On January 31, 2020, the Council of Ministers declared a state of emergency, for a period of six months, as a result of the health risk associated with the Coronavirus infection. The Head of the Civil Protection Department, Angelo Borrelli, is entrusted with the coordination of the interventions necessary to face the emergency on the national territory. The main actions coordinated by the Head of the Department are aimed at rescuing and assisting the population possibly affected by the infection, at strengthening controls in the airport and port areas, in continuity with the urgent measures already adopted by the Ministry of Health, upon their return to Italy. of citizens who are in countries at risk and the repatriation of foreign citizens to countries of origin exposed to risk.
To inform citizens and make the collected data available, useful for communication and information purposes only, the Department of Civil Protection has developed an interactive geographical dashboard that can be reached at the addresses http://arcg.is/C1unv (desktop version) and http : //arcg.is/081a51 (mobile version) and makes available, under license CC-BY-4.0, the following information updated daily at 18:30 (after the press conference of the Head of Department): ## Covid-19 Italian cases updates
CV19_backup<- read.csv("https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-andamento-nazionale/dpc-covid19-ita-andamento-nazionale.csv")
names(CV19_backup)
## [1] "data" "stato"
## [3] "ricoverati_con_sintomi" "terapia_intensiva"
## [5] "totale_ospedalizzati" "isolamento_domiciliare"
## [7] "totale_positivi" "variazione_totale_positivi"
## [9] "nuovi_positivi" "dimessi_guariti"
## [11] "deceduti" "casi_da_sospetto_diagnostico"
## [13] "casi_da_screening" "totale_casi"
## [15] "tamponi" "casi_testati"
## [17] "note"
Today<- Sys.time()
Today
## [1] "2020-08-20 20:09:44 UTC"
cases_today<-max(CV19_backup$totale_casi)
deceased_today<-max(CV19_backup$deceduti)
new_positives_today<- max(CV19_backup$nuovi_positivi)
as.table(c(Cases=cases_today,Deceased=deceased_today,Positives=new_positives_today))
## Cases Deceased Positives
## 256118 35418 6557
cv19_cumulate<- CV19_backup%>%
select(data,totale_casi,deceduti,totale_positivi)
head(cv19_cumulate,10)
## data totale_casi deceduti totale_positivi
## 1 2020-02-24T18:00:00 229 7 221
## 2 2020-02-25T18:00:00 322 10 311
## 3 2020-02-26T18:00:00 400 12 385
## 4 2020-02-27T18:00:00 650 17 588
## 5 2020-02-28T18:00:00 888 21 821
## 6 2020-02-29T18:00:00 1128 29 1049
## 7 2020-03-01T18:00:00 1694 34 1577
## 8 2020-03-02T18:00:00 2036 52 1835
## 9 2020-03-03T18:00:00 2502 79 2263
## 10 2020-03-04T18:00:00 3089 107 2706
totale_casi<- (cv19_cumulate$totale_casi)
deceduti<- cv19_cumulate$deceduti
totale_positivi<- cv19_cumulate$totale_positivi
par(3,2);
## [[1]]
## NULL
##
## [[2]]
## NULL
hist(totale_casi)
plot(totale_casi,type="l")
hist(deceduti)
plot(deceduti,type="l")
hist(totale_positivi)
plot(totale_positivi,type="l")
cv19_daily<- CV19_backup%>%
select(nuovi_positivi,variazione_totale_positivi)
nuovi_positivi<- cv19_daily$nuovi_positivi
variazione_totale_positivi<- cv19_daily$variazione_totale_positivi
par(mfrow = c(2,2));
hist(nuovi_positivi)
plot(nuovi_positivi,type="h",main="New positives")
hist(variazione_totale_positivi)
plot(variazione_totale_positivi,type="h",main="Variation")
##New Positives Average, St Deviation and Variance:
avg<- round(mean(nuovi_positivi))
st_dev<- round(sd(nuovi_positivi))
varian<-var(nuovi_positivi)
as.table(c(Avg=avg,StDev=st_dev,Variance=varian))
## Avg StDev Variance
## 1431 1689 2852943
max(nuovi_positivi)
## [1] 6557
n_var_pos<-max(variazione_totale_positivi)
Ns<-seq(115,140,5)
B <- 1000
par(mfrow=c(2,3))
LIM <- c(-4.5,4.5)
for(n_var_pos in Ns){
ts <- replicate(B, {
X <- rnorm(variazione_totale_positivi)
sqrt(n_var_pos)*mean(X)/sd(X)
})
ps <- seq(1/(B+1),1-1/(B+1),len=B)
qqplot(qt(ps,df=n_var_pos-1),ts,main=n_var_pos,
xlab="Theoretical",ylab="Observed",
xlim=LIM, ylim=LIM)
abline(0,1)
}
#Different samples show little variations at tails levels #Selecting a sample of Variation of total positives of 135 we value its trend
var_norm<-rnorm(variazione_totale_positivi)
mean(var_norm);sd(var_norm)
## [1] 0.06493991
## [1] 0.9922507
hist(var_norm)
N<- 500
diff_avg<- mean(variazione_totale_positivi)-mean(var_norm)
variation<- sqrt(var(variazione_totale_positivi)^2+var(var_norm)^2)
se<- sqrt(1/N)*diff_avg/variation