## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ roaming_entropy + time_of_day + precipi + mean_temp +  
##     distance + dow + (1 | subject)
##    Data: df[which(df$lockdown == 0), ]
## 
## REML criterion at convergence: 41650.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9243 -0.5331  0.0465  0.6093  3.4187 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 111.7    10.57   
##  Residual             294.4    17.16   
## Number of obs: 4826, groups:  subject, 251
## 
## Fixed effects:
##                    Estimate  Std. Error          df t value
## (Intercept)       63.557370    2.613406 4670.431042  24.320
## roaming_entropy    0.622125    0.303622 4743.966238   2.049
## time_of_day        0.040150    0.014628 4621.874974   2.745
## precipi            1.933098    1.770036 4610.655066   1.092
## mean_temp         -0.147603    0.031175 4692.538551  -4.735
## distance           0.002097    0.000716 4624.696719   2.930
## dowMonday         -3.517568    1.027297 4588.652966  -3.424
## dowSaturday        5.211242    1.044068 4590.837985   4.991
## dowSunday         -1.102697    1.029303 4595.748201  -1.071
## dowThursday       -3.505592    0.972934 4582.232944  -3.603
## dowTuesday        -7.917715    0.931007 4589.355944  -8.504
## dowWednesday      -4.325523    0.973888 4580.325197  -4.441
##                             Pr(>|t|)    
## (Intercept)     < 0.0000000000000002 ***
## roaming_entropy             0.040516 *  
## time_of_day                 0.006081 ** 
## precipi                     0.274836    
## mean_temp                0.000002259 ***
## distance                    0.003411 ** 
## dowMonday                   0.000622 ***
## dowSaturday              0.000000622 ***
## dowSunday                   0.284089    
## dowThursday                 0.000318 ***
## dowTuesday      < 0.0000000000000002 ***
## dowWednesday             0.000009144 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) rmng_n tm_f_d precip mn_tmp distnc dwMndy dwStrd dwSndy
## romng_ntrpy -0.241                                                        
## time_of_day -0.166  0.019                                                 
## precipi     -0.079  0.040  0.022                                          
## mean_temp   -0.855 -0.070 -0.008 -0.054                                   
## distance    -0.030 -0.224  0.005 -0.014  0.088                            
## dowMonday   -0.463  0.049  0.031  0.201  0.272  0.026                     
## dowSaturday -0.170  0.119 -0.004  0.157 -0.068 -0.047  0.475              
## dowSunday   -0.408  0.208 -0.006  0.163  0.170 -0.086  0.553  0.491       
## dowThursday -0.261  0.041 -0.002  0.218  0.038  0.003  0.546  0.515  0.536
## dowTuesday  -0.413  0.026 -0.011  0.093  0.223  0.022  0.593  0.506  0.569
## dowWednesdy -0.278  0.039  0.002  0.223  0.057  0.003  0.550  0.512  0.538
##             dwThrs dwTsdy
## romng_ntrpy              
## time_of_day              
## precipi                  
## mean_temp                
## distance                 
## dowMonday                
## dowSaturday              
## dowSunday                
## dowThursday              
## dowTuesday   0.570       
## dowWednesdy  0.563  0.571
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ novel_locations + time_of_day + precipi + mean_temp +  
##     distance + dow + (1 | subject)
##    Data: df[which(df$lockdown == 0), ]
## 
## REML criterion at convergence: 39616.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8798 -0.5304  0.0507  0.6156  3.4694 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 108.5    10.42   
##  Residual             291.4    17.07   
## Number of obs: 4594, groups:  subject, 249
## 
## Fixed effects:
##                     Estimate   Std. Error           df t value
## (Intercept)       61.8175174    2.6014142 4454.4355737  23.763
## novel_locations    0.0286850    0.0047144 4481.7217276   6.085
## time_of_day        0.0479237    0.0149239 4394.4844406   3.211
## precipi            1.8103321    1.7820815 4384.6142583   1.016
## mean_temp         -0.1283149    0.0313610 4469.8918309  -4.092
## distance           0.0007938    0.0007410 4409.0524697   1.071
## dowMonday         -2.5607596    1.0732482 4361.4498928  -2.386
## dowSaturday        4.7744618    1.0597375 4357.3001669   4.505
## dowSunday         -0.9926783    1.0383992 4360.0896535  -0.956
## dowThursday       -3.2934031    1.0056530 4354.7604672  -3.275
## dowTuesday        -7.2862356    0.9655927 4365.9010052  -7.546
## dowWednesday      -3.7903010    1.0211630 4353.4114705  -3.712
##                             Pr(>|t|)    
## (Intercept)     < 0.0000000000000002 ***
## novel_locations   0.0000000012655839 ***
## time_of_day                 0.001331 ** 
## precipi                     0.309756    
## mean_temp         0.0000436050894111 ***
## distance                    0.284140    
## dowMonday                   0.017076 *  
## dowSaturday       0.0000068006792172 ***
## dowSunday                   0.339141    
## dowThursday                 0.001065 ** 
## dowTuesday        0.0000000000000544 ***
## dowWednesday                0.000208 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) nvl_lc tm_f_d precip mn_tmp distnc dwMndy dwStrd dwSndy
## novel_lctns -0.199                                                        
## time_of_day -0.167  0.003                                                 
## precipi     -0.081  0.023  0.021                                          
## mean_temp   -0.893  0.089 -0.003 -0.054                                   
## distance    -0.014 -0.340  0.008 -0.011  0.039                            
## dowMonday   -0.474  0.110  0.036  0.211  0.270 -0.004                     
## dowSaturday -0.150 -0.018 -0.008  0.173 -0.067 -0.012  0.483              
## dowSunday   -0.392  0.100 -0.013  0.181  0.186 -0.071  0.570  0.500       
## dowThursday -0.272  0.079 -0.004  0.235  0.036 -0.015  0.559  0.533  0.562
## dowTuesday  -0.435  0.136 -0.009  0.115  0.219 -0.019  0.606  0.522  0.600
## dowWednesdy -0.293  0.080 -0.001  0.233  0.063 -0.019  0.556  0.522  0.558
##             dwThrs dwTsdy
## novel_lctns              
## time_of_day              
## precipi                  
## mean_temp                
## distance                 
## dowMonday                
## dowSaturday              
## dowSunday                
## dowThursday              
## dowTuesday   0.591       
## dowWednesdy  0.575  0.584
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: roaming_entropy ~ lockdown + time_of_day + precipi + mean_temp +  
##     distance + dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 18641.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.8348 -0.6179  0.0793  0.6454  5.1186 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 0.08582  0.2929  
##  Residual             0.60872  0.7802  
## Number of obs: 7753, groups:  subject, 253
## 
## Fixed effects:
##                   Estimate    Std. Error            df t value
## (Intercept)     2.21786652    0.07546790 5399.99653015  29.388
## lockdown       -1.37954466    0.02011854 7711.86125867 -68.571
## time_of_day    -0.00087166    0.00052184 7582.93613988  -1.670
## precipi        -0.03893910    0.04380624 7553.54393056  -0.889
## mean_temp       0.00355873    0.00091914 6969.35694737   3.872
## distance        0.00054505    0.00003115 7590.00753956  17.500
## dowMonday      -0.14759023    0.03433725 7551.59721678  -4.298
## dowSaturday    -0.11893190    0.03550144 7529.99681236  -3.350
## dowSunday      -0.45553383    0.03530311 7532.20017698 -12.904
## dowThursday    -0.05585909    0.03386655 7524.40620754  -1.649
## dowTuesday     -0.05041249    0.03356106 7535.92899443  -1.502
## dowWednesday   -0.08757940    0.03425624 7520.25490578  -2.557
##                          Pr(>|t|)    
## (Intercept)  < 0.0000000000000002 ***
## lockdown     < 0.0000000000000002 ***
## time_of_day              0.094891 .  
## precipi                  0.374088    
## mean_temp                0.000109 ***
## distance     < 0.0000000000000002 ***
## dowMonday               0.0000174 ***
## dowSaturday              0.000812 ***
## dowSunday    < 0.0000000000000002 ***
## dowThursday              0.099110 .  
## dowTuesday               0.133110    
## dowWednesday             0.010590 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) lckdwn tm_f_d precip mn_tmp distnc dwMndy dwStrd dwSndy
## lockdown    -0.295                                                        
## time_of_day -0.210  0.006                                                 
## precipi     -0.018 -0.200  0.021                                          
## mean_temp   -0.879  0.249  0.004 -0.049                                   
## distance    -0.067  0.112  0.009  0.000  0.039                            
## dowMonday   -0.385  0.001  0.035  0.053  0.153  0.019                     
## dowSaturday -0.227 -0.036 -0.001 -0.042  0.001 -0.017  0.513              
## dowSunday   -0.315  0.019 -0.010  0.016  0.093 -0.041  0.531  0.500       
## dowThursday -0.265 -0.029 -0.003  0.100  0.018  0.008  0.548  0.518  0.527
## dowTuesday  -0.351  0.079 -0.004 -0.032  0.116  0.016  0.558  0.525  0.538
## dowWednesdy -0.270  0.006  0.002  0.046  0.028  0.008  0.539  0.512  0.520
##             dwThrs dwTsdy
## lockdown                 
## time_of_day              
## precipi                  
## mean_temp                
## distance                 
## dowMonday                
## dowSaturday              
## dowSunday                
## dowThursday              
## dowTuesday   0.550       
## dowWednesdy  0.544  0.545
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: novel_locations ~ lockdown + time_of_day + precipi + mean_temp +  
##     distance + dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 79500.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -8.6285 -0.5126 -0.1831  0.2609 13.2830 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  198.8   14.10   
##  Residual             2198.6   46.89   
## Number of obs: 7519, groups:  subject, 249
## 
## Fixed effects:
##                 Estimate  Std. Error          df t value             Pr(>|t|)
## (Intercept)    78.611456    4.459834 4847.185721  17.627 < 0.0000000000000002
## lockdown      -34.021748    1.215104 7505.242271 -27.999 < 0.0000000000000002
## time_of_day    -0.003031    0.031810 7374.672773  -0.095             0.924096
## precipi        -2.180774    2.637353 7343.532036  -0.827             0.408332
## mean_temp      -0.270487    0.054684 5645.313114  -4.946 0.000000778062306382
## distance        0.056120    0.001876 7391.240283  29.921 < 0.0000000000000002
## dowMonday     -13.781707    2.115396 7332.440214  -6.515 0.000000000077521404
## dowSaturday     7.183744    2.164039 7304.876243   3.320             0.000906
## dowSunday     -12.051352    2.157280 7310.531725  -5.586 0.000000024020657398
## dowThursday    -8.204777    2.075927 7300.711055  -3.952 0.000078119820402815
## dowTuesday    -16.635046    2.055771 7313.381439  -8.092 0.000000000000000683
## dowWednesday   -9.916710    2.120360 7295.825704  -4.677 0.000002964852330136
##                 
## (Intercept)  ***
## lockdown     ***
## time_of_day     
## precipi         
## mean_temp    ***
## distance     ***
## dowMonday    ***
## dowSaturday  ***
## dowSunday    ***
## dowThursday  ***
## dowTuesday   ***
## dowWednesday ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) lckdwn tm_f_d precip mn_tmp distnc dwMndy dwStrd dwSndy
## lockdown    -0.300                                                        
## time_of_day -0.215  0.004                                                 
## precipi     -0.021 -0.195  0.021                                          
## mean_temp   -0.882  0.246  0.004 -0.050                                   
## distance    -0.069  0.115  0.008  0.001  0.040                            
## dowMonday   -0.388 -0.001  0.038  0.055  0.141  0.017                     
## dowSaturday -0.239 -0.028 -0.002 -0.037 -0.004 -0.017  0.521              
## dowSunday   -0.324  0.024 -0.013  0.021  0.086 -0.040  0.537  0.512       
## dowThursday -0.273 -0.023 -0.005  0.103  0.011  0.008  0.554  0.530  0.538
## dowTuesday  -0.358  0.083 -0.003 -0.027  0.105  0.016  0.562  0.537  0.548
## dowWednesdy -0.279  0.005  0.000  0.047  0.025  0.006  0.540  0.519  0.526
##             dwThrs dwTsdy
## lockdown                 
## time_of_day              
## precipi                  
## mean_temp                
## distance                 
## dowMonday                
## dowSaturday              
## dowSunday                
## dowThursday              
## dowTuesday   0.560       
## dowWednesdy  0.549  0.550
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ lockdown + time_of_day + precipi + mean_temp + distance +  
##     dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 66812.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7505 -0.5570  0.0514  0.6011  4.0606 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 123.1    11.09   
##  Residual             297.9    17.26   
## Number of obs: 7753, groups:  subject, 253
## 
## Fixed effects:
##                  Estimate   Std. Error           df t value
## (Intercept)    55.2533166    1.7993688 4202.6423583  30.707
## lockdown       -6.1871107    0.4480669 7610.6826562 -13.808
## time_of_day     0.0241138    0.0115688 7531.1857722   2.084
## precipi        -1.8720810    0.9704045 7515.1716223  -1.929
## mean_temp      -0.0130543    0.0209011 7736.6886756  -0.625
## distance        0.0027902    0.0006905 7531.5766827   4.041
## dowMonday      -2.5388763    0.7606206 7514.6427501  -3.338
## dowSaturday     3.5035114    0.7860270 7505.2806861   4.457
## dowSunday       0.2051902    0.7817024 7508.4750933   0.262
## dowThursday    -2.6067522    0.7497389 7503.2754527  -3.477
## dowTuesday     -4.6947823    0.7431834 7509.5074100  -6.317
## dowWednesday   -2.7102946    0.7582951 7501.2961739  -3.574
##                          Pr(>|t|)    
## (Intercept)  < 0.0000000000000002 ***
## lockdown     < 0.0000000000000002 ***
## time_of_day              0.037159 *  
## precipi                  0.053747 .  
## mean_temp                0.532269    
## distance           0.000053846533 ***
## dowMonday                0.000848 ***
## dowSaturday        0.000008422748 ***
## dowSunday                0.792950    
## dowThursday              0.000510 ***
## dowTuesday         0.000000000282 ***
## dowWednesday             0.000354 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) lckdwn tm_f_d precip mn_tmp distnc dwMndy dwStrd dwSndy
## lockdown    -0.280                                                        
## time_of_day -0.196  0.007                                                 
## precipi     -0.015 -0.200  0.020                                          
## mean_temp   -0.839  0.251  0.005 -0.049                                   
## distance    -0.061  0.112  0.009  0.000  0.037                            
## dowMonday   -0.364  0.003  0.035  0.053  0.157  0.019                     
## dowSaturday -0.210 -0.037 -0.002 -0.043  0.000 -0.017  0.512              
## dowSunday   -0.297  0.019 -0.010  0.015  0.096 -0.041  0.531  0.500       
## dowThursday -0.246 -0.029 -0.004  0.099  0.018  0.008  0.548  0.518  0.527
## dowTuesday  -0.331  0.079 -0.004 -0.033  0.119  0.016  0.558  0.525  0.538
## dowWednesdy -0.252  0.006  0.002  0.046  0.028  0.008  0.538  0.512  0.520
##             dwThrs dwTsdy
## lockdown                 
## time_of_day              
## precipi                  
## mean_temp                
## distance                 
## dowMonday                
## dowSaturday              
## dowSunday                
## dowThursday              
## dowTuesday   0.550       
## dowWednesdy  0.544  0.545
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: NA_avg ~ lockdown + time_of_day + precipi + mean_temp + distance +  
##     dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 67166.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5853 -0.6257 -0.0664  0.5594  4.4828 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 208.3    14.43   
##  Residual             307.3    17.53   
## Number of obs: 7753, groups:  subject, 253
## 
## Fixed effects:
##                  Estimate   Std. Error           df t value
## (Intercept)    40.3598640    1.9227581 2973.7340300  20.991
## lockdown        3.8025421    0.4558335 7570.7580217   8.342
## time_of_day    -0.0238897    0.0117555 7515.1508516  -2.032
## precipi         1.9196759    0.9858470 7503.6677665   1.947
## mean_temp       0.0119724    0.0213693 7719.1565000   0.560
## distance       -0.0022198    0.0007017 7514.2214403  -3.163
## dowMonday       1.2524059    0.7727188 7503.1967918   1.621
## dowSaturday    -3.1316546    0.7984350 7497.1913075  -3.922
## dowSunday      -0.8155057    0.7940847 7500.8703770  -1.027
## dowThursday     1.9764571    0.7615585 7496.4907083   2.595
## dowTuesday      3.7478867    0.7549628 7501.1071802   4.964
## dowWednesday    2.0234321    0.7702299 7495.1191918   2.627
##                          Pr(>|t|)    
## (Intercept)  < 0.0000000000000002 ***
## lockdown     < 0.0000000000000002 ***
## time_of_day               0.04217 *  
## precipi                   0.05154 .  
## mean_temp                 0.57532    
## distance                  0.00157 ** 
## dowMonday                 0.10511    
## dowSaturday           0.000088512 ***
## dowSunday                 0.30447    
## dowThursday               0.00947 ** 
## dowTuesday            0.000000705 ***
## dowWednesday              0.00863 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) lckdwn tm_f_d precip mn_tmp distnc dwMndy dwStrd dwSndy
## lockdown    -0.267                                                        
## time_of_day -0.186  0.007                                                 
## precipi     -0.014 -0.200  0.020                                          
## mean_temp   -0.803  0.251  0.005 -0.049                                   
## distance    -0.058  0.112  0.009  0.000  0.037                            
## dowMonday   -0.347  0.003  0.036  0.053  0.158  0.019                     
## dowSaturday -0.200 -0.037 -0.002 -0.043  0.000 -0.018  0.512              
## dowSunday   -0.283  0.019 -0.010  0.015  0.096 -0.041  0.531  0.500       
## dowThursday -0.234 -0.029 -0.004  0.099  0.018  0.008  0.548  0.519  0.527
## dowTuesday  -0.316  0.079 -0.004 -0.033  0.119  0.016  0.558  0.525  0.538
## dowWednesdy -0.240  0.006  0.002  0.046  0.028  0.008  0.538  0.512  0.520
##             dwThrs dwTsdy
## lockdown                 
## time_of_day              
## precipi                  
## mean_temp                
## distance                 
## dowMonday                
## dowSaturday              
## dowSunday                
## dowThursday              
## dowTuesday   0.550       
## dowWednesdy  0.544  0.545
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ roaming_entropy * lockdown + time_of_day + precipi +  
##     mean_temp + distance + dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 66802.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7583 -0.5562  0.0505  0.6093  4.0440 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 122.9    11.09   
##  Residual             297.6    17.25   
## Number of obs: 7753, groups:  subject, 253
## 
## Fixed effects:
##                             Estimate  Std. Error          df t value
## (Intercept)                54.483369    1.899466 4733.185663  28.684
## roaming_entropy             0.293447    0.292981 7619.289419   1.002
## lockdown                   -6.831692    0.895424 7580.356521  -7.630
## time_of_day                 0.024595    0.011565 7529.445607   2.127
## precipi                    -1.839107    0.969954 7513.400047  -1.896
## mean_temp                  -0.012451    0.020965 7733.803832  -0.594
## distance                    0.002582    0.000706 7531.671010   3.657
## dowMonday                  -2.440498    0.761113 7512.047215  -3.206
## dowSaturday                 3.417232    0.789697 7504.457338   4.327
## dowSunday                   0.358199    0.791788 7508.655234   0.452
## dowThursday                -2.609492    0.749655 7501.237973  -3.481
## dowTuesday                 -4.668881    0.742889 7507.337599  -6.285
## dowWednesday               -2.655735    0.758212 7499.387445  -3.503
## roaming_entropy:lockdown    1.158606    0.542039 7586.998947   2.137
##                                      Pr(>|t|)    
## (Intercept)              < 0.0000000000000002 ***
## roaming_entropy                      0.316573    
## lockdown                   0.0000000000000264 ***
## time_of_day                          0.033480 *  
## precipi                              0.057988 .  
## mean_temp                            0.552583    
## distance                             0.000257 ***
## dowMonday                            0.001349 ** 
## dowSaturday                0.0000152926307521 ***
## dowSunday                            0.650999    
## dowThursday                          0.000503 ***
## dowTuesday                 0.0000000003467098 ***
## dowWednesday                         0.000463 ***
## roaming_entropy:lockdown             0.032590 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ novel_locations * lockdown + time_of_day + precipi +  
##     mean_temp + distance + dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 64753.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8414 -0.5483  0.0553  0.6007  4.0800 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 121.2    11.01   
##  Residual             295.4    17.19   
## Number of obs: 7519, groups:  subject, 249
## 
## Fixed effects:
##                              Estimate   Std. Error           df t value
## (Intercept)                52.9672016    1.8447225 4278.7362131  28.713
## novel_locations             0.0302826    0.0046105 7363.3261734   6.568
## lockdown                   -5.0629320    0.5503620 7390.5125056  -9.199
## time_of_day                 0.0290147    0.0117003 7298.3556906   2.480
## precipi                    -1.9355484    0.9690284 7283.9255619  -1.997
## mean_temp                  -0.0061121    0.0210864 7493.5500071  -0.290
## distance                    0.0009840    0.0007336 7311.8712455   1.341
## dowMonday                  -1.9176134    0.7792697 7282.6287622  -2.461
## dowSaturday                 3.3282634    0.7965258 7272.6261081   4.178
## dowSunday                   0.5668278    0.7936949 7276.5970184   0.714
## dowThursday                -2.4404664    0.7630201 7269.3322930  -3.198
## dowTuesday                 -4.2246989    0.7584080 7278.5027727  -5.570
## dowWednesday               -2.2226676    0.7791500 7268.4595329  -2.853
## novel_locations:lockdown   -0.0082004    0.0109194 7352.5164368  -0.751
##                                      Pr(>|t|)    
## (Intercept)              < 0.0000000000000002 ***
## novel_locations               0.0000000000544 ***
## lockdown                 < 0.0000000000000002 ***
## time_of_day                           0.01317 *  
## precipi                               0.04582 *  
## mean_temp                             0.77193    
## distance                              0.17983    
## dowMonday                             0.01389 *  
## dowSaturday                   0.0000296905151 ***
## dowSunday                             0.47515    
## dowThursday                           0.00139 ** 
## dowTuesday                    0.0000000263104 ***
## dowWednesday                          0.00435 ** 
## novel_locations:lockdown              0.45268    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ roaming_entropy * pre_covid_re + time_of_day + precipi +  
##     mean_temp + distance + dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 72995.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7943 -0.5481  0.0489  0.5932  3.8334 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 119.5    10.93   
##  Residual             300.2    17.33   
## Number of obs: 8468, groups:  subject, 252
## 
## Fixed effects:
##                                  Estimate   Std. Error           df t value
## (Intercept)                    46.9038596    4.9202552  419.8494541   9.533
## roaming_entropy                 1.6395787    1.1888960 8452.1697381   1.379
## pre_covid_re                    0.0129182    1.9645302  338.0654407   0.007
## time_of_day                     0.0262979    0.0110921 8238.7030006   2.371
## precipi                        -2.7593189    0.9080948 8227.9736762  -3.039
## mean_temp                       0.0092203    0.0191255 8449.6944879   0.482
## distance                        0.0019008    0.0006646 8237.0819432   2.860
## dowMonday                      -2.2181717    0.7229884 8223.7042723  -3.068
## dowSaturday                     3.5015540    0.7490010 8212.0415578   4.675
## dowSunday                       1.4407572    0.7501042 8215.0639921   1.921
## dowThursday                    -2.7710379    0.7179295 8212.2193408  -3.860
## dowTuesday                     -4.0912996    0.7106837 8216.0169907  -5.757
## dowWednesday                   -1.9735186    0.7224857 8210.0249769  -2.732
## roaming_entropy:pre_covid_re    0.2929299    0.4917214 8451.7495289   0.596
##                                          Pr(>|t|)    
## (Intercept)                  < 0.0000000000000002 ***
## roaming_entropy                          0.167908    
## pre_covid_re                             0.994757    
## time_of_day                              0.017770 *  
## precipi                                  0.002384 ** 
## mean_temp                                0.629752    
## distance                                 0.004246 ** 
## dowMonday                                0.002162 ** 
## dowSaturday                         0.00000298691 ***
## dowSunday                                0.054799 .  
## dowThursday                              0.000114 ***
## dowTuesday                          0.00000000888 ***
## dowWednesday                             0.006317 ** 
## roaming_entropy:pre_covid_re             0.551376    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ novel_locations * pre_covid_re + time_of_day + precipi +  
##     mean_temp + distance + dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 70969.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0141 -0.5497  0.0532  0.5923  3.8027 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 116.7    10.80   
##  Residual             299.7    17.31   
## Number of obs: 8232, groups:  subject, 250
## 
## Fixed effects:
##                                  Estimate   Std. Error           df t value
## (Intercept)                    41.3203621    4.8276830  321.6584502   8.559
## novel_locations                 0.0835881    0.0269578 8151.7253918   3.101
## pre_covid_re                    1.9642816    1.9223534  257.6763999   1.022
## time_of_day                     0.0293139    0.0112430 8005.4576006   2.607
## precipi                        -3.4484216    0.9053191 7997.8322567  -3.809
## mean_temp                       0.0555501    0.0189812 8208.4845074   2.927
## distance                        0.0008124    0.0006920 8010.3179949   1.174
## dowMonday                      -1.7420563    0.7411553 7992.0099471  -2.350
## dowSaturday                     2.9094195    0.7586113 7977.8367791   3.835
## dowSunday                       1.1280905    0.7593241 7981.5836300   1.486
## dowThursday                    -2.6464478    0.7313762 7978.0103443  -3.618
## dowTuesday                     -3.1715720    0.7240793 7981.6891586  -4.380
## dowWednesday                   -1.5062050    0.7427685 7977.4968381  -2.028
## novel_locations:pre_covid_re   -0.0150575    0.0108297 8151.2860600  -1.390
##                                          Pr(>|t|)    
## (Intercept)                  0.000000000000000475 ***
## novel_locations                          0.001937 ** 
## pre_covid_re                             0.307829    
## time_of_day                              0.009143 ** 
## precipi                                  0.000141 ***
## mean_temp                                0.003436 ** 
## distance                                 0.240442    
## dowMonday                                0.018774 *  
## dowSaturday                              0.000126 ***
## dowSunday                                0.137411    
## dowThursday                              0.000298 ***
## dowTuesday                   0.000012011526524385 ***
## dowWednesday                             0.042611 *  
## novel_locations:pre_covid_re             0.164451    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling