\[\theta\]
\[\hat{\theta}(S)\]
\[\left(\hat{\theta}_{l}(S);\hat{\theta}_{u}(S)\right)\]
\[P\left[\theta\in\left(\hat{\theta}_{l}(S);\hat{\theta}_{u}(S)\right)\right]=1-\alpha\]
\[P\left[\theta\notin\left(\hat{\theta}_{l}(S);\hat{\theta}_{u}(S)\right)\right]=\alpha\]
Es un estadístico o función de la muestra que sirve para estimar un parámetro en la población.
\[E_P\left[\hat{\theta}(S)\right]=\theta\]
\[V_P\left[\hat{\theta}(S)\right]{\leq}V_P\left[\hat{\theta}_{*}(S)\right]\]
\[E_P\left[\hat{\theta}(S)\right]\stackrel{n{\rightarrow}\infty}{\implies}\theta\] \[V_P\left[\hat{\theta}(S)\right]\stackrel{n{\rightarrow}\infty}{\implies}0\]
Todas las posibles muestras tienen la misma probabilidad \(P(\cdot)\) de ser seleccionadas
Consiste en una partición inicial del Universo \(U\) a fin de seleccionar la muestra al interior de cada partición
Consiste en seleccionar en la última etapa de muestreo todas las unidades halladas al interior de las unidades seleccionadas en la etapa de muestreo anterior
Corresponde a la unidad mínima de observación.
Valor obtenido para una muestra en partícular
\[{\mu}_{x}=\frac{\sum_{i=1}^{N}{x}_{i}}{N}\]
\[{\sigma}_{x}^{2}=\frac{\sum_{i=1}^{N}({x}_{i}-{\mu}_{x})^{2}}{N}\]
\[\bar{x}_{n}=\frac{\sum_{i=1}^{n}{x}_{i}}{n}\]
\[{s}_{x}^{2}=\frac{\sum_{i=1}^{2}({x}_{i}-\bar{x}_{2})^{2}}{n-1}\]
\[\bar{x}_{n}\pm{Z}_{1-\frac{\alpha}{2}}\frac{{\sigma}_{x}}{\sqrt{n}}\]
\[\bar{x}_{n}\pm{t}_{n-1,1-\frac{\alpha}{2}}\frac{{s}_{x}}{\sqrt{n}}\]
[1] 1.5
\[S=\left\{e_1,e_3\right\}\implies\bar{x}_{2}=\frac{1+3}{2}=2,0\]
[1] 2
\[S=\left\{e_1,e_4\right\}\implies\bar{x}_{2}=\frac{1+4}{2}=2,5\]
[1] 2.5
\[S=\left\{e_2,e_3\right\}\implies\bar{x}_{2}=\frac{2+3}{2}=2,5\]
[1] 2.5
\[S=\left\{e_2,e_4\right\}\implies\bar{x}_{2}=\frac{2+4}{2}=3,0\]
[1] 3
\[S=\left\{e_3,e_4\right\}\implies\bar{x}_{2}=\frac{3+4}{2}=3,5\]
[1] 3.5
[1] 0.5
\[S=\left\{e_1,e_3\right\}\implies{s}_{x}^{2}=\frac{(1-2.0)^2+(3-2.0)^2}{2-1}=2,0\]
[1] 2
\[S=\left\{e_1,e_4\right\}\implies{s}_{x}^{2}=\frac{(1-2.5)^2+(4-2.5)^2}{2-1}=4,5\]
[1] 4.5
\[S=\left\{e_2,e_3\right\}\implies{s}_{x}^{2}=\frac{(2-2.5)^2+(3-2.5)^2}{2-1}=0,5\]
[1] 0.5
\[S=\left\{e_2,e_4\right\}\implies{s}_{x}^{2}=\frac{(2-3.0)^2+(4-3.0)^2}{2-1}=2,0\]
[1] 2
\[S=\left\{e_3,e_4\right\}\implies{s}_{x}^{2}=\frac{(3-3.5)^2+(4-3.5)^2}{2-1}=0,5\]
[1] 0.5
[1] 0.7071068
\[S=\left\{e_1,e_3\right\}\implies{s}_{x}=\sqrt{\frac{(1-2.0)^2+(3-2.0)^2}{2-1}}=\sqrt{2}=1,41\]
[1] 1.414214
\[S=\left\{e_1,e_4\right\}\implies{s}_{x}=\sqrt{\frac{(1-2.5)^2+(4-2.5)^2}{2-1}}=\sqrt{4,5}=2,12\]
[1] 2.12132
\[S=\left\{e_2,e_3\right\}\implies{s}_{x}=\sqrt{\frac{(2-2.5)^2+(3-2.5)^2}{2-1}}=\sqrt{0,5}=0,71\]
[1] 0.7071068
\[S=\left\{e_2,e_4\right\}\implies{s}_{x}=\sqrt{\frac{(2-3.0)^2+(4-3.0)^2}{2-1}}=\sqrt{2}=1,41\]
[1] 1.414214
\[S=\left\{e_3,e_4\right\}\implies{s}_{x}=\sqrt{\frac{(3-3.5)^2+(4-3.5)^2}{2-1}}=\sqrt{0,5}=0,71\]
x<-c(1,2)
li<-mean(x)-qnorm(0.975)*sqrt(var(1:4)*(1/2))/sqrt(2)
ls<-mean(x)+qnorm(0.975)*sqrt(var(1:4)*(1/2))/sqrt(2)
cat("(",li,";",ls,")")
( 0.2348487 ; 2.765151 )
\[S=\left\{e_1,e_3\right\}\implies\bar{x}_{2}\pm{Z}_{1-\frac{0.05}{2}}\frac{\sigma_x}{\sqrt{2}}=2,0\pm1.96\frac{1,49}{\sqrt{2}}=\left(0,73;3,27\right)\]
x<-c(1,3)
li<-mean(x)-qnorm(0.975)*sqrt(var(1:4)*(1/2))/sqrt(2)
ls<-mean(x)+qnorm(0.975)*sqrt(var(1:4)*(1/2))/sqrt(2)
cat("(",li,";",ls,")")
( 0.7348487 ; 3.265151 )
\[S=\left\{e_1,e_4\right\}\implies\bar{x}_{2}\pm{Z}_{1-\frac{0.05}{2}}\frac{\sigma_x}{\sqrt{2}}=2,5\pm1.96\frac{1,49}{\sqrt{2}}=\left(1,23;3,77\right)\]
x<-c(1,4)
li<-mean(x)-qnorm(0.975)*sqrt(var(1:4)*(1/2))/sqrt(2)
ls<-mean(x)+qnorm(0.975)*sqrt(var(1:4)*(1/2))/sqrt(2)
cat("(",li,";",ls,")")
( 1.234849 ; 3.765151 )
\[S=\left\{e_2,e_3\right\}\implies\bar{x}_{2}\pm{Z}_{1-\frac{0.05}{2}}\frac{\sigma_x}{\sqrt{2}}=2,5\pm1.96\frac{1,49}{\sqrt{2}}=\left(1,23;3,77\right)\]
x<-c(2,3)
li<-mean(x)-qnorm(0.975)*sqrt(var(1:4)*(1/2))/sqrt(2)
ls<-mean(x)+qnorm(0.975)*sqrt(var(1:4)*(1/2))/sqrt(2)
cat("(",li,";",ls,")")
( 1.234849 ; 3.765151 )
\[S=\left\{e_2,e_4\right\}\implies\bar{x}_{2}\pm{Z}_{1-\frac{0.05}{2}}\frac{\sigma_x}{\sqrt{2}}=3,0\pm1.96\frac{1,49}{\sqrt{2}}=\left(1,73;4,27\right)\]
x<-c(2,4)
li<-mean(x)-qnorm(0.975)*sqrt(var(1:4)*(1/2))/sqrt(2)
ls<-mean(x)+qnorm(0.975)*sqrt(var(1:4)*(1/2))/sqrt(2)
cat("(",li,";",ls,")")
( 1.734849 ; 4.265151 )
\[S=\left\{e_3,e_4\right\}\implies\bar{x}_{2}\pm{Z}_{1-\frac{0.05}{2}}\frac{\sigma_x}{\sqrt{2}}=3,5\pm1.96\frac{1,49}{\sqrt{2}}=\left(2,23;4,77\right)\]
x<-c(1,2)
li<-mean(x)-qt(0.975,2-1)*sd(x)/sqrt(2)
ls<-mean(x)+qt(0.975,2-1)*sd(x)/sqrt(2)
cat("(",li,";",ls,")")
( -4.853102 ; 7.853102 )
\[S=\left\{e_1,e_3\right\}\implies\bar{x}_{2}\pm{t}_{2-1,1-\frac{0.05}{2}}\frac{s_x}{\sqrt{2}}=2,0\pm12,71\frac{1,41}{\sqrt{2}}=\left(-10,71;14,71\right)\]
x<-c(1,3)
li<-mean(x)-qt(0.975,2-1)*sd(x)/sqrt(2)
ls<-mean(x)+qt(0.975,2-1)*sd(x)/sqrt(2)
cat("(",li,";",ls,")")
( -10.7062 ; 14.7062 )
\[S=\left\{e_1,e_4\right\}\implies\bar{x}_{2}\pm{t}_{2-1,1-\frac{0.05}{2}}\frac{s_x}{\sqrt{2}}=2,5\pm12,71\frac{2,12}{\sqrt{2}}=\left(-16,56;21,56\right)\]
x<-c(1,4)
li<-mean(x)-qt(0.975,2-1)*sd(x)/sqrt(2)
ls<-mean(x)+qt(0.975,2-1)*sd(x)/sqrt(2)
cat("(",li,";",ls,")")
( -16.55931 ; 21.55931 )
\[S=\left\{e_2,e_3\right\}\implies\bar{x}_{2}\pm{t}_{2-1,1-\frac{0.05}{2}}\frac{s_x}{\sqrt{2}}=2,5\pm12,71\frac{0,71}{\sqrt{2}}=\left(-3,85;8,85\right)\]
x<-c(2,3)
li<-mean(x)-qt(0.975,2-1)*sd(x)/sqrt(2)
ls<-mean(x)+qt(0.975,2-1)*sd(x)/sqrt(2)
cat("(",li,";",ls,")")
( -3.853102 ; 8.853102 )
\[S=\left\{e_2,e_4\right\}\implies\bar{x}_{2}\pm{t}_{2-1,1-\frac{0.05}{2}}\frac{s_x}{\sqrt{2}}=3,0\pm12,71\frac{1,41}{\sqrt{2}}=\left(-9,71;15,71\right)\]
x<-c(2,4)
li<-mean(x)-qt(0.975,2-1)*sd(x)/sqrt(2)
ls<-mean(x)+qt(0.975,2-1)*sd(x)/sqrt(2)
cat("(",li,";",ls,")")
( -9.706205 ; 15.7062 )
\[S=\left\{e_3,e_4\right\}\implies\bar{x}_{2}\pm{t}_{2-1,1-\frac{0.05}{2}}\frac{s_x}{\sqrt{2}}=3,5\pm12,71\frac{0,25}{\sqrt{2}}=\left(1,71;5,29\right)\]
x<-c(1,2,3)
li<-mean(x)-qnorm(0.975)*sd(x)/sqrt(3)
ls<-mean(x)+qnorm(0.975)*sd(x)/sqrt(3)
cat("(",li,";",ls,")")
( 0.8684143 ; 3.131586 )
\[S=\left\{e_1,e_2,e_4\right\}\implies\bar{x}_{2}\pm{t}_{3-1,1-\frac{0.05}{2}}\frac{s_x}{\sqrt{2}}=2,\bar{3}\pm1,96\frac{1,53}{\sqrt{2}}=\left(0,60;4,06\right)\]
x<-c(1,2,4)
li<-mean(x)-qnorm(0.975)*sd(x)/sqrt(3)
ls<-mean(x)+qnorm(0.975)*sd(x)/sqrt(3)
cat("(",li,";",ls,")")
( 0.6048076 ; 4.061859 )
\[S=\left\{e_1,e_3,e_4\right\}\implies\bar{x}_{2}\pm{t}_{3-1,1-\frac{0.05}{2}}\frac{s_x}{\sqrt{2}}=2,5\pm1,96\frac{1,53}{\sqrt{2}}=\left(0.94;4,34\right)\]
x<-c(1,3,4)
li<-mean(x)-qnorm(0.975)*sd(x)/sqrt(3)
ls<-mean(x)+qnorm(0.975)*sd(x)/sqrt(3)
cat("(",li,";",ls,")")
( 0.9381409 ; 4.395192 )
\[S=\left\{e_2,e_3\right\}\implies\bar{x}_{2}\pm{t}_{3-1,1-\frac{0.05}{2}}\frac{s_x}{\sqrt{2}}=2,5\pm1,96\frac{0,25}{\sqrt{2}}=\left(-8.60;14,60\right)\]
Glass, G. V., Stanley, J. C., Gómez, E. G., & Guzmán, E. (1986). Métodos estadísticos aplicados a las ciencias sociales. Prentice-Hall Hispanoamericana.
Ruiz, C. Q. (1993). Elementos de inferencia estadística. Editorial Universidad de Costa Rica.
Gomez Villegas, M. A. (2005). Inferencia estadística. Ediciones Díaz de Santos
Osuna, J. R., Ferreras, M. L., & Núñez, A. (1991). Inferencia estadística, niveles de precisión y diseño muestral. Reis, (54), 139-162.
Inzunsa Cazares, S. (2010). Entornos virtuales de aprendizaje: un enfoque alternativo para la enseñanza y aprendizaje de la inferencia estadística. Revista mexicana de investigación educativa, 15(45), 423-452.
Vargas Biesuz, B. E. (2014). Tópicos de inferencia estadística: El método inductivo y el problema del tamaño de la muestra. Fides et Ratio-Revista de Difusión cultural y científica de la Universidad La Salle en Bolivia, 7(7), 86-92.
Alvarado, H., Galindo, M., & Retamal, L. (2013). Comprensión de la distribución muestral mediante configuraciones didácticas y su implicación en la inferencia estadística. Enseñanza de las Ciencias, 31(2), 0075-91.
Gómez, D., Condado, J., Adriazola, Y., & Solano, O. (2005). Introducción a la inferencia estadística.