Paquetería

library(MASS)
library(tidyverse)
library(tidymodels)
library(haven)
library(magrittr)
library(psych)
library(lavaan)
library(lavaanPlot)
library(rsq)
library(knitr)

## Funciones para organizar las salidas del lavaan

tidy_lavaan <- function(lavaan_obj){
  lavaan_obj %>%
  tidy() %>%
  select(c(1, 3:6)) %>%
  mutate_if(is.numeric, round, 3) %>%
  rename(Ruta = term,
         Estimado = estimate,
         Error_Std = std.error,
         Estadistico = statistic,
         valor_p = p.value) %>%
  kable()
}

glance_lavaan <- function(lavaan_obj){
  lavaan_obj %>%
  glance() %>%
  select(1:7) %>%
  rename(AGFI = agfi,
         CFI = cfi,
         Ji_Cuad = chisq,
         n_par = npar,
         RMSEA = rmsea) %>%
  kable()
}

Regresión Lineal log-Gamma

Moviendo la escala de DERSETOT para que sean todos valores positivos, se observa que se ajusta a una distribución gamma.

karina <- read_csv('karina.csv')
karina %<>% mutate(DERSETOT = DERSETOT + 1)

fit.params <- fitdistr(karina$DERSETOT,
                       'gamma',
                       lower = c(0, 0))

karina %>% ggplot(aes(DERSETOT)) +
  geom_histogram(aes(DERSETOT, ..density..)) +
  geom_line(aes(DERSETOT,
                dgamma(karina$DERSETOT,
                       fit.params$estimate['shape'],
                       fit.params$estimate['rate'])),
            color = 'blue',
            size = 1) +
  labs(y = NULL)

Modelo Lineal Generalizado Gamma con función liga log. Se eliminaron ya las variables que no aportaban al modelo.

reg_karina <- glm(DERSETOT ~
                    I(genero == 1) +    ## con respecto a genero == 2
                    EPASTOT*EVI +
                    EPASTOT*ANS +
                    EPASTOT*SEG,
                   karina,
                   family = Gamma(link = 'log'))

reg_karina %>%
  tidy() %>%
  mutate_if(is.numeric, round, 3) %>%
  rename(Ruta = term,
         Estimado = estimate,
         Error_Std = std.error,
         Estadistico = statistic,
         valor_p = p.value) %>%
  kable()
Ruta Estimado Error_Std Estadistico valor_p
(Intercept) 1.534 0.456 3.368 0.001
I(genero == 1)TRUE -0.078 0.031 -2.501 0.013
EPASTOT 0.027 0.007 4.201 0.000
EVI 0.104 0.057 1.823 0.069
ANS 0.306 0.045 6.789 0.000
SEG -0.055 0.065 -0.842 0.400
EPASTOT:EVI -0.001 0.001 -1.342 0.180
EPASTOT:ANS -0.002 0.001 -3.685 0.000
EPASTOT:SEG -0.001 0.001 -0.716 0.474
reg_karina %>%
  glance() %>%
  kable()
null.deviance df.null logLik AIC BIC deviance df.residual nobs
401.0018 1039 -4179.927 8379.854 8429.324 248.8656 1031 1040
coef_det <- rsq(reg_karina,
                adj = TRUE,
                type = 'v') %>%
  round(3)
paste('R² = ', coef_det)
## [1] "R² =  0.435"

Análisis Factoriales Exploratorios

egna <- read_sav('egna.sav') %>%
  select(3:17)

# Corriendo los 5 modelos

for (x in 1:5){
  fa_kar <- fa(egna,
               nfactors = x,
               n.obs = 1264,
               rotate = 'oblimin',
               oblique.scores = TRUE,
               fm = 'pa',
               cor = 'poly')
  print('Factores a extraer:')
  print(fa_kar$factors)
  print(fa_kar$RMSEA)
  print('BIC')
  print(fa_kar$BIC)
  print('R²')
  print(fa_kar$R2)
  print('__________________________________________')
}
## [1] "Factores a extraer:"
## [1] 1
##      RMSEA      lower      upper confidence 
##  0.2009550  0.1961553  0.2059598  0.9000000 
## [1] "BIC"
## [1] 4041.249
## [1] "R²"
##       PA1 
## 0.8772212 
## [1] "__________________________________________"
## [1] "Factores a extraer:"
## [1] 2
##      RMSEA      lower      upper confidence 
##  0.1754232  0.1701807  0.1808660  0.9000000 
## [1] "BIC"
## [1] 2489.473
## [1] "R²"
##       PA1       PA2 
## 0.9021080 0.7631871 
## [1] "__________________________________________"
## [1] "Factores a extraer:"
## [1] 3
##      RMSEA      lower      upper confidence 
##  0.1423888  0.1366027  0.1483766  0.9000000 
## [1] "BIC"
## [1] 1227.606
## [1] "R²"
##       PA1       PA2       PA3 
## 0.9186277 0.8193543 0.7553243 
## [1] "__________________________________________"
## [1] "Factores a extraer:"
## [1] 4
##      RMSEA      lower      upper confidence 
## 0.10479077 0.09830904 0.11149818 0.90000000 
## [1] "BIC"
## [1] 394.6825
## [1] "R²"
##       PA1       PA2       PA3       PA4 
## 0.9365999 0.8624118 0.8106007 0.7055646 
## [1] "__________________________________________"
## [1] "Factores a extraer:"
## [1] 5
##      RMSEA      lower      upper confidence 
## 0.08907822 0.08172206 0.09671049 0.90000000 
## [1] "BIC"
## [1] 155.5402
## [1] "R²"
##       PA1       PA2       PA3       PA4       PA5 
## 0.9438379 0.9076278 0.8552566 0.7217529 0.5458479 
## [1] "__________________________________________"
# Cargas del mejor modelo

fa_kar_5 <- fa(egna, 
   nfactors = 5,
   n.obs = 1264,
   rotate = 'oblimin',
   fm = 'pa',
   oblique.scores = TRUE,
   cor = 'poly')

summary(fa_kar_5)
## 
## Factor analysis with Call: fa(r = egna, nfactors = 5, n.obs = 1264, rotate = "oblimin", 
##     fm = "pa", oblique.scores = TRUE, cor = "poly")
## 
## Test of the hypothesis that 5 factors are sufficient.
## The degrees of freedom for the model is 40  and the objective function was  0.35 
## The number of observations was  1264  with Chi Square =  441.22  with prob <  4.7e-69 
## 
## The root mean square of the residuals (RMSA) is  0.02 
## The df corrected root mean square of the residuals is  0.04 
## 
## Tucker Lewis Index of factoring reliability =  0.884
## RMSEA index =  0.089  and the 10 % confidence intervals are  0.082 0.097
## BIC =  155.54
loadings(fa_kar_5)
## 
## Loadings:
##        PA1    PA2    PA3    PA4    PA5   
## egna1   0.657 -0.325        -0.293       
## egna2   0.421  0.138  0.528        -0.173
## egna3   0.579 -0.227 -0.104  0.347 -0.112
## egna4   0.553  0.502 -0.335 -0.122 -0.106
## egna5   0.493  0.194                0.262
## egna6   0.725 -0.405 -0.171  0.332       
## egna7   0.681 -0.405        -0.332       
## egna8   0.554  0.629 -0.449 -0.163 -0.219
## egna9   0.507  0.371  0.587        -0.124
## egna10  0.416  0.137                0.382
## egna11  0.607 -0.407  0.119 -0.351       
## egna12  0.517  0.297 -0.159              
## egna13  0.445  0.277  0.133  0.101  0.407
## egna14  0.736 -0.297 -0.236  0.247       
## egna15  0.514  0.153  0.424        -0.130
## 
##                  PA1   PA2   PA3   PA4   PA5
## SS loadings    4.859 1.788 1.276 0.678 0.536
## Proportion Var 0.324 0.119 0.085 0.045 0.036
## Cumulative Var 0.324 0.443 0.528 0.573 0.609
fa.diagram(fa_kar_5,
           labels = TRUE,
           simple = FALSE)

# Correlaciones entre factores

fa_kar_cor <- as.data.frame(fa_kar_5$r.scores)
fa_kar_cor %>%
  rownames_to_column() %>%
  rename(Correlaciones = rowname) %>%
  mutate_if(is.numeric, round, 3) %>%
  kable()
Correlaciones PA1 PA2 PA3 PA4 PA5
PA1 1.000 0.007 -0.032 -0.007 -0.059
PA2 0.007 1.000 -0.054 -0.058 -0.097
PA3 -0.032 -0.054 1.000 0.028 0.078
PA4 -0.007 -0.058 0.028 1.000 0.007
PA5 -0.059 -0.097 0.078 0.007 1.000

Análisis Factorial Confirmatorio

Se consideran solo aquellos reactivos con carga factorial absoluta mayor a 0.3.

egna_model <- 'pa1 =~ egna3 + egna6 + egna14
               pa2 =~ egna4 + egna8 + egna12
               pa3 =~ egna2 + egna9 + egna15
               pa4 =~ egna1 + egna7 + egna11
               pa5 =~ egna5 + egna10 + egna13'
egna_fit <- cfa(egna_model,
                egna)

tidy_lavaan(egna_fit)
Ruta Estimado Error_Std Estadistico valor_p
pa1 =~ egna3 1.000 0.000 NA NA
pa1 =~ egna6 1.202 0.066 18.204 0
pa1 =~ egna14 1.053 0.059 17.963 0
pa2 =~ egna4 1.000 0.000 NA NA
pa2 =~ egna8 1.014 0.046 21.956 0
pa2 =~ egna12 0.590 0.037 16.036 0
pa3 =~ egna2 1.000 0.000 NA NA
pa3 =~ egna9 1.368 0.086 15.937 0
pa3 =~ egna15 1.024 0.066 15.584 0
pa4 =~ egna1 1.000 0.000 NA NA
pa4 =~ egna7 1.484 0.081 18.421 0
pa4 =~ egna11 1.451 0.082 17.755 0
pa5 =~ egna5 1.000 0.000 NA NA
pa5 =~ egna10 0.841 0.081 10.341 0
pa5 =~ egna13 0.990 0.088 11.231 0
egna3 ~~ egna3 0.213 0.010 21.819 0
egna6 ~~ egna6 0.088 0.007 13.104 0
egna14 ~~ egna14 0.097 0.006 16.353 0
egna4 ~~ egna4 0.125 0.011 11.300 0
egna8 ~~ egna8 0.113 0.011 10.148 0
egna12 ~~ egna12 0.280 0.012 23.470 0
egna2 ~~ egna2 0.284 0.014 19.697 0
egna9 ~~ egna9 0.187 0.017 10.818 0
egna15 ~~ egna15 0.280 0.015 19.291 0
egna1 ~~ egna1 0.105 0.005 19.749 0
egna7 ~~ egna7 0.118 0.008 14.570 0
egna11 ~~ egna11 0.179 0.010 18.354 0
egna5 ~~ egna5 0.192 0.011 17.751 0
egna10 ~~ egna10 0.258 0.012 21.380 0
egna13 ~~ egna13 0.239 0.012 19.390 0
pa1 ~~ pa1 0.109 0.011 10.111 0
pa2 ~~ pa2 0.255 0.017 14.663 0
pa3 ~~ pa3 0.162 0.016 9.925 0
pa4 ~~ pa4 0.073 0.007 11.030 0
pa5 ~~ pa5 0.092 0.011 8.133 0
pa1 ~~ pa2 0.049 0.006 7.527 0
pa1 ~~ pa3 0.032 0.005 5.918 0
pa1 ~~ pa4 0.056 0.005 11.556 0
pa1 ~~ pa5 0.041 0.005 7.839 0
pa2 ~~ pa3 0.062 0.008 7.591 0
pa2 ~~ pa4 0.029 0.005 5.652 0
pa2 ~~ pa5 0.079 0.008 9.861 0
pa3 ~~ pa4 0.033 0.005 7.145 0
pa3 ~~ pa5 0.063 0.007 8.979 0
pa4 ~~ pa5 0.030 0.004 7.192 0
glance_lavaan(egna_fit)
AGFI AIC BIC CFI Ji_Cuad n_par RMSEA
0.9550418 27913.95 28119.63 0.9548931 294.5847 40 0.046066
# Gráfica sin covarianzas

lavaanPlot(name = 'Modelo',
                       egna_fit,
                       node_options = list(shape = "box",
                                           fontname = "Helvetica"),
                       edge_options = list(color = "grey"),
                       coefs = TRUE,
                       stand = TRUE,
                       stars = TRUE)
# Gráfica con covarianzas

lavaanPlot(name = 'Modelo',
                       egna_fit,
                       node_options = list(shape = "box",
                                           fontname = "Helvetica"),
                       edge_options = list(color = "grey"),
                       coefs = TRUE,
                       stand = TRUE,
                       covs = TRUE,
                       stars = TRUE)

Ecuaciones estructurales

kar_sem <- read_csv("sem.csv")

kar_reg <- 'SP =~ cpas3 + cpas4 + cpas5 + cpas8 + cpas11 + cpas13 + cpas14 + cpas16 + cpas19 + cpas20 + cpas21 + cpas23 + cpas26
            USB =~ cpas1 + cpas7 + cpas9 + cpas2
            
            NAC =~ derse10 + derse12 + derse14 + derse15 + derse18  + derse19
            ME =~ derse11 + derse13 + derse16 + derse17 + derse22 + derse23
            CON =~ derse1 + derse2 + derse6 + derse7 + derse9
            CLA =~ derse3 + derse4 + derse5 + derse8
            
            EVI =~ eea1 + eea4 + eea7 + eea10 + eea13 + eea16 + eea19
            ANS =~ eea2 + eea5 + eea8 + eea11 + eea14 + eea17 + eea20 + eea21
            SEG =~ eea3 + eea6 + eea9 + eea12 + eea15 + eea18
          
            SP ~ EVI + ANS + SEG
            USB ~ EVI + ANS + SEG
            NAC ~ EVI + ANS + SEG + SP + USB
            ME ~ EVI + ANS + SEG + SP + USB
            CON ~ EVI + ANS + SEG + SP + USB
            CLA ~ EVI + ANS + SEG + SP + USB'

kar_fit <- sem(kar_reg,
               kar_sem)

tidy_lavaan(kar_fit)
Ruta Estimado Error_Std Estadistico valor_p
SP =~ cpas3 1.000 0.000 NA NA
SP =~ cpas4 0.977 0.083 11.721 0.000
SP =~ cpas5 1.141 0.089 12.801 0.000
SP =~ cpas8 1.041 0.086 12.072 0.000
SP =~ cpas11 1.190 0.086 13.771 0.000
SP =~ cpas13 1.071 0.087 12.367 0.000
SP =~ cpas14 1.374 0.095 14.524 0.000
SP =~ cpas16 1.053 0.082 12.917 0.000
SP =~ cpas19 1.494 0.102 14.699 0.000
SP =~ cpas20 1.044 0.091 11.511 0.000
SP =~ cpas21 1.428 0.097 14.709 0.000
SP =~ cpas23 1.232 0.090 13.649 0.000
SP =~ cpas26 1.236 0.096 12.832 0.000
USB =~ cpas1 1.000 0.000 NA NA
USB =~ cpas7 1.452 0.106 13.646 0.000
USB =~ cpas9 1.586 0.116 13.638 0.000
USB =~ cpas2 0.495 0.065 7.613 0.000
NAC =~ derse10 1.000 0.000 NA NA
NAC =~ derse12 1.041 0.051 20.249 0.000
NAC =~ derse14 1.179 0.057 20.702 0.000
NAC =~ derse15 1.231 0.057 21.780 0.000
NAC =~ derse18 0.800 0.046 17.284 0.000
NAC =~ derse19 1.174 0.055 21.198 0.000
ME =~ derse11 1.000 0.000 NA NA
ME =~ derse13 1.052 0.049 21.449 0.000
ME =~ derse16 1.096 0.051 21.362 0.000
ME =~ derse17 0.954 0.047 20.231 0.000
ME =~ derse22 0.826 0.047 17.740 0.000
ME =~ derse23 1.148 0.053 21.462 0.000
CON =~ derse1 1.000 0.000 NA NA
CON =~ derse2 0.754 0.047 16.177 0.000
CON =~ derse6 0.573 0.052 11.050 0.000
CON =~ derse7 1.222 0.060 20.407 0.000
CON =~ derse9 0.957 0.055 17.436 0.000
CLA =~ derse3 1.000 0.000 NA NA
CLA =~ derse4 1.207 0.065 18.435 0.000
CLA =~ derse5 1.416 0.073 19.477 0.000
CLA =~ derse8 1.293 0.069 18.661 0.000
EVI =~ eea1 1.000 0.000 NA NA
EVI =~ eea4 1.012 0.049 20.717 0.000
EVI =~ eea7 0.692 0.056 12.451 0.000
EVI =~ eea10 0.857 0.057 15.147 0.000
EVI =~ eea13 0.940 0.048 19.523 0.000
EVI =~ eea16 1.110 0.052 21.507 0.000
EVI =~ eea19 0.866 0.053 16.427 0.000
ANS =~ eea2 1.000 0.000 NA NA
ANS =~ eea5 1.151 0.075 15.411 0.000
ANS =~ eea8 1.291 0.083 15.584 0.000
ANS =~ eea11 1.119 0.076 14.693 0.000
ANS =~ eea14 1.133 0.075 15.120 0.000
ANS =~ eea17 1.139 0.075 15.170 0.000
ANS =~ eea20 1.217 0.073 16.564 0.000
ANS =~ eea21 1.605 0.092 17.432 0.000
SEG =~ eea3 1.000 0.000 NA NA
SEG =~ eea6 0.753 0.065 11.671 0.000
SEG =~ eea9 0.734 0.064 11.505 0.000
SEG =~ eea12 1.040 0.071 14.560 0.000
SEG =~ eea15 0.984 0.075 13.181 0.000
SEG =~ eea18 1.021 0.069 14.691 0.000
SP ~ EVI 0.014 0.032 0.441 0.660
SP ~ ANS 0.405 0.042 9.662 0.000
SP ~ SEG 0.035 0.043 0.814 0.416
USB ~ EVI 0.083 0.039 2.144 0.032
USB ~ ANS 0.267 0.040 6.735 0.000
USB ~ SEG 0.099 0.052 1.920 0.055
NAC ~ EVI 0.013 0.029 0.437 0.662
NAC ~ ANS 0.328 0.038 8.579 0.000
NAC ~ SEG -0.115 0.040 -2.891 0.004
NAC ~ SP 0.415 0.045 9.249 0.000
NAC ~ USB 0.008 0.034 0.224 0.823
ME ~ EVI -0.024 0.030 -0.825 0.409
ME ~ ANS 0.273 0.037 7.463 0.000
ME ~ SEG -0.117 0.040 -2.911 0.004
ME ~ SP 0.399 0.044 9.038 0.000
ME ~ USB 0.063 0.035 1.812 0.070
CON ~ EVI 0.003 0.031 0.101 0.920
CON ~ ANS 0.084 0.035 2.388 0.017
CON ~ SEG -0.331 0.046 -7.161 0.000
CON ~ SP 0.323 0.043 7.579 0.000
CON ~ USB -0.068 0.037 -1.864 0.062
CLA ~ EVI 0.019 0.025 0.743 0.458
CLA ~ ANS 0.234 0.032 7.297 0.000
CLA ~ SEG -0.154 0.036 -4.336 0.000
CLA ~ SP 0.327 0.038 8.549 0.000
CLA ~ USB -0.013 0.030 -0.445 0.656
cpas3 ~~ cpas3 2.206 0.101 21.787 0.000
cpas4 ~~ cpas4 2.400 0.110 21.912 0.000
cpas5 ~~ cpas5 2.266 0.105 21.515 0.000
cpas8 ~~ cpas8 2.428 0.111 21.803 0.000
cpas11 ~~ cpas11 1.692 0.081 20.925 0.000
cpas13 ~~ cpas13 2.327 0.107 21.698 0.000
cpas14 ~~ cpas14 1.594 0.079 20.141 0.000
cpas16 ~~ cpas16 1.850 0.086 21.460 0.000
cpas19 ~~ cpas19 1.718 0.086 19.883 0.000
cpas20 ~~ cpas20 2.929 0.133 21.970 0.000
cpas21 ~~ cpas21 1.562 0.079 19.867 0.000
cpas23 ~~ cpas23 1.911 0.091 21.019 0.000
cpas26 ~~ cpas26 2.629 0.122 21.501 0.000
cpas1 ~~ cpas1 1.589 0.086 18.475 0.000
cpas7 ~~ cpas7 1.751 0.125 14.009 0.000
cpas9 ~~ cpas9 1.784 0.141 12.696 0.000
cpas2 ~~ cpas2 1.957 0.089 21.983 0.000
derse10 ~~ derse10 1.109 0.052 21.151 0.000
derse12 ~~ derse12 0.703 0.035 19.964 0.000
derse14 ~~ derse14 0.793 0.041 19.566 0.000
derse15 ~~ derse15 0.608 0.033 18.176 0.000
derse18 ~~ derse18 0.846 0.039 21.417 0.000
derse19 ~~ derse19 0.676 0.036 19.024 0.000
derse11 ~~ derse11 0.919 0.045 20.638 0.000
derse13 ~~ derse13 0.571 0.030 18.918 0.000
derse16 ~~ derse16 0.634 0.033 19.010 0.000
derse17 ~~ derse17 0.639 0.032 19.963 0.000
derse22 ~~ derse22 0.824 0.039 21.159 0.000
derse23 ~~ derse23 0.677 0.036 18.903 0.000
derse1 ~~ derse1 0.621 0.036 17.440 0.000
derse2 ~~ derse2 0.722 0.036 20.234 0.000
derse6 ~~ derse6 1.192 0.054 21.914 0.000
derse7 ~~ derse7 0.654 0.043 15.226 0.000
derse9 ~~ derse9 0.896 0.046 19.446 0.000
derse3 ~~ derse3 0.932 0.044 20.976 0.000
derse4 ~~ derse4 0.607 0.033 18.642 0.000
derse5 ~~ derse5 0.523 0.033 16.081 0.000
derse8 ~~ derse8 0.638 0.035 18.248 0.000
eea1 ~~ eea1 1.458 0.074 19.631 0.000
eea4 ~~ eea4 0.964 0.054 17.844 0.000
eea7 ~~ eea7 2.643 0.120 21.977 0.000
eea10 ~~ eea10 2.358 0.110 21.377 0.000
eea13 ~~ eea13 1.131 0.059 19.177 0.000
eea16 ~~ eea16 0.907 0.055 16.470 0.000
eea19 ~~ eea19 1.863 0.089 20.957 0.000
eea2 ~~ eea2 2.034 0.096 21.180 0.000
eea5 ~~ eea5 1.916 0.093 20.515 0.000
eea8 ~~ eea8 2.277 0.112 20.380 0.000
eea11 ~~ eea11 2.263 0.108 20.973 0.000
eea14 ~~ eea14 2.038 0.098 20.718 0.000
eea17 ~~ eea17 2.026 0.098 20.685 0.000
eea20 ~~ eea20 1.422 0.074 19.342 0.000
eea21 ~~ eea21 1.669 0.094 17.670 0.000
eea3 ~~ eea3 1.575 0.080 19.602 0.000
eea6 ~~ eea6 1.513 0.072 20.927 0.000
eea9 ~~ eea9 1.511 0.072 21.016 0.000
eea12 ~~ eea12 1.093 0.061 17.786 0.000
eea15 ~~ eea15 1.630 0.082 19.812 0.000
eea18 ~~ eea18 0.992 0.057 17.478 0.000
SP ~~ SP 0.562 0.071 7.929 0.000
USB ~~ USB 0.686 0.083 8.269 0.000
NAC ~~ NAC 0.430 0.041 10.551 0.000
ME ~~ ME 0.440 0.040 11.008 0.000
CON ~~ CON 0.442 0.040 11.064 0.000
CLA ~~ CLA 0.308 0.032 9.525 0.000
EVI ~~ EVI 1.232 0.106 11.612 0.000
ANS ~~ ANS 0.941 0.102 9.257 0.000
SEG ~~ SEG 0.758 0.086 8.821 0.000
EVI ~~ ANS 0.146 0.040 3.625 0.000
EVI ~~ SEG -0.502 0.050 -9.963 0.000
ANS ~~ SEG -0.071 0.033 -2.151 0.032
NAC ~~ ME 0.302 0.026 11.685 0.000
NAC ~~ CON 0.097 0.020 4.864 0.000
NAC ~~ CLA 0.211 0.021 10.080 0.000
ME ~~ CON 0.083 0.020 4.208 0.000
ME ~~ CLA 0.176 0.019 9.070 0.000
CON ~~ CLA 0.191 0.020 9.337 0.000
glance_lavaan(kar_fit)
AGFI AIC BIC CFI Ji_Cuad n_par RMSEA
0.8303645 204203.9 204960.8 0.8458782 5291.966 153 0.0467471
# Gráfica

lavaanPlot(name = 'Modelo',
                       kar_fit,
                       node_options = list(shape = "box",
                                           fontname = "Helvetica"),
                       edge_options = list(color = "grey"),
                       coefs = TRUE,
                       stand = TRUE,
                       stars = TRUE)
# Eliminando parámetros no significativos

kar_pns <- 'SP =~ cpas3 + cpas4 + cpas5 + cpas8 + cpas11 + cpas13 + cpas14 + cpas16 + cpas19 + cpas20 + cpas21 + cpas23 + cpas26
            
            NAC =~ derse10 + derse12 + derse14 + derse15 + derse18  + derse19
            ME =~ derse11 + derse13 + derse16 + derse17 + derse22 + derse23
            CON =~ derse1 + derse2 + derse6 + derse7 + derse9
            CLA =~ derse3 + derse4 + derse5 + derse8
            
            ANS =~ eea2 + eea5 + eea8 + eea11 + eea14 + eea17 + eea20 + eea21
            SEG =~ eea3 + eea6 + eea9 + eea12 + eea15 + eea18
          
            SP ~ ANS
            NAC ~ ANS + SEG + SP
            ME ~ ANS + SEG + SP
            CON ~ ANS + SEG + SP
            CLA ~ ANS + SEG + SP'

kar_fns <- sem(kar_pns,
               kar_sem)

tidy_lavaan(kar_fns)
Ruta Estimado Error_Std Estadistico valor_p
SP =~ cpas3 1.000 0.000 NA NA
SP =~ cpas4 0.978 0.084 11.696 0.000
SP =~ cpas5 1.144 0.089 12.790 0.000
SP =~ cpas8 1.043 0.087 12.056 0.000
SP =~ cpas11 1.192 0.087 13.753 0.000
SP =~ cpas13 1.071 0.087 12.336 0.000
SP =~ cpas14 1.377 0.095 14.503 0.000
SP =~ cpas16 1.054 0.082 12.897 0.000
SP =~ cpas19 1.497 0.102 14.675 0.000
SP =~ cpas20 1.046 0.091 11.501 0.000
SP =~ cpas21 1.430 0.097 14.678 0.000
SP =~ cpas23 1.235 0.091 13.629 0.000
SP =~ cpas26 1.239 0.097 12.817 0.000
NAC =~ derse10 1.000 0.000 NA NA
NAC =~ derse12 1.041 0.051 20.286 0.000
NAC =~ derse14 1.179 0.057 20.733 0.000
NAC =~ derse15 1.231 0.056 21.812 0.000
NAC =~ derse18 0.800 0.046 17.298 0.000
NAC =~ derse19 1.174 0.055 21.226 0.000
ME =~ derse11 1.000 0.000 NA NA
ME =~ derse13 1.052 0.049 21.685 0.000
ME =~ derse16 1.095 0.051 21.576 0.000
ME =~ derse17 0.953 0.047 20.440 0.000
ME =~ derse22 0.826 0.046 17.922 0.000
ME =~ derse23 1.145 0.053 21.645 0.000
CON =~ derse1 1.000 0.000 NA NA
CON =~ derse2 0.752 0.047 15.973 0.000
CON =~ derse6 0.574 0.052 10.954 0.000
CON =~ derse7 1.223 0.061 20.174 0.000
CON =~ derse9 0.954 0.055 17.210 0.000
CLA =~ derse3 1.000 0.000 NA NA
CLA =~ derse4 1.204 0.065 18.423 0.000
CLA =~ derse5 1.413 0.073 19.472 0.000
CLA =~ derse8 1.290 0.069 18.659 0.000
ANS =~ eea2 1.000 0.000 NA NA
ANS =~ eea5 1.157 0.075 15.432 0.000
ANS =~ eea8 1.295 0.083 15.591 0.000
ANS =~ eea11 1.125 0.076 14.721 0.000
ANS =~ eea14 1.135 0.075 15.103 0.000
ANS =~ eea17 1.143 0.075 15.173 0.000
ANS =~ eea20 1.223 0.074 16.573 0.000
ANS =~ eea21 1.605 0.092 17.396 0.000
SEG =~ eea3 1.000 0.000 NA NA
SEG =~ eea6 0.705 0.060 11.698 0.000
SEG =~ eea9 0.716 0.060 11.893 0.000
SEG =~ eea12 0.952 0.066 14.535 0.000
SEG =~ eea15 0.985 0.071 13.899 0.000
SEG =~ eea18 0.899 0.063 14.342 0.000
SP ~ ANS 0.384 0.041 9.424 0.000
NAC ~ ANS 0.325 0.036 8.994 0.000
NAC ~ SEG -0.120 0.030 -3.921 0.000
NAC ~ SP 0.427 0.045 9.493 0.000
ME ~ ANS 0.270 0.034 7.840 0.000
ME ~ SEG -0.097 0.030 -3.191 0.001
ME ~ SP 0.438 0.045 9.660 0.000
CON ~ ANS 0.079 0.033 2.420 0.016
CON ~ SEG -0.319 0.036 -8.777 0.000
CON ~ SP 0.282 0.041 6.913 0.000
CLA ~ ANS 0.233 0.030 7.673 0.000
CLA ~ SEG -0.162 0.028 -5.827 0.000
CLA ~ SP 0.324 0.038 8.587 0.000
cpas3 ~~ cpas3 2.208 0.101 21.790 0.000
cpas4 ~~ cpas4 2.402 0.110 21.913 0.000
cpas5 ~~ cpas5 2.265 0.105 21.509 0.000
cpas8 ~~ cpas8 2.428 0.111 21.801 0.000
cpas11 ~~ cpas11 1.691 0.081 20.919 0.000
cpas13 ~~ cpas13 2.330 0.107 21.701 0.000
cpas14 ~~ cpas14 1.592 0.079 20.128 0.000
cpas16 ~~ cpas16 1.850 0.086 21.458 0.000
cpas19 ~~ cpas19 1.716 0.086 19.871 0.000
cpas20 ~~ cpas20 2.928 0.133 21.968 0.000
cpas21 ~~ cpas21 1.564 0.079 19.867 0.000
cpas23 ~~ cpas23 1.910 0.091 21.014 0.000
cpas26 ~~ cpas26 2.628 0.122 21.497 0.000
derse10 ~~ derse10 1.108 0.052 21.149 0.000
derse12 ~~ derse12 0.702 0.035 19.956 0.000
derse14 ~~ derse14 0.793 0.041 19.565 0.000
derse15 ~~ derse15 0.609 0.033 18.177 0.000
derse18 ~~ derse18 0.846 0.040 21.420 0.000
derse19 ~~ derse19 0.676 0.036 19.028 0.000
derse11 ~~ derse11 0.918 0.045 20.630 0.000
derse13 ~~ derse13 0.569 0.030 18.894 0.000
derse16 ~~ derse16 0.634 0.033 19.009 0.000
derse17 ~~ derse17 0.639 0.032 19.956 0.000
derse22 ~~ derse22 0.824 0.039 21.154 0.000
derse23 ~~ derse23 0.681 0.036 18.937 0.000
derse1 ~~ derse1 0.621 0.036 17.398 0.000
derse2 ~~ derse2 0.723 0.036 20.237 0.000
derse6 ~~ derse6 1.191 0.054 21.906 0.000
derse7 ~~ derse7 0.651 0.043 15.136 0.000
derse9 ~~ derse9 0.899 0.046 19.456 0.000
derse3 ~~ derse3 0.930 0.044 20.961 0.000
derse4 ~~ derse4 0.608 0.033 18.649 0.000
derse5 ~~ derse5 0.524 0.033 16.089 0.000
derse8 ~~ derse8 0.638 0.035 18.241 0.000
eea2 ~~ eea2 2.035 0.096 21.165 0.000
eea5 ~~ eea5 1.906 0.093 20.456 0.000
eea8 ~~ eea8 2.267 0.112 20.327 0.000
eea11 ~~ eea11 2.252 0.108 20.926 0.000
eea14 ~~ eea14 2.037 0.098 20.691 0.000
eea17 ~~ eea17 2.020 0.098 20.644 0.000
eea20 ~~ eea20 1.412 0.073 19.251 0.000
eea21 ~~ eea21 1.670 0.095 17.621 0.000
eea3 ~~ eea3 1.482 0.080 18.560 0.000
eea6 ~~ eea6 1.520 0.073 20.768 0.000
eea9 ~~ eea9 1.484 0.072 20.652 0.000
eea12 ~~ eea12 1.142 0.064 17.802 0.000
eea15 ~~ eea15 1.539 0.082 18.844 0.000
eea18 ~~ eea18 1.096 0.060 18.163 0.000
SP ~~ SP 0.575 0.073 7.925 0.000
NAC ~~ NAC 0.429 0.041 10.551 0.000
ME ~~ ME 0.441 0.040 11.068 0.000
CON ~~ CON 0.445 0.040 11.041 0.000
CLA ~~ CLA 0.309 0.032 9.523 0.000
ANS ~~ ANS 0.940 0.102 9.243 0.000
SEG ~~ SEG 0.850 0.092 9.282 0.000
ANS ~~ SEG -0.092 0.035 -2.615 0.009
NAC ~~ ME 0.301 0.026 11.658 0.000
NAC ~~ CON 0.096 0.020 4.830 0.000
NAC ~~ CLA 0.211 0.021 10.057 0.000
ME ~~ CON 0.080 0.020 4.038 0.000
ME ~~ CLA 0.175 0.019 8.992 0.000
CON ~~ CLA 0.192 0.021 9.323 0.000
glance_lavaan(kar_fns)
AGFI AIC BIC CFI Ji_Cuad n_par RMSEA
0.8503608 163319.1 163893 0.8713373 3585.958 116 0.0478678
# Gráfica

lavaanPlot(name = 'Modelo',
                       kar_fns,
                       node_options = list(shape = "box",
                                           fontname = "Helvetica"),
                       edge_options = list(color = "grey"),
                       coefs = TRUE,
                       stand = TRUE,
                       stars = TRUE)
# Integrando totales y dimensiones

kar_tot <- 'EPASTOT =~ cpas3 + cpas4 + cpas5 + cpas8 + cpas11 + cpas13 + cpas14 + cpas16 + cpas19 + cpas20 + cpas21 + cpas23 + cpas26 + cpas1 + cpas7 + cpas9 + cpas25
            SP =~ cpas3 + cpas4 + cpas5 + cpas8 + cpas11 + cpas13 + cpas14 + cpas16 + cpas19 + cpas20 + cpas21 + cpas23 + cpas26
            USB =~ cpas1 + cpas7 + cpas9 + cpas25
            
            DERSETOT =~ derse10 + derse12 + derse14 + derse15 + derse18  + derse19 + derse20 + derse21 + derse24 + derse11 + derse13 + derse16 + derse17 + derse22 + derse23 + derse1 + derse2 + derse6 + derse7 + derse9 + derse3 + derse4 + derse5 + derse8      
            NAC =~ derse10 + derse12 + derse14 + derse15 + derse18  + derse19 + derse20 + derse21 + derse24
            ME =~ derse11 + derse13 + derse16 + derse17 + derse22 + derse23
            CON =~ derse1 + derse2 + derse6 + derse7 + derse9
            CLA =~ derse3 + derse4 + derse5 + derse8
                        
            EVI =~ eea1 + eea4 + eea7 + eea10 + eea13 + eea16 + eea19
            ANS =~ eea2 + eea5 + eea8 + eea11 + eea14 + eea17 + eea20 + eea21
            SEG =~ eea3 + eea6 + eea9 + eea12 + eea15 + eea18
          
            SP ~ EVI + ANS + SEG
            USB ~ EVI + ANS + SEG
            NAC ~ EVI + ANS + SEG + SP + USB
            ME ~ EVI + ANS + SEG + SP + USB
            CON ~ EVI + ANS + SEG + SP + USB
            CLA ~ EVI + ANS + SEG + SP + USB
            EPASTOT ~ EVI + ANS + SEG + SP + USB + NAC + ME + CON + CLA
            DERSETOT ~ EVI + ANS + SEG + SP + USB + NAC + ME + CON + CLA + EPASTOT'

kar_ftt <- sem(kar_tot,
               kar_sem)

tidy_lavaan(kar_ftt)
Ruta Estimado Error_Std Estadistico valor_p
EPASTOT =~ cpas3 1.000 0.000 NA NA
EPASTOT =~ cpas4 0.797 0.584 1.363 0.173
EPASTOT =~ cpas5 0.554 1.905 0.291 0.771
EPASTOT =~ cpas8 0.866 0.574 1.508 0.132
EPASTOT =~ cpas11 0.663 1.664 0.398 0.690
EPASTOT =~ cpas13 0.665 1.341 0.496 0.620
EPASTOT =~ cpas14 0.240 3.683 0.065 0.948
EPASTOT =~ cpas16 -0.076 3.747 -0.020 0.984
EPASTOT =~ cpas19 0.796 2.232 0.357 0.721
EPASTOT =~ cpas20 0.430 1.982 0.217 0.828
EPASTOT =~ cpas21 0.917 1.537 0.597 0.551
EPASTOT =~ cpas23 -0.233 4.943 -0.047 0.962
EPASTOT =~ cpas26 0.519 2.294 0.226 0.821
EPASTOT =~ cpas1 0.922 1.343 0.687 0.492
EPASTOT =~ cpas7 1.113 2.645 0.421 0.674
EPASTOT =~ cpas9 1.349 3.631 0.371 0.710
EPASTOT =~ cpas25 1.331 3.360 0.396 0.692
SP =~ cpas3 1.000 0.000 NA NA
SP =~ cpas4 -0.556 1.710 -0.325 0.745
SP =~ cpas5 -3.913 5.687 -0.688 0.491
SP =~ cpas8 -0.461 1.674 -0.276 0.783
SP =~ cpas11 -3.239 4.918 -0.659 0.510
SP =~ cpas13 -2.477 3.955 -0.626 0.531
SP =~ cpas14 -8.406 11.190 -0.751 0.453
SP =~ cpas16 -8.874 11.487 -0.773 0.440
SP =~ cpas19 -4.440 6.607 -0.672 0.502
SP =~ cpas20 -4.219 5.967 -0.707 0.480
SP =~ cpas21 -2.684 4.465 -0.601 0.548
SP =~ cpas23 -11.840 15.199 -0.779 0.436
SP =~ cpas26 -4.863 6.885 -0.706 0.480
USB =~ cpas1 1.000 0.000 NA NA
USB =~ cpas7 2.300 0.339 6.778 0.000
USB =~ cpas9 3.242 0.465 6.973 0.000
USB =~ cpas25 2.961 0.420 7.051 0.000
DERSETOT =~ derse10 1.000 0.000 NA NA
DERSETOT =~ derse12 1.285 0.184 6.984 0.000
DERSETOT =~ derse14 1.314 0.144 9.117 0.000
DERSETOT =~ derse15 1.318 0.104 12.615 0.000
DERSETOT =~ derse18 1.045 0.156 6.704 0.000
DERSETOT =~ derse19 1.271 0.068 18.683 0.000
DERSETOT =~ derse20 1.330 0.096 13.835 0.000
DERSETOT =~ derse21 1.136 0.159 7.151 0.000
DERSETOT =~ derse24 1.352 0.198 6.837 0.000
DERSETOT =~ derse11 0.793 0.381 2.082 0.037
DERSETOT =~ derse13 0.938 0.321 2.920 0.003
DERSETOT =~ derse16 0.956 0.337 2.836 0.005
DERSETOT =~ derse17 0.945 0.207 4.576 0.000
DERSETOT =~ derse22 0.944 0.137 6.880 0.000
DERSETOT =~ derse23 1.232 0.221 5.570 0.000
DERSETOT =~ derse1 0.547 5.701 0.096 0.924
DERSETOT =~ derse2 0.259 5.049 0.051 0.959
DERSETOT =~ derse6 0.028 4.588 0.006 0.995
DERSETOT =~ derse7 0.641 7.085 0.090 0.928
DERSETOT =~ derse9 0.335 6.359 0.053 0.958
DERSETOT =~ derse3 -0.770 78.227 -0.010 0.992
DERSETOT =~ derse4 -3.892 218.623 -0.018 0.986
DERSETOT =~ derse5 -3.862 226.322 -0.017 0.986
DERSETOT =~ derse8 -3.110 188.704 -0.016 0.987
NAC =~ derse10 1.000 0.000 NA NA
NAC =~ derse12 -0.173 0.080 -2.149 0.032
NAC =~ derse14 0.242 0.076 3.185 0.001
NAC =~ derse15 0.626 0.073 8.606 0.000
NAC =~ derse18 -0.179 0.076 -2.352 0.019
NAC =~ derse19 0.998 0.089 11.173 0.000
NAC =~ derse20 0.711 0.070 10.141 0.000
NAC =~ derse21 -0.106 0.075 -1.400 0.161
NAC =~ derse24 -0.220 0.086 -2.565 0.010
ME =~ derse11 1.000 0.000 NA NA
ME =~ derse13 0.820 0.067 12.260 0.000
ME =~ derse16 0.864 0.071 12.212 0.000
ME =~ derse17 0.467 0.054 8.618 0.000
ME =~ derse22 0.170 0.052 3.251 0.001
ME =~ derse23 0.443 0.054 8.194 0.000
CON =~ derse1 1.000 0.000 NA NA
CON =~ derse2 0.889 0.064 13.995 0.000
CON =~ derse6 0.811 0.070 11.500 0.000
CON =~ derse7 1.243 0.078 16.013 0.000
CON =~ derse9 1.119 0.076 14.811 0.000
CLA =~ derse3 1.000 0.000 NA NA
CLA =~ derse4 2.797 0.475 5.893 0.000
CLA =~ derse5 2.895 0.488 5.927 0.000
CLA =~ derse8 2.414 0.414 5.829 0.000
EVI =~ eea1 1.000 0.000 NA NA
EVI =~ eea4 1.012 0.049 20.757 0.000
EVI =~ eea7 0.690 0.055 12.427 0.000
EVI =~ eea10 0.856 0.056 15.145 0.000
EVI =~ eea13 0.940 0.048 19.556 0.000
EVI =~ eea16 1.110 0.052 21.546 0.000
EVI =~ eea19 0.862 0.053 16.398 0.000
ANS =~ eea2 1.000 0.000 NA NA
ANS =~ eea5 1.158 0.075 15.416 0.000
ANS =~ eea8 1.294 0.083 15.550 0.000
ANS =~ eea11 1.129 0.077 14.723 0.000
ANS =~ eea14 1.138 0.075 15.106 0.000
ANS =~ eea17 1.146 0.076 15.175 0.000
ANS =~ eea20 1.225 0.074 16.563 0.000
ANS =~ eea21 1.608 0.093 17.380 0.000
SEG =~ eea3 1.000 0.000 NA NA
SEG =~ eea6 0.751 0.064 11.712 0.000
SEG =~ eea9 0.738 0.064 11.616 0.000
SEG =~ eea12 1.031 0.071 14.572 0.000
SEG =~ eea15 0.985 0.074 13.271 0.000
SEG =~ eea18 1.009 0.069 14.688 0.000
SP ~ EVI -0.003 0.011 -0.234 0.815
SP ~ ANS -0.047 0.213 -0.220 0.826
SP ~ SEG -0.004 0.009 -0.468 0.640
USB ~ EVI 0.063 0.031 2.033 0.042
USB ~ ANS -0.085 0.450 -0.190 0.849
USB ~ SEG 0.053 0.029 1.837 0.066
NAC ~ EVI 0.069 0.035 1.988 0.047
NAC ~ ANS -0.037 0.048 -0.769 0.442
NAC ~ SEG 0.090 0.047 1.901 0.057
NAC ~ SP -0.419 1.410 -0.298 0.766
NAC ~ USB -0.185 0.215 -0.861 0.389
ME ~ EVI -0.032 0.037 -0.854 0.393
ME ~ ANS -0.031 0.100 -0.313 0.755
ME ~ SEG -0.027 0.068 -0.400 0.689
ME ~ SP -1.513 3.430 -0.441 0.659
ME ~ USB 0.072 0.577 0.125 0.901
CON ~ EVI 0.008 0.081 0.103 0.918
CON ~ ANS -0.055 1.946 -0.028 0.978
CON ~ SEG -0.261 0.535 -0.488 0.626
CON ~ SP -0.795 8.769 -0.091 0.928
CON ~ USB -0.126 1.674 -0.075 0.940
CLA ~ EVI 0.041 1.053 0.039 0.969
CLA ~ ANS 0.581 26.921 0.022 0.983
CLA ~ SEG -0.189 7.389 -0.026 0.980
CLA ~ SP -2.664 116.810 -0.023 0.982
CLA ~ USB -0.576 23.128 -0.025 0.980
EPASTOT ~ EVI 0.004 0.307 0.012 0.990
EPASTOT ~ ANS 0.043 0.364 0.118 0.906
EPASTOT ~ SEG 0.056 0.441 0.128 0.898
EPASTOT ~ SP -4.050 14.207 -0.285 0.776
EPASTOT ~ USB -0.710 3.042 -0.233 0.816
EPASTOT ~ NAC 0.097 0.092 1.061 0.289
EPASTOT ~ ME 0.013 0.693 0.018 0.985
EPASTOT ~ CON -0.027 1.994 -0.014 0.989
EPASTOT ~ CLA 0.243 11.084 0.022 0.983
DERSETOT ~ EVI -0.010 0.394 -0.025 0.980
DERSETOT ~ ANS 0.004 0.791 0.005 0.996
DERSETOT ~ SEG -0.013 0.890 -0.015 0.988
DERSETOT ~ SP -0.082 4.517 -0.018 0.986
DERSETOT ~ USB 0.021 0.682 0.031 0.975
DERSETOT ~ NAC 0.002 0.038 0.053 0.958
DERSETOT ~ ME -0.003 0.167 -0.021 0.984
DERSETOT ~ CON -0.106 4.904 -0.022 0.983
DERSETOT ~ CLA 0.577 24.394 0.024 0.981
DERSETOT ~ EPASTOT -0.007 0.248 -0.029 0.977
cpas3 ~~ cpas3 1.948 0.102 19.144 0.000
cpas4 ~~ cpas4 2.290 0.109 21.060 0.000
cpas5 ~~ cpas5 2.255 0.104 21.707 0.000
cpas8 ~~ cpas8 2.290 0.110 20.722 0.000
cpas11 ~~ cpas11 1.690 0.080 21.081 0.000
cpas13 ~~ cpas13 2.281 0.106 21.601 0.000
cpas14 ~~ cpas14 1.459 0.079 18.417 0.000
cpas16 ~~ cpas16 1.542 0.089 17.302 0.000
cpas19 ~~ cpas19 1.707 0.085 20.201 0.000
cpas20 ~~ cpas20 2.924 0.132 22.102 0.000
cpas21 ~~ cpas21 1.554 0.080 19.500 0.000
cpas23 ~~ cpas23 1.249 0.116 10.787 0.000
cpas26 ~~ cpas26 2.635 0.121 21.728 0.000
cpas1 ~~ cpas1 1.547 0.074 21.018 0.000
cpas7 ~~ cpas7 1.961 0.101 19.464 0.000
cpas9 ~~ cpas9 1.402 0.113 12.400 0.000
cpas25 ~~ cpas25 1.114 0.092 12.093 0.000
derse10 ~~ derse10 0.912 0.051 17.910 0.000
derse12 ~~ derse12 0.622 0.033 18.666 0.000
derse14 ~~ derse14 0.882 0.041 21.265 0.000
derse15 ~~ derse15 0.645 0.033 19.688 0.000
derse18 ~~ derse18 0.729 0.036 20.245 0.000
derse19 ~~ derse19 0.426 0.034 12.627 0.000
derse20 ~~ derse20 0.431 0.025 17.049 0.000
derse21 ~~ derse21 0.722 0.036 20.336 0.000
derse24 ~~ derse24 0.660 0.036 18.135 0.000
derse11 ~~ derse11 0.754 0.048 15.683 0.000
derse13 ~~ derse13 0.510 0.032 16.000 0.000
derse16 ~~ derse16 0.583 0.036 16.197 0.000
derse17 ~~ derse17 0.676 0.032 21.004 0.000
derse22 ~~ derse22 0.809 0.037 21.904 0.000
derse23 ~~ derse23 0.672 0.033 20.608 0.000
derse1 ~~ derse1 0.637 0.035 18.113 0.000
derse2 ~~ derse2 0.695 0.036 19.379 0.000
derse6 ~~ derse6 1.115 0.053 20.942 0.000
derse7 ~~ derse7 0.676 0.042 15.966 0.000
derse9 ~~ derse9 0.860 0.047 18.392 0.000
derse3 ~~ derse3 0.920 0.042 21.912 0.000
derse4 ~~ derse4 0.544 0.036 15.044 0.000
derse5 ~~ derse5 0.506 0.036 14.005 0.000
derse8 ~~ derse8 0.656 0.036 18.171 0.000
eea1 ~~ eea1 1.456 0.074 19.633 0.000
eea4 ~~ eea4 0.962 0.054 17.844 0.000
eea7 ~~ eea7 2.646 0.120 21.985 0.000
eea10 ~~ eea10 2.359 0.110 21.385 0.000
eea13 ~~ eea13 1.129 0.059 19.180 0.000
eea16 ~~ eea16 0.906 0.055 16.475 0.000
eea19 ~~ eea19 1.869 0.089 20.980 0.000
eea2 ~~ eea2 2.039 0.096 21.184 0.000
eea5 ~~ eea5 1.906 0.093 20.474 0.000
eea8 ~~ eea8 2.276 0.112 20.368 0.000
eea11 ~~ eea11 2.249 0.107 20.932 0.000
eea14 ~~ eea14 2.033 0.098 20.696 0.000
eea17 ~~ eea17 2.017 0.098 20.649 0.000
eea20 ~~ eea20 1.410 0.073 19.267 0.000
eea21 ~~ eea21 1.670 0.095 17.654 0.000
eea3 ~~ eea3 1.568 0.080 19.557 0.000
eea6 ~~ eea6 1.512 0.072 20.918 0.000
eea9 ~~ eea9 1.503 0.072 20.970 0.000
eea12 ~~ eea12 1.101 0.062 17.867 0.000
eea15 ~~ eea15 1.622 0.082 19.758 0.000
eea18 ~~ eea18 1.003 0.057 17.607 0.000
EPASTOT ~~ EPASTOT 0.440 0.592 0.743 0.458
SP ~~ SP 0.013 0.064 0.207 0.836
USB ~~ USB 0.160 0.266 0.601 0.548
DERSETOT ~~ DERSETOT 0.013 1.177 0.011 0.991
NAC ~~ NAC 0.378 0.061 6.227 0.000
ME ~~ ME 0.467 0.056 8.281 0.000
CON ~~ CON 0.361 0.433 0.834 0.404
CLA ~~ CLA 0.917 82.638 0.011 0.991
EVI ~~ EVI 1.234 0.106 11.627 0.000
ANS ~~ ANS 0.936 0.101 9.228 0.000
SEG ~~ SEG 0.765 0.086 8.868 0.000
EVI ~~ ANS 0.146 0.040 3.642 0.000
EVI ~~ SEG -0.503 0.050 -9.971 0.000
ANS ~~ SEG -0.072 0.033 -2.187 0.029
glance_lavaan(kar_ftt)
AGFI AIC BIC CFI Ji_Cuad n_par RMSEA
0.8546414 210792 211845.7 0.8962962 4559.294 213 0.0394711
# Gráfica

lavaanPlot(name = 'Modelo',
                       kar_ftt,
                       node_options = list(shape = "box",
                                           fontname = "Helvetica"),
                       edge_options = list(color = "grey"),
                       coefs = TRUE,
                       stand = TRUE,
                       stars = TRUE)

Referencias