Probability models and axioms
Conditioning and independence
Counting
Continuous random variables
Bayesian inference
Markov chains
Student Example
Present a student in a course through 3 varaibles:
I <- c('i0', 'i0', 'i0', 'i0', 'i0', 'i0', 'i1', 'i1', 'i1', 'i1', 'i1', 'i1')
D <- c('d0', 'd0', 'd0', 'd1', 'd1', 'd1', 'd0', 'd0', 'd0', 'd1', 'd1', 'd1')
G <- c('g1', 'g2', 'g3', 'g1', 'g2', 'g3', 'g1', 'g2', 'g3', 'g1', 'g2', 'g3')
P <- c(0.126, 0.168, 0.126, 0.009, 0.045, 0.126, 0.252, 0.0224, 0.0056, 0.06, 0.036, 0.024)
data.student <- data.frame(I=I, D=D, G=G, P=P)
data.student
## I D G P
## 1 i0 d0 g1 0.1260
## 2 i0 d0 g2 0.1680
## 3 i0 d0 g3 0.1260
## 4 i0 d1 g1 0.0090
## 5 i0 d1 g2 0.0450
## 6 i0 d1 g3 0.1260
## 7 i1 d0 g1 0.2520
## 8 i1 d0 g2 0.0224
## 9 i1 d0 g3 0.0056
## 10 i1 d1 g1 0.0600
## 11 i1 d1 g2 0.0360
## 12 i1 d1 g3 0.0240
Condition on \(g^1\)
data.g1 <- subset(data.student, G=='g1')
Condition ~ Reduction
data.g1
## I D G P
## 1 i0 d0 g1 0.126
## 4 i0 d1 g1 0.009
## 7 i1 d0 g1 0.252
## 10 i1 d1 g1 0.060
Conditioning: Renormalization
data.frame(I=data.g1[["I"]], D=data.g1[["D"]], P=data.g1[["P"]])
## I D P
## 1 i0 d0 0.126
## 2 i0 d1 0.009
## 3 i1 d0 0.252
## 4 i1 d1 0.060