#Case Study: 2014 World Health Organization Global Tuberculosis Report Data contains redundant columns, odd variable codes, and many missing values,let’s tidy:

library(tidyverse)
## -- Attaching packages ----------------------------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.3.2     v purrr   0.3.4
## v tibble  3.0.1     v dplyr   1.0.0
## v tidyr   1.1.0     v stringr 1.4.0
## v readr   1.3.1     v forcats 0.5.0
## -- Conflicts -------------------------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
#build up a complex pipe:
who %>%
  pivot_longer(
    cols = new_sp_m014:newrel_f65, 
    names_to = "key", 
    values_to = "cases", 
    values_drop_na = TRUE
  ) %>% 
  mutate(
    key = stringr::str_replace(key, "newrel", "new_rel")
  ) %>%
  separate(key, c("new", "var", "sexage")) %>% 
  select(-new, -iso2, -iso3) %>% 
  separate(sexage, c("sex", "age"), sep = 1)
## # A tibble: 76,046 x 6
##    country      year var   sex   age   cases
##    <chr>       <int> <chr> <chr> <chr> <int>
##  1 Afghanistan  1997 sp    m     014       0
##  2 Afghanistan  1997 sp    m     1524     10
##  3 Afghanistan  1997 sp    m     2534      6
##  4 Afghanistan  1997 sp    m     3544      3
##  5 Afghanistan  1997 sp    m     4554      5
##  6 Afghanistan  1997 sp    m     5564      2
##  7 Afghanistan  1997 sp    m     65        0
##  8 Afghanistan  1997 sp    f     014       5
##  9 Afghanistan  1997 sp    f     1524     38
## 10 Afghanistan  1997 sp    f     2534     36
## # ... with 76,036 more rows
who
## # A tibble: 7,240 x 60
##    country iso2  iso3   year new_sp_m014 new_sp_m1524 new_sp_m2534 new_sp_m3544
##    <chr>   <chr> <chr> <int>       <int>        <int>        <int>        <int>
##  1 Afghan~ AF    AFG    1980          NA           NA           NA           NA
##  2 Afghan~ AF    AFG    1981          NA           NA           NA           NA
##  3 Afghan~ AF    AFG    1982          NA           NA           NA           NA
##  4 Afghan~ AF    AFG    1983          NA           NA           NA           NA
##  5 Afghan~ AF    AFG    1984          NA           NA           NA           NA
##  6 Afghan~ AF    AFG    1985          NA           NA           NA           NA
##  7 Afghan~ AF    AFG    1986          NA           NA           NA           NA
##  8 Afghan~ AF    AFG    1987          NA           NA           NA           NA
##  9 Afghan~ AF    AFG    1988          NA           NA           NA           NA
## 10 Afghan~ AF    AFG    1989          NA           NA           NA           NA
## # ... with 7,230 more rows, and 52 more variables: new_sp_m4554 <int>,
## #   new_sp_m5564 <int>, new_sp_m65 <int>, new_sp_f014 <int>,
## #   new_sp_f1524 <int>, new_sp_f2534 <int>, new_sp_f3544 <int>,
## #   new_sp_f4554 <int>, new_sp_f5564 <int>, new_sp_f65 <int>,
## #   new_sn_m014 <int>, new_sn_m1524 <int>, new_sn_m2534 <int>,
## #   new_sn_m3544 <int>, new_sn_m4554 <int>, new_sn_m5564 <int>,
## #   new_sn_m65 <int>, new_sn_f014 <int>, new_sn_f1524 <int>,
## #   new_sn_f2534 <int>, new_sn_f3544 <int>, new_sn_f4554 <int>,
## #   new_sn_f5564 <int>, new_sn_f65 <int>, new_ep_m014 <int>,
## #   new_ep_m1524 <int>, new_ep_m2534 <int>, new_ep_m3544 <int>,
## #   new_ep_m4554 <int>, new_ep_m5564 <int>, new_ep_m65 <int>,
## #   new_ep_f014 <int>, new_ep_f1524 <int>, new_ep_f2534 <int>,
## #   new_ep_f3544 <int>, new_ep_f4554 <int>, new_ep_f5564 <int>,
## #   new_ep_f65 <int>, newrel_m014 <int>, newrel_m1524 <int>,
## #   newrel_m2534 <int>, newrel_m3544 <int>, newrel_m4554 <int>,
## #   newrel_m5564 <int>, newrel_m65 <int>, newrel_f014 <int>,
## #   newrel_f1524 <int>, newrel_f2534 <int>, newrel_f3544 <int>,
## #   newrel_f4554 <int>, newrel_f5564 <int>, newrel_f65 <int>
#It looks like country, iso2, and iso3 are three variables that redundantly specify the country.

#year is clearly also a variable.

#We don’t know what all the other columns are yet, but given the structure in the variable names (e.g. new_sp_m014, new_ep_m014, new_ep_f014) these are likely to be values, not variables.

who1 <- who %>% 
  pivot_longer(
    cols = new_sp_m014:newrel_f65, 
    names_to = "key", 
    values_to = "cases", 
    values_drop_na = TRUE
  )

#We can get some hint of the structure of the values in the new key column by counting them:

who1 %>% 
  count(key)
## # A tibble: 56 x 2
##    key              n
##    <chr>        <int>
##  1 new_ep_f014   1032
##  2 new_ep_f1524  1021
##  3 new_ep_f2534  1021
##  4 new_ep_f3544  1021
##  5 new_ep_f4554  1017
##  6 new_ep_f5564  1017
##  7 new_ep_f65    1014
##  8 new_ep_m014   1038
##  9 new_ep_m1524  1026
## 10 new_ep_m2534  1020
## # ... with 46 more rows
who1
## # A tibble: 76,046 x 6
##    country     iso2  iso3   year key          cases
##    <chr>       <chr> <chr> <int> <chr>        <int>
##  1 Afghanistan AF    AFG    1997 new_sp_m014      0
##  2 Afghanistan AF    AFG    1997 new_sp_m1524    10
##  3 Afghanistan AF    AFG    1997 new_sp_m2534     6
##  4 Afghanistan AF    AFG    1997 new_sp_m3544     3
##  5 Afghanistan AF    AFG    1997 new_sp_m4554     5
##  6 Afghanistan AF    AFG    1997 new_sp_m5564     2
##  7 Afghanistan AF    AFG    1997 new_sp_m65       0
##  8 Afghanistan AF    AFG    1997 new_sp_f014      5
##  9 Afghanistan AF    AFG    1997 new_sp_f1524    38
## 10 Afghanistan AF    AFG    1997 new_sp_f2534    36
## # ... with 76,036 more rows

look up the data dictionary

who2 <- who1 %>% 
  mutate(names_from = stringr::str_replace(key, "newrel", "new_rel"))
who2
## # A tibble: 76,046 x 7
##    country     iso2  iso3   year key          cases names_from  
##    <chr>       <chr> <chr> <int> <chr>        <int> <chr>       
##  1 Afghanistan AF    AFG    1997 new_sp_m014      0 new_sp_m014 
##  2 Afghanistan AF    AFG    1997 new_sp_m1524    10 new_sp_m1524
##  3 Afghanistan AF    AFG    1997 new_sp_m2534     6 new_sp_m2534
##  4 Afghanistan AF    AFG    1997 new_sp_m3544     3 new_sp_m3544
##  5 Afghanistan AF    AFG    1997 new_sp_m4554     5 new_sp_m4554
##  6 Afghanistan AF    AFG    1997 new_sp_m5564     2 new_sp_m5564
##  7 Afghanistan AF    AFG    1997 new_sp_m65       0 new_sp_m65  
##  8 Afghanistan AF    AFG    1997 new_sp_f014      5 new_sp_f014 
##  9 Afghanistan AF    AFG    1997 new_sp_f1524    38 new_sp_f1524
## 10 Afghanistan AF    AFG    1997 new_sp_f2534    36 new_sp_f2534
## # ... with 76,036 more rows
who3 <- who2 %>% 
  separate(key, c("new", "type", "sexage"), sep = "_")
## Warning: Expected 3 pieces. Missing pieces filled with `NA` in 2580 rows [243,
## 244, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 903,
## 904, 905, 906, ...].
who3
## # A tibble: 76,046 x 9
##    country     iso2  iso3   year new   type  sexage cases names_from  
##    <chr>       <chr> <chr> <int> <chr> <chr> <chr>  <int> <chr>       
##  1 Afghanistan AF    AFG    1997 new   sp    m014       0 new_sp_m014 
##  2 Afghanistan AF    AFG    1997 new   sp    m1524     10 new_sp_m1524
##  3 Afghanistan AF    AFG    1997 new   sp    m2534      6 new_sp_m2534
##  4 Afghanistan AF    AFG    1997 new   sp    m3544      3 new_sp_m3544
##  5 Afghanistan AF    AFG    1997 new   sp    m4554      5 new_sp_m4554
##  6 Afghanistan AF    AFG    1997 new   sp    m5564      2 new_sp_m5564
##  7 Afghanistan AF    AFG    1997 new   sp    m65        0 new_sp_m65  
##  8 Afghanistan AF    AFG    1997 new   sp    f014       5 new_sp_f014 
##  9 Afghanistan AF    AFG    1997 new   sp    f1524     38 new_sp_f1524
## 10 Afghanistan AF    AFG    1997 new   sp    f2534     36 new_sp_f2534
## # ... with 76,036 more rows

pivot_longer() and pivot_wider()

stocks <- tibble(
  year   = c(2015, 2015, 2016, 2016),
  half  = c(   1,    2,     1,    2),
  return = c(1.88, 0.59, 0.92, 0.17)
)

stocks %>% 
  pivot_wider(names_from = year, values_from = return) %>% 
  pivot_longer(`2015`:`2016`, names_to = "year", values_to = "return")
## # A tibble: 4 x 3
##    half year  return
##   <dbl> <chr>  <dbl>
## 1     1 2015    1.88
## 2     1 2016    0.92
## 3     2 2015    0.59
## 4     2 2016    0.17

seperate() and unite()

onetwothree <- tibble(x = c("a,b,c", "d,e,f,g", "h,i,j")) %>% 
  separate(x, c("one", "two", "three"))
## Warning: Expected 3 pieces. Additional pieces discarded in 1 rows [2].
onetwothree %>% 
  unite(new, two, three, sep = "",  na.rm=FALSE)
## # A tibble: 3 x 2
##   one   new  
##   <chr> <chr>
## 1 a     bc   
## 2 d     ef   
## 3 h     ij

Missing Values

stocksMvals <- tibble(
  year   = c(2015, 2015, 2015, 2015, 2016, 2016, 2016),
  qtr    = c(   1,    2,    3,    4,    2,    3,    4),
  return = c(1.88, 0.59, 0.35,   NA, 0.92, 0.17, 2.66)
)

#The return for the fourth quarter of 2015 is explicitly missing, because the cell where its value should be instead contains NA.

#The return for the first quarter of 2016 is implicitly missing, because it simply does not appear in the dataset.

#make the implicit missing value explicit by putting years in the columns:

stocksMvals %>% 
  pivot_wider(names_from = year, values_from = return)
## # A tibble: 4 x 3
##     qtr `2015` `2016`
##   <dbl>  <dbl>  <dbl>
## 1     1   1.88  NA   
## 2     2   0.59   0.92
## 3     3   0.35   0.17
## 4     4  NA      2.66
#or turn explicit missing values implicit:

stocksMvals %>% 
  pivot_wider(names_from = year, values_from = return) %>% 
  pivot_longer(
    cols = c(`2015`, `2016`), 
    names_to = "year", 
    values_to = "return", 
    values_drop_na = TRUE
  )
## # A tibble: 6 x 3
##     qtr year  return
##   <dbl> <chr>  <dbl>
## 1     1 2015    1.88
## 2     2 2015    0.59
## 3     2 2016    0.92
## 4     3 2015    0.35
## 5     3 2016    0.17
## 6     4 2016    2.66

complete()and fill()

stocksMvals %>% 
  complete(year, qtr)
## # A tibble: 8 x 3
##    year   qtr return
##   <dbl> <dbl>  <dbl>
## 1  2015     1   1.88
## 2  2015     2   0.59
## 3  2015     3   0.35
## 4  2015     4  NA   
## 5  2016     1  NA   
## 6  2016     2   0.92
## 7  2016     3   0.17
## 8  2016     4   2.66
treatment <- tribble(
  ~ person,           ~ treatment, ~response,
  "Derrick Whitmore", 1,           7,
  NA,                 2,           10,
  NA,                 3,           9,
  "Katherine Burke",  1,           4
)

#last observation carried forward
treatment %>% 
  fill(person)
## # A tibble: 4 x 3
##   person           treatment response
##   <chr>                <dbl>    <dbl>
## 1 Derrick Whitmore         1        7
## 2 Derrick Whitmore         2       10
## 3 Derrick Whitmore         3        9
## 4 Katherine Burke          1        4