Sumário das atividades:
library(ggplot2)
library(reshape2)
but = read.csv("sumario_original.csv")
j48=but$J48[but$Percent=="100A"]
summary(j48)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.5630 0.6128 0.6355 0.6377 0.6572 0.7260
meta=but$MetaVote[but$Percent=="100A"]
summary(meta)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.7360 0.7710 0.7855 0.7861 0.7995 0.8470
but.m=melt(but,id=c("Percent"))
ggplot(but.m, aes(x = variable, y = value, fill = Percent)) + geom_boxplot() + scale_x_discrete(name="Data source") + scale_fill_manual(values = c("deepskyblue2", "darkseagreen","lightpink","lemonchiffon1"))
tudo=read.csv("summaryR.csv")
boxplot(tudo,ylab="AUC",xlab="Attributes", col=(c("deepskyblue2","deepskyblue2","deepskyblue2","deepskyblue2")))
Como os grupos do Babu são grandes e não estão muito desbalanceados, eu acredito que as outras árvores serão parecidas. Essa árvore foi podada com 3000 elementos por folha e o AUC é 0.56 :-(
Além disso, essa árvore é o oposto da árvore do Butland. É preciso pensar se realmente vale a pena seguir com esses dados do Babu.
thcomplete = read.csv('th_complete.csv')
fpCutcomplete <- cut(thcomplete$FP, breaks = 20)
boxplot( boxwex = 0.3,thcomplete$TP ~ fpCutcomplete, col=2, xlab = "False Positive rate", ylab = "True Positive rate", xaxt = "n",outline=FALSE)
axis(1, at = c(0, 4, 8, 12, 16, 20), c(0, 0.2, 0.4, 0.6, 0.8, 1))
abline(0, 0.05, lwd=3,col = "red")
thdeg = read.csv('vote_threshold_summary_DEG.csv')
fpCutdeg<-cut(thdeg$FP,breaks=20)
boxplot(boxwex = 0.3,thdeg$TP ~ fpCutdeg,add=TRUE, col=4, xaxt = "n",outline=FALSE)
thneigh = read.csv('th_neigh.csv')
fpCutneigh<-cut(thneigh$FP,breaks=20)
boxplot(boxwex = 0.3,thneigh$TP ~ fpCutneigh,add=TRUE, col="gray", xaxt = "n",outline=FALSE)
thbetspaths = read.csv('vote_threshold_summary_BET_SPATHS.csv')
fpCutbetspaths<-cut(thbetspaths$FP,breaks=20)
boxplot(boxwex = 0.3,thbetspaths$TP ~ fpCutbetspaths,add=TRUE, col=7, xaxt = "n",outline=FALSE)
legend(bty = "n",12, 0.4, c("complete", "deg","neigh","bet_spaths"),fill=c("red","blue","gray","yellow"))
| J48 | META |
DEG | 0.61 | 0.74 |
BET | 0.62 | 0.75 |
SPATHS | 0.55 | 0.61 |
NEIGH | 0.47 | 0.52 |
COMPLETE | 0.63 | 0.79 |