Statisticians",data = indicator$statistician) %>%
hc_subtitle(text=str_glue("From {min(indicator$date)} through {max(indicator$date)}"), align = "center") %>%
hc_title(text = "Employment levels for mathematicians and statisticians",
style = list(fontWeight = "bold", fontSize = "20px"),
align = "center") %>%
hc_credits(enabled = TRUE,text = "Data Source: FRED Federal Reserve _ Illustration by @JoeLongSanDiego") %>%
hc_yAxis(title = list(text = "Thousands of Persons")) %>%
hc_add_theme(hc_theme_economist())