Unemployment Rate
- Less Than a High School Diploma, 25 Yrs. & Over (LNU04027659)
- High School Graduates, No College, 25 Yrs. & Over (LNU04027660)
- Some College or Associate Degree, 25 Yrs. & Over (LNU04027689)
- College Graduates - Bachelor’s Degree, 25 years and over (CGBD25O)
- College Graduates - Professional Degree, 25 years and over (CGPD25O)
no_hs <-fredr_series_observations(series_id = "LNU04027659",
observation_start = as.Date("2019-01-01"))
hs <-fredr_series_observations(series_id = "LNU04027660",
observation_start = as.Date("2019-01-01"))
as <-fredr_series_observations(series_id = "LNU04027689",
observation_start = as.Date("2019-01-01"))
ba <-fredr_series_observations(series_id = "CGBD25O",
observation_start = as.Date("2019-01-01"))
indicator <-as.data.frame(no_hs$date)
colnames(indicator) <- "date"
indicator$no_highschool <- no_hs$value
indicator$highschool <- hs$value
indicator$some_college <- as$value
indicator$bachelor <- ba$value
indicator %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "black" ) %>%
column_spec(3, T, color = "blue") %>%
column_spec(4, T, color = "green") %>%
column_spec(5, T, color = "#CC79A7") %>%
row_spec(16,T,color="red",background = "lightyellow")
date
|
no_highschool
|
highschool
|
some_college
|
bachelor
|
2019-01-01
|
7.4
|
4.3
|
3.7
|
2.8
|
2019-02-01
|
6.7
|
4.2
|
3.4
|
2.4
|
2019-03-01
|
6.9
|
4.0
|
3.5
|
2.2
|
2019-04-01
|
5.2
|
3.3
|
2.9
|
2.1
|
2019-05-01
|
4.4
|
3.3
|
2.5
|
2.1
|
2019-06-01
|
4.6
|
3.7
|
3.0
|
2.3
|
2019-07-01
|
4.6
|
3.6
|
3.3
|
2.5
|
2019-08-01
|
4.7
|
3.6
|
3.2
|
2.5
|
2019-09-01
|
4.0
|
3.3
|
2.8
|
2.2
|
2019-10-01
|
4.7
|
3.5
|
2.7
|
2.1
|
2019-11-01
|
5.1
|
3.5
|
2.8
|
1.9
|
2019-12-01
|
5.9
|
3.7
|
2.6
|
1.9
|
2020-01-01
|
7.4
|
4.4
|
3.0
|
2.2
|
2020-02-01
|
7.2
|
4.1
|
3.3
|
2.2
|
2020-03-01
|
8.1
|
4.8
|
3.9
|
2.5
|
2020-04-01
|
20.9
|
17.0
|
14.8
|
9.4
|
2020-05-01
|
18.5
|
15.0
|
12.9
|
8.4
|
2020-06-01
|
15.4
|
11.9
|
10.8
|
8.1
|
2020-07-01
|
14.9
|
10.8
|
10.2
|
8.1
|
#---------------------------
library(reshape2)
# Specify id.vars: the variables to keep but not split apart on
data_long <- melt(indicator, id.vars=c("date"))
colnames(data_long) <- c("date","Education","Percent")
# plotting data
data_long %>% ggplot() +
geom_line(mapping = aes(x=date,y=Percent,color=Education),size=1) +
labs(title = "Unemployment rates by education attainment",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
x="Monthly", y="Percent",
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego")+
theme_economist()

Unemployment Rate - High School Graduates, No College, 18 to 19 years
_ Men (HSGS1819M) - Women (HSGS1819W)
men <-fredr_series_observations(series_id = "HSGS1819M",
observation_start = as.Date("2019-01-01"))
women <-fredr_series_observations(series_id = "HSGS1819W",
observation_start = as.Date("2019-01-01"))
indicator <-as.data.frame(men$date)
colnames(indicator) <- "date"
indicator$men <- men$value
indicator$women <- women$value
indicator %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "green" ) %>%
column_spec(3, T, color = "blue") %>%
row_spec(16,T,color="red",background = "lightyellow")
date
|
men
|
women
|
2019-01-01
|
14.5
|
14.0
|
2019-02-01
|
18.4
|
13.6
|
2019-03-01
|
18.4
|
9.2
|
2019-04-01
|
20.4
|
7.1
|
2019-05-01
|
13.7
|
11.7
|
2019-06-01
|
17.6
|
11.3
|
2019-07-01
|
13.7
|
11.4
|
2019-08-01
|
13.7
|
13.3
|
2019-09-01
|
16.6
|
15.9
|
2019-10-01
|
16.2
|
11.5
|
2019-11-01
|
15.6
|
12.7
|
2019-12-01
|
14.5
|
12.9
|
2020-01-01
|
20.9
|
18.3
|
2020-02-01
|
16.3
|
20.7
|
2020-03-01
|
18.8
|
10.6
|
2020-04-01
|
30.3
|
36.4
|
2020-05-01
|
30.3
|
26.8
|
2020-06-01
|
26.6
|
15.9
|
2020-07-01
|
23.8
|
14.2
|
#---------------------------
# Specify id.vars: the variables to keep but not split apart on
data_long <- melt(indicator, id.vars=c("date"))
colnames(data_long) <- c("date","Gender","Percent")
# plotting data
data_long %>% ggplot() +
geom_line(mapping = aes(x=date,y=Percent,color=Gender),size=1) +
labs(title = "Unemployment rates _ High School Graduates by Gender",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
x="Monthly", y="Percent",
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego")+
theme_economist()

Unemployment Rate - Less Than a High School Diploma, 25 Yrs. & Over (LNS14027659)
- Less than a High School Diploma, 25 to 64 years, Men (LHSD2564M)
- Less than a High School Diploma, 25 to 64 years, Women (LHSD2564W)
women <-fredr_series_observations(series_id = "LHSD2564W",
observation_start = as.Date("2019-01-01"))
men <-fredr_series_observations(series_id = "LHSD2564M",
observation_start = as.Date("2019-01-01"))
indicator <-as.data.frame(women$date)
colnames(indicator) <- "date"
indicator$women <- women$value
indicator$men <- men$value
indicator %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "green" ) %>%
column_spec(3, T, color = "blue") %>%
row_spec(16,T,color="red",background = "lightyellow")
date
|
women
|
men
|
2019-01-01
|
7.6
|
7.5
|
2019-02-01
|
6.6
|
7.0
|
2019-03-01
|
7.4
|
6.8
|
2019-04-01
|
5.9
|
4.9
|
2019-05-01
|
6.8
|
3.2
|
2019-06-01
|
5.9
|
3.9
|
2019-07-01
|
6.5
|
3.5
|
2019-08-01
|
6.6
|
3.7
|
2019-09-01
|
5.2
|
3.5
|
2019-10-01
|
6.1
|
4.2
|
2019-11-01
|
6.9
|
4.4
|
2019-12-01
|
5.6
|
6.3
|
2020-01-01
|
7.2
|
7.7
|
2020-02-01
|
7.0
|
7.3
|
2020-03-01
|
8.5
|
7.7
|
2020-04-01
|
25.5
|
18.2
|
2020-05-01
|
22.8
|
16.0
|
2020-06-01
|
19.3
|
13.2
|
2020-07-01
|
17.8
|
13.2
|
#---------------------------
# Specify id.vars: the variables to keep but not split apart on
data_long <- melt(indicator, id.vars=c("date"))
colnames(data_long) <- c("date","Gender","Thousands")
# plotting data
data_long %>% ggplot() +
geom_line(mapping = aes(x=date,y=Thousands,color=Gender),size=1) +
labs(title = "Unemployment Rates _ Less than a High School Diploma, 25 to 64 years",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
x="Monthly", y="Rate",
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego")+
theme_economist()
### Unemployment Rate - 18-19 Yrs. - Men (LNU04000154) - Women (LNU04000319)
women <-fredr_series_observations(series_id = "LNU04000319",
observation_start = as.Date("2019-01-01"))
men <-fredr_series_observations(series_id = "LNU04000154",
observation_start = as.Date("2019-01-01"))
indicator <-as.data.frame(women$date)
colnames(indicator) <- "date"
indicator$women <- women$value
indicator$men <- men$value
indicator %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "green" ) %>%
column_spec(3, T, color = "blue") %>%
row_spec(16,T,color="red",background = "lightyellow")
date
|
women
|
men
|
2019-01-01
|
12.0
|
14.6
|
2019-02-01
|
10.7
|
14.5
|
2019-03-01
|
9.1
|
14.6
|
2019-04-01
|
6.8
|
14.7
|
2019-05-01
|
11.9
|
12.2
|
2019-06-01
|
11.2
|
14.9
|
2019-07-01
|
10.1
|
12.1
|
2019-08-01
|
11.5
|
13.1
|
2019-09-01
|
11.2
|
14.7
|
2019-10-01
|
9.6
|
12.9
|
2019-11-01
|
10.0
|
12.6
|
2019-12-01
|
9.7
|
11.1
|
2020-01-01
|
13.7
|
14.4
|
2020-02-01
|
12.4
|
12.2
|
2020-03-01
|
10.5
|
13.7
|
2020-04-01
|
37.3
|
30.1
|
2020-05-01
|
31.4
|
28.9
|
2020-06-01
|
19.8
|
25.8
|
2020-07-01
|
17.6
|
20.0
|
#---------------------------
# Specify id.vars: the variables to keep but not split apart on
data_long <- melt(indicator, id.vars=c("date"))
colnames(data_long) <- c("date","Gender","Thousands")
# plotting data
data_long %>% ggplot() +
geom_line(mapping = aes(x=date,y=Thousands,color=Gender),size=1) +
labs(title = "Unemployment Rates _ 18-19 Years.",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
x="Monthly", y="Rate",
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego")+
theme_economist()
