Input data
The initial data represent the characteristics of the components of the concrete mixture. Such as: component density, cement grade, etc.
dt_x <- read.table("input.txt", header = F)Let's look at the data
head(dt_x)## V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14
## 1 12.5 3 2.90 1250 2.60 1550 1 10 0.6 2.55 1350 6 1.43 300
## 2 15.0 6 2.95 1300 2.61 1560 2 20 0.6 2.56 1360 5 1.62 300
## 3 20.0 9 3.00 1350 2.62 1570 3 40 0.6 2.57 1370 4 1.62 400
## 4 22.5 2 3.05 1250 2.63 1580 4 10 0.6 2.58 1380 3 1.40 400
## 5 25.0 5 3.10 1300 2.64 1590 5 20 0.6 2.59 1390 2 1.76 400
## 6 30.0 8 3.15 1350 2.65 1600 6 40 0.6 2.60 1400 1 1.69 500
Output data
The output data are the characteristics of ready-mixed concrete: its strength, density and consumption of components.
dt_y <- read.table("output.txt", header = F)Let's look at the data
head(dt_y)## V1 V2 V3 V4 V5 V6
## 1 191.3 15.30 273.6 1121.30 635.90 2222.10
## 2 191.3 18.30 309.9 1054.30 683.00 2238.50
## 3 176.3 24.40 285.6 1054.30 711.70 2227.90
## 4 191.3 27.50 267.8 1141.20 653.80 2254.10
## 5 181.3 27.50 319.1 1146.60 641.70 2288.70
## 6 200.0 35.63 338.0 1234.57 577.44 2350.01
Create dataset
input_vars <- data.frame(dt_x)
output_vars <- data.frame(dt_y)Load Library
library(scales)
library(reshape)
library(Rcpp)
library(RSNNS)
library(devtools)Import the function from Github
source_url('https://gist.githubusercontent.com/fawda123/7471137/raw/466c1474d0a505ff044412703516c34f1a4684a5/nnet_plot_update.r')Plot ANN
plot.nnet(mod)Acknowledgments
Huge thanks to the author of the function "nnet_plot_update.r"